Community Development Director:
Tom Boyatt, 541.744.3373
Interim Planning Manager:
Sandy Belson 541.736.7135
Management Specialist:
Brenda Jones 541.726.3610
City Attorney's Office:
Kristina Kraaz 541.744.4061

## Planning Commission Agenda

City Hall<br>225 Fifth Street<br>Springfield, Oregon 97477<br>541.726.3610<br>Online at www.springfield-or.gov

Planning Commissioners:
Sophie McGinley, Chair
Andrew Landen, Vice Chair
Kuri Gill
Grace Bergen
Michael Koivula
Matthew Salazar
Andrew Ruck

Due to State-wide orders regarding social distancing and large gatherings, this meeting will be available via phone and internet using Zoom Meeting. Members of the public wishing to attend this meeting electronically can call in or attend virtually by following the directions below. This information can also be found on the City's website.

From your computer, tablet or smartphone
https://zoom.us/j/99650109398?pwd=dlYzQVI0OUJwNmhzS2VIcXQ0U0NaUT09
Meeting ID: 9965010 9398; Passcode: 980449
Dial by your location
971247 1195; 2063379723
8778535247 US Toll-free
Oregon Relay/TTY: Dial 711 or 800-735-1232.
Give the Relay Operator the area code and telephone number you wish to call and any further instructions
All proceedings before the Planning Commission/CCI are recorded.
To view agenda packet materials or view a recording after the meeting, go to $\underline{\text { SpringfieldOregonSpeaks.org }}$
October 5, 2021
6:00 p.m. Planning Commission Work Session Virtual

## CALL TO ORDER

ATTENDANCE:
Chair McGinley__, Vice Chair Landen $\qquad$ , Koivula $\qquad$ Gill $\qquad$ ,
Bergen $\qquad$ , Salazar $\qquad$ and Buck $\qquad$ .

## WORK SESSION ITEM(S)

1. Development Code Update Project - Draft Code Sections

Staff: Mark Rust, AIC Current Planning Supervisor 60 Minutes
$\square$ Commission members declaration of potential conflicts of interest

# 7:00 p.m. Planning Commission Regular Session <br> Virtual 

CONVENE AND CALL TO ORDER THE REGULAR SESSION OF THE SPRINGFIELD PLANNING COMMISSION

ATTENDANCE: Chair McGinley ____, Vice Chair Landen____, Gill ___, Koivula ___, Bergen ____, Salazar ___, and Buck ____.

## PLEDGE OF ALLEGIANCE

## ADJUSTMENTS TO THE REGULAR SESSION AGENDA

In response to a request by a member of the Planning Commission, Staff or Applicant; by consensus

## BUSINESS FROM THE AUDIENCE

Public comment is limited to 3 minutes per person; testimony may not discuss or otherwise address public hearings appearing on this Regular Session Agenda. If you wish to provide comment, please send a message to the "host" stating your name and the topic you'd like to address. The meeting host will ask those joining by phone if they wish to comment.

## PUBLIC HEARINGS

1. Discretionary Use Application for Multi-Unit Residential Developments Located on Two Adjacent Sites on Horace Street Identified as Assessor's Map 18-02-05-23, Tax Lot 202 and 204. Case No. 811-21-000196-TYP3.

## Staff: Melissa Carino <br> 10 Minutes

## CONDUCT OF QUASI-JUDICIAL PUBLIC HEARING BEFORE THE PLANNING COMMISSION

Those joining the meeting on-line who wish to testify during the public hearing may send a message to the "host" stating your name, mailing address, and whether you support, oppose, or are neutral with regard to the application. During the public hearing, the host will ask those joining by telephone if they wish to testify.
$\square$ Staff explanation of quasi-judicial hearing process (ORS 197.763 and Springfield Development Code 5.2-120 through 5.2-150)
$\square \quad$ Chair opens the public hearing
$\square$ Commission members declaration of potential conflicts of interest; disclosure of "ex-parte" contact
$\square$ Any challenges to the impartiality of the Commissioners or objection to the jurisdiction of the Commission to hear the matter
$\square$ Staff report
$\square$ Testimony from the applicant
$\square \quad$ Testimony in support of the application
$\square$ Testimony neither in support of nor opposed to the application
$\square$ Testimony opposed to the application
$\square$ Summation by staff
$\square$ Rebuttal from the applicant
$\square$ Planning Commission questions to staff or public
$\square$ Close or continue public hearing; close or extend written record (continuance or extension by motion)

Planning Commission Deliberations - discussion of the proposal including testimony and evidence addressing the applicable approval criteria
$\square$ Motion to approve as presented, approve with modifications, or deny the application based on the findings of fact contained in the staff report, oral and written testimony, and all other evidence submitted into the record
2. Request for Type II Discretionary Use Permit and Site Plan Modification for a Proposed Sports Stadium (Baseball Field) Located at 326 Centennial Boulevard, Case No. 811-21-000168-TYP2 (Disc. Use) \& 811-21-000169-TYP3 (Site Plan)

Staff: Andy Limbird 30 Minutes

## CONDUCT OF QUASI-JUDICIAL PUBLIC HEARING BEFORE THE PLANNING COMMISSION

Those joining the meeting on-line who wish to testify during the public hearing may send a message to the "host" stating your name, mailing address, and whether you support, oppose, or are neutral with regard to the application. During the public hearing, the host will ask those joining by telephone if they wish to testify.
$\square$ Staff explanation of quasi-judicial hearing process (ORS 197.763 and Springfield Development Code 5.2-120 through 5.2-150)
$\square$ Chair opens the public hearing
$\square$ Commission members declaration of potential conflicts of interest; disclosure of "ex-parte" contact
$\square$ Any challenges to the impartiality of the Commissioners or objection to the jurisdiction of the Commission to hear the matter
$\square$ Staff report
$\square$ Testimony from the applicant
$\square$ Testimony in support of the application
$\square$ Testimony neither in support of nor opposed to the application
$\square$ Testimony opposed to the application
$\square$ Summation by staff
$\square$ Rebuttal from the applicant
$\square$ Planning Commission questions to staff or public
$\square$ Continue public hearing to October 19 at 7:00 pm
3. 2023-2027 Capital Improvement Program, A Community Reinvestment Plan

## Staff: Jeff Paschal, City Engineer

 30 Minutes
## CONDUCT OF PUBLIC HEARING BEFORE THE PLANNING COMMISSION

Those joining the meeting on-line who wish to testify during the public hearing may send a message to the "host" stating your name, mailing address, and whether you support or oppose the projects listed, or if a project should be added to the list. During the public hearing, the host will ask those joining by telephone if they wish to testify.
$\square \quad$ Chair opens the public hearing
$\square$ Staff report
$\square$ Public testimony
$\square$ Planning Commission questions to staff or public
$\square$ Close or continue public hearing; close or extend written record (continuance or extension by motion)

Planning Commission Agenda
October 5, 2021
Page 4
$\square$ Planning Commission Deliberations - discussion of the proposal including testimony
$\square$ Motion to recommend approval as presented, or approval with modifications
REPORT OF COUNCIL ACTION
BUSINESS FROM THE PLANNING COMMISSION
BUSINESS FROM THE DEVELOPMENT AND PUBLIC WORKS DEPARTMENT

## ADJOURNMENT

$\left.\begin{array}{llll}\hline \text { AGENDA ITEM SUMMARY } & \begin{array}{l}\text { Meeting Date: } \\ \text { Meeting Type: } \\ \text { Staff Contact/Dept.: } \\ \text { Staff Phone No: } \\ \text { Estimated Time: } \\ \text { Council Goals: }\end{array} & \begin{array}{l}\text { 10/5/2021 } \\ \text { Work Session } \\ \text { Mark Rust/DPW } \\ 541-726-3654\end{array} \\ 60 \text { minutes } \\ \text { Encourage Economic } \\ \text { Development and } \\ \text { Revitalization through } \\ \text { Community Partnerships }\end{array}\right]$

| ATTACHMENTS: | Attachment 1: Draft of New Code 3.2.200 Residential Zones <br> Attachment 2: Draft of New Code 4.7.300 Special Standards for Certain Uses <br> Attachment 3: Draft of New Code 6.1.100 Definitions <br> Attachment 4: Community Survey Report |
| :--- | :--- |
| DISCUSSION: | Background <br> Staff last presented to the Planning Commission on September 21, 2021 where we <br> began receiving recommendations from the Planning Commission on the Phase 1, <br> Housing code sections. |
|  | Discussion <br> The Phase 1, Housing, draft code sections need to be revised and finalized based on <br> the community engagement and Planning Commission input. Staff will be asking <br> for the Planning Commission's recommendation as to any changes to the draft code <br> sections prior to releasing them for public hearing. There are areas of the code <br> sections that still have unresolved questions or options associated with them that <br> need input. Receiving the Planning Commission input and recommendation now for <br> the public hearing code sections will facilitate a smoother public hearings process. |

## Next Steps

Staff will continue to conduct work sessions with the Planning Commission as necessary to finalize public hearing drafts of the code sections with the goal of completing the public hearing drafts by the end of November, to facilitate starting the formal public hearing process after the first of the year.

## Section 3.2.200 - Residential Districts

(R-1, R-2, R-3)

## Subsections:

### 3.2.205 Purpose, Applicability, and Location <br> 3.2.210 Permitted Land Use <br> 3.2.215 Lot Area and Dimensions <br> 3.2.220 Setbacks <br> 3.2.225 Impervious Surface Coverage Standards <br> 3.2.230 Height <br> 3.2.235 Density <br> 3.2.240 Panhandle Lot or Parcel Development Standards <br> 3.2.205 Purpose, Applicability, and Location

(A) Purpose. The purposes of the Residential Land Use Districts are to:
(1) Accommodate a full range of housing types.
(2) Implement the policies of the Springfield Comprehensive Plan and Metro Plan.
(3) Make efficient use of land and public services.
(4) Reduce reliance on the automobile for neighborhood travel and provide options for walking and bicycling.
(5) Provide convenient access to Neighborhood Activity Centers.
(B) Applicability. The standards in this section apply to development in the R-1, R-2, and R-3 Land Use Districts. These districts are identified on the City's official Zoning Map.

Where there is a conflict between the Special Use Standards SDC 4.7.300-4.7.400 and the development standards in this SDC 3.3.200, the Special Use Standards prevail.

### 3.2.210

Permitted Land Uses
(A) Permitted Uses. The land uses listed in Table 3.2.210 are permitted in the Residential Districts, subject to the provisions of this chapter. Only land uses that are specifically listed in Table 3.2.210, land uses that are incidental and subordinate to a permitted use, and land uses that are approved as "similar" to those in Table 3.2.210 are permitted.
(B) Determination of Similar Land Use. Similar use determinations must be made in conformance with the procedures in SDC 5.11.100, Interpretations.
(C) Exceptions. Existing uses and buildings lawfully established under previously effective land use regulations can continue subject to SDC 5.8.100, Non-Conforming Uses Determination, Continuance, Expansion and Modification, except as otherwise specified in this section.

## Table 3.2.210 Permitted Uses

| Uses | Districts |  |  | Special Use Standards |
| :---: | :---: | :---: | :---: | :---: |
|  | R-1 | R-2 | R-3 |  |
| Residential |  |  |  |  |
| Single-unit Dwelling; detached (SD-D) | P | N | N |  |
| Duplex | P* | P* | N | SDC 4.7.310 |
| Triplex/Fourplex | P* | P* | P* | $\begin{aligned} & \text { SDC 4.7.315 } \\ & \text { and 4.7.320 } \end{aligned}$ |
| Townhomes (Single Dwelling attached; e.g., row houses, etc.) | P* | P* | P* | $\begin{aligned} & \text { SDC 4.7.315 } \\ & \text { and 4.7.330 } \end{aligned}$ |
| Cottage Cluster Housing | P* | P* | P* | $\begin{aligned} & \text { SDC 4.7.315 } \\ & \text { and 4.7.325 } \end{aligned}$ |
| Recreational Vehicle for an Emergency Medical Hardship | P | P | P | SDC 4.7.400 |
| Accessory Dwelling Units (ADUs) | $\mathrm{P}^{*}$ | P* | P* | SDC 4.7.340 |
| Single Room Occupancy (SROs) | P | P | P | See def??? |
| Boarding or Rooming House | P* | P* | P* | SDC 4.7.395 |
| Manufactured Dwelling Park | P, S* | P, S* | N | SDC 4.7.350 |
| Multiple Unit Housing on one lot or parcel, 5 units or more | N | P* | P* | $\begin{aligned} & \hline \text { SDC 4.7.380 } \\ & \text { thru 4.7.390 } \end{aligned}$ |
| Registered or Certified Family Child Care Home | P* | P* | P* | SDC 4.7.405 |
| Child care facility | P | P | P |  |
| Residential Care Facility; 5 or fewer people | P* | P* | P* | SDC 4.7.355 |
| Residential Care Facility; 6 or more people | P, S* | P, S* | P, S* | SDC 4.7.355 |


| Public and Institutional* (Sec. 4.7.380) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Automobile Parking, Public Off-street Parking | N | D | D |  |  |
| Club (see definition 6.1.110(F)) | N | N | N |  |  |
| Community Service; includes Governmental <br> Offices | N | D | D |  |  |
| Community Garden | D | D | D |  |  |
| Educational facilities: elementary and middle <br> schools | $\mathrm{D}^{*}$ | $\mathrm{D}^{*}$ | D* | SDC 4.7-195 <br> and 5.9.110 |  |
| Emergency Services; Police, Fire, Ambulance | D, S | D, S | D, S |  |  |
| Parks and Open Space, including <br> Playgrounds, Trails, Nature Preserves, Athletic <br> Fields, Courts, Swim Pools, and similar uses | P/D* | P/D* | P/D* | SDC 4.7.200 |  |
| Place of worship | D, S* | D, S* | D, S* | SDC 4.7.375 |  |

[^0]
## Table 3.2.210 Permitted Uses

| Uses | Districts |  |  | Special Use Standards |
| :---: | :---: | :---: | :---: | :---: |
|  | R-1 | R-2 | R-3 |  |
| Commercial |  |  |  |  |
| Bed and Breakfast | S* | S* | S* | SDC 4.7.360 |
| Home Business | P* | P* | P* | SDC 4.7.370 |
| Professional Office | $\mathrm{S}^{*}$ | S* | S* | SDC 4.7.190 |
| Mixed Use Buildings | S* | S* | S* | SDC 4.7.385 |

P = Permitted Use; S = Site Plan Review Required; D = Discretionary Use permit required; N = Not Allowed;

* $=$ Permitted with Special Use Standards.


### 3.2.215 Lot Area and Dimensions

(A) In addition to applicable provisions contained elsewhere in this code, the development standards listed in this section apply to all development in residential districts. In cases of conflicts, standards specifically applicable in the residential land use district apply. In cases of conflicts in this section between the general standards and the area-specific standards, the area-specific standards apply.

Lot area and lot dimension standards for residential uses are listed in Table 3.2.215. For other residential uses listed in Table 3.2.210, the lot area and dimensions are subject to the type of residential structure being occupied. Lot development must be in conformance with SDC 3.2.235, Density.

The following Table 3.2.215 sets forth residential land use district development standards, subject to the special development standards in SDC 4.7.300-4.7.400.

| Density (see 3.2.235 below) | R-1 | R-2 | R-3 |
| :---: | :---: | :---: | :---: |
| Single unit dwelling, detached | 6 units per net acre minimum 14 units per net acre maximum | N/A |  |
| Duplex | 6 units per net acre minimum No maximum density | 14 units per net acre minimum 28 units per net acre maximum | 28 units per net acre minimum 42 units per net acre maximum |
| Triplex and fourplex | 6 units per net acre minimum No maximum density | 14 units per net acre minimum 28 units per net acre maximum | 28 units per net acre minimum 42 units per net acre maximum |
| Townhome | 6 units per net acre minimum 25 units per net acre maximum | 14 units per net acre minimum 28 units per net acre maximum | 28 units per net acre minimum 42 units per net acre maximum |

Commented [BS6]: Do we really require a site plan for all home businesses? What if it's entirely contained within the home - is that a home occupation rather than a home business? Again, I'm just speaking without having looked at the definitions or standards, just my initial reactions.

Commented [BS7]: My understanding is that middle housing is to be allowed similar to the single-unit dwelling. If that's true, why are there special use standards for the middle housing types? Instead of including this with an asterisk, maybe you just have the column with the standards (no special use).
Commented [RM8R7]: We can have standards for middle housing types, we just have to allow duplexes everywhere that SFD's are allowed. The duplex standard is just reflecting state allowances/requirements. I would rather reference the special standards section rather than add footnotes to this table.

Commented [BS9R7]: OK, makes sense.

Commented [RM10]:
Since we aren't required to allow middle housing provisions here since we aren't allowing SFD's in R-2 and R-3 any longer we can have a max density. We could consider a higher density threshold to incentivize affordable housing or for alley loaded development, or along transit corridors, or???

Commented [BS11R10]: I think given the density policy in the Metro Plan, we leave this as is now. When we update policies, we can consider some "bonuses" or changes to the approach.

| Density (see 3.2.235 below) | R-1 | R-2 | R-3 |
| :---: | :---: | :---: | :---: |
| Cottage cluster | 4 units per net acre minimum No maximum density | 14 units per net acre minimum 28 units per net acre maximum | 28 units per net acre minimum 42 units per net acre maximum |
| Multiple unit housing | N/A | 14 units per net acre minimum 28 units per net acre maximum | 28 units per net acre minimum 42 units per net acre maximum |

## Table 3.2.215-B: Residential District Lot or Parcel Area Guidelines

## Lot or Parcel Area

Minimum lot or parcel area for single unit dwellings, detached, is based on meeting the maximum net density in the zoning district. Approximate example lot sizes are shown below.
Maximum lot or parcel area is based on meeting the minimum net density in the zoning district. Some approximate example lots sizes are shown below.
Lot or parcel areas for some uses/housing types are not reflective of the density range above due to density not being applicable to certain middle housing types.
Where the density standards and these lot or parcel area examples conflict, the density standards prevail.

| Housing type | R-1 | R-2 | R-3 |
| :---: | :---: | :---: | :---: |
| Single unit dwelling, detached | $\begin{gathered} \text { 3,000 sq. ft. } \\ \text { minimum } \\ 7,260 \text { sq. ft. } \\ \text { maximum } \end{gathered}$ | N/A |  |
| Duplex | $\begin{gathered} 3,000 \text { sq. ft } \\ \text { minimum } \\ 7,260 \text { sq. ft. } \\ \text { maximum } \end{gathered}$ | 3,000 sq. ft minimum $6,000 \mathrm{sq}$. ft. maximum | 2,000 sq. ft minimum $4,000 \mathrm{sq}$. ft. maximum |
| Triplex | $\begin{gathered} \text { 5,000 sq. ft. } \\ \text { minimum } \\ 21,000 \mathrm{sq} . \mathrm{ft} . \\ \text { maximum } \\ \hline \end{gathered}$ | $4,500 \mathrm{sq}$. ft. minimum $9,000 \mathrm{sq}$. ft. maximum | $\begin{gathered} 3,000 \mathrm{sq} . \mathrm{ft} . \\ \text { minimum } \\ 4,500 \mathrm{sq} . \mathrm{ft} . \\ \text { maximum } \end{gathered}$ |
| Fourplex | $\begin{gathered} \hline 7,000 \mathrm{sq} . \mathrm{ft} . \\ \text { minimum } \\ 29,000 \text { sq. } \mathrm{ft} . \\ \text { maximum } \\ \hline \end{gathered}$ | $\begin{gathered} \hline 6,000 \mathrm{sq} . \mathrm{ft} . \\ \text { minimum } \\ 12,000 \mathrm{sq} . \mathrm{ft} . \\ \text { maximum } \end{gathered}$ | $\begin{gathered} \hline \text { 4,000 sq. ft. } \\ \text { minimum } \\ 6,000 \mathrm{sq} \text {. ft. } \\ \text { maximum } \end{gathered}$ |
| Townhome | 1,000 sq. ft. minimum 7,260 sq. ft. maximum |  |  |
| Cottage Cluster | 5,000 sq. ft. minimum |  |  |
| Multiple Unit Housing | N/A | 1,500 sq. ft. per unit minimum 3,000 sq. ft. per unit maximum | 1,000 sq. ft. per unit minimum 1,500 sq. ft. per unit maximum |

(A) Setback Standards. The following table summarized the minimum setback standards. The setback standards of this section apply to all structures, except as otherwise provided by this section.

| Table 3.2.220 Setbacks | R-1 | R-2 | R-3 |
| :---: | :---: | :---: | :---: |
| Front | 10 feet, except for a garage or carport |  |  |
| Garage or carport | 18 feet from any property line or back of sidewalk, whichever is closer |  |  |
| Side | 5 feet | ```10 feet when abutting an R-1 district 5 feet when not abutting an R-1 district``` |  |
| Rear | 5 feet | 10 feet when abutting an R-1 district <br> 5 feet when not abutting an R-1 district |  |
| Notes: Setbacks for certain housing types or uses are reduced as specified in SDC 4.7.300-4.7.400. (Ex. Zero-foot side setback for property line where townhome units attach.) |  |  |  |

## (B) Front Setbacks

(1) R-1, R-2, and R-3 Districts. The front setback requirement is a minimum of ten feet from the property line abutting the street used for address purposes or the back of sidewalk, whichever is closer, or for a panhandle lot, from the property line forming the pan portion of the lot.
(2) Garage or carport. The front of a garage or carport must be set back a minimum of 18 feet from any property line or the back of sidewalk, whichever is closer.
(3) Special setbacks. The Special Street Setbacks apply in conformance with SDC 4.2.105(M).
(D) Side Setbacks
(1) R-1 District. The side setback requirement is a minimum of five feet.
(2) R-2 and R-3 Districts
(a) The side setback requirement is a minimum of ten feet from any property line abutting the $\mathrm{R}-1$ district.
(b) The side setback requirement is a minimum of five feet from any property line not abutting the R-1 district, or the edge of sidewalk for a corner lot or parcel, whichever is closer.
(3) For courtyard housing, side setbacks must be in conformance with SDC 4.7.335.

Commented [RM13]: Comment from Dan Hill from Arbor South in regard to making set back in R-2 next to R-1 five feet since heights are similar. Same for rear setback. Makes sense for R-3 next to R-1 since R-3 has no height limit, but from a practical standpoint, is it needed if there is no $R-3$ adjacent to $R-1$ ???

Commented [RM14]:
Setback for garage from any property line, not just front

## (E) Rear Setbacks

(1) R-1 District. The rear setback requirement is a minimum of five feet from any property line.
(2) R-2 and R-3 Districts
(a) The rear setback requirement is a minimum of ten feet from any property line abutting the $\mathrm{R}-1$ district.
(b) The rear setback requirement is a minimum of five feet from any property line not abutting the $\mathrm{R}-1$ district.

## (F) Special Setback Requirements

(1) Alley. Where an existing alley is less than 20 feet in width, the setback requirement is 20 feet from the property line abutting the alley, notwithstanding any other setback requirement that is less.
(2) Townhomes. Common wall setbacks where units are attached is zero feet from the property line abutting the next attached unit, in conformance with SDC 4.7.330.
(3) Vision Clearance Areas. All structures must comply with SDC 4.2.130, Vision Clearance, notwithstanding any other setback requirement that.
(4) Bridges. Bridges that form a driveway or pedestrian access from the abutting street or alley are permitted within the setbacks.
(5) Setback Encroachments. An encroachment into a setback that meets the following standards is permitted in the R-1, R-2, and R-3 Districts. No portion of the structures and architectural features listed in this section can encroach closer than five feet to the front property line or edge of sidewalk, whichever is closer. No other encroachments into a setback are permitted unless approved through a variance.
(a) Architectural Features. Eaves, chimneys including fireplace enclosures and chimney chases, bay windows up to eight feet in width, and window wells up to eight feet in width are allowed to encroach into the front, side, and rear setbacks by no more than two feet, provided there is a minimum setback of three feet from the property line.
(b) Front Porches. An unenclosed covered or uncovered porch, patio, deck, or stoop with a maximum floor height not exceeding 18 inches is allowed to be set back a minimum of six feet from the front property line, as long as it does not encroach into a public utility easement.
(c) An uncovered and unenclosed porch, patio, deck, or stoop located above finished grade with a maximum floor height not exceeding 18 inches must be set back a minimum of 18 inches from the side and rear property lines. Additionally, it must not encroach into a public utility easement.
(d) Uncovered patios at finished grade are exempt from setbacks as long as it does not encroach into a public utility easement.
(e) Stairs, ramps, and landings that are uncovered may be in the front setback up to the front property line.
(6) Garage and Carport Setback
(a) The 18 -foot setback requirement for the front of a garage or carport is measured along the centerline of the driveway from the property line or back of sidewalk, whichever is closer, to either the garage door or to the support post at the vehicle entry of a carport closest to the property line.
(b) For a garage on a corner lot or parcel that is accessed from an alley, or a garage where the side or rear wall of the garage faces the street, the setback for the garage side or rear wall is a minimum of ten feet from the property line. In this case, the garage must have at least one window in the side or rear wall facing the street that is a minimum of six square feet. As shown in Figure 3.2-A, a side entry garage must have a driveway with a minimum length of 18 feet from the front and side property lines.

Figure 3.2-A Garage or Carport Setback


Commented [RM16]:
Michael comment
Michael would like to see a figure showing setback from curb return for driveways on corner lots.

Discuss with Kristina and Michael. Where is the standard for this?

Commented [RM17]: Need to change this diagram to show 18 feet rather than 20 feet.
(G) Prohibited in Setbacks. In addition to structures, the following are prohibited within the following setbacks:
(1) Front Setbacks. Satellite dishes greater than 18 inches in diameter, heat pumps, and other similar above ground objects.
(2) Side and Rear Setbacks. Satellite dishes greater than 18 inches in diameter, heat pumps, and other similar objects, unless screened for visual and noise abatement by a solid enclosure two feet higher than the object/use being screened.
(3) All Setbacks. Balconies.

### 3.2.225 Impervious Surface Coverage Standards

(A) The amount of impervious surface may not exceed the standards listed in this section 3.2.225. Stormwater treatment facilities required under SDC 4.3.110 or other development standards may result in less impervious surface area than these maximums.
(B) The following Impervious Surface standards apply to all development in Residential Districts.
(1) On lots or parcels with more than average 15 percent slope or above 670 feet in elevation, as determined in SDC 3.3.500, the impervious surface area must not exceed 35 percent.
(2) On lots or parcels of less than 4,500 square feet in size, the impervious surface area must not exceed 60 percent of the lot or parcel area.
(3) On lots or parcels of 4,500 square feet or larger in size, the impervious surface area must not exceed 65 percent of the lot or parcel area.

| Table 3.2.225 Impervious <br> Surface Coverage | R-1 | R-2 | R-3 |
| :--- | :---: | :---: | :---: |
| Lots or parcels with more than <br> 15\% slope or above 670 feet in <br> elevation | $35 \%$ maximum |  |  |
| Lots or parcels of less than <br> 4,500 square feet in size | $60 \%$ maximum |  |  |
| Lots or parcels of 4,500 square <br> feet or larger in size | $65 \%$ maximum |  |  |

3.2.230

Height
(A) The following "building height" standards, as defined in SDC 6.1.100, are intended to facilitate allowed residential densities while promoting land use compatibility.

| Table 3.2.230 Height | R-1 | R-2 | R-3 |
| :---: | :---: | :---: | :---: |
| All Lots, except where <br> specifically addressed below | 35 feet | 50 feet | none |

(B) Incidental equipment, as defined in SDC 6.1.110 may exceed the height standard.
(C) Within the Hillside Development Overlay District, the maximum Building Height, as defined and calculated in SDC 6.1.110, is 45 feet.

### 3.2.235 Density

(A) The following net density standards apply to all new development in the $\mathrm{R}-1, \mathrm{R}-2$, and $\mathrm{R}-3$ districts, except as specified in subsection (B) of this section. The net density standards shown in Table 3.2.215 are intended to ensure efficient use of buildable lands and provide for a range of needed housing, in conformance with the Springfield Comprehensive Plan. Where the density standard apply, the net density must be within the density range for the respective zoning district, except that density fractions 0.5 units per net acre or greater will be rounded up to the next whole number, and less than 0.5 unit per net acre will be rounded down to the preceding whole number.

The density standards may be averaged over more than one development phase (i.e., as in a subdivision or Master Planned Development).
(B) The net density requirements specified in Table 3.2.215 do not apply as follows:
(1) Residential care homes/facilities.
(2) Accessory dwelling units (ADUs).
(3) Duplexes when developed on a lot or parcel that is in a residential land use district and allows a detached single unit dwelling.
(4) Bed and breakfast inns.
(5) Nonresidential uses, including neighborhood commercial uses, public and institutional uses, and miscellaneous uses that do not include a dwelling unit.
(6) Buildings that are listed in the Inventory of Historic Sites within the Springfield Area Comprehensive Plan Exhibit "A" or buildings designated on the Historic National Landmarks Register.
(7) Manufactured home parks within the R-1 district are exempt from the maximum density standards of the district; as long as the standards of SDC 4.7.355 are met.
(8) Residential infill, as defined in SDC 6.1.100, is exempt from minimum density standards.
(9) Partitions on properties that are large enough to be divided into five or more lots are exempt from minimum density standards as long as the size of the resulting parcels and siting of dwellings allow future development on these parcels at minimum densities.
(C) Net density is defined in SDC 6.1.100 as the number of dwelling units for each acre of land in residential use, excluding: dedicated streets; dedicated parks; dedicated sidewalks; and other public facilities.
(D) For the purpose of calculating residential net density:
(1) Where a property is within multiple zoning districts, the minimum and maximum number of units is calculated based on the acreage in each residential district that is subject to the density standard as specified above multiplied by the applicable minimum and maximum density standards. Areas with nonresidential districts are excluded from the density calculation
(2) Except as provided in subsection (D)(3) of this section, the following areas are subtracted from the gross area of the property:
(a) Area not in residential use as provided in subsection (D)(4) of this section;
(b) Area for dedicated streets;
(c) Area for dedicated sidewalks;
(d) Area for dedicated parks;
(e) Area for other public facilities.

After subtracting these areas from the gross area, then the remaining area is the net area used to calculate the net density.
(3) The following areas are not subtracted from the gross area to calculate net density:
(a) Area within a public easement less than ten feet in width;
(b) Area within a private street;
(c) Area within a private park; and
(d) Area for other private facilities.
(4) Residential use - Any area not in residential use is subtracted from the gross area. The term "residential use" is considered to mean "of, relating to, or connected with a residence or residences". Examples of residential use include the following: off street parking and vehicle circulation areas, maintenance or storage areas, and residential leasing offices, if these uses are related to or connected with a residence or residences.

Examples of uses that would not be considered to be in residential use include the following: any commercial uses, accessory uses that are not related to or connected with a residence or residences, and unbuildable areas as described below.
(a) Unbuildable. This category includes land that is undevelopable. It includes tax lots or areas within tax lots with one or more of the following attributes:
(i) Slopes greater than 25 percent as calculated in SDC 3.3.520(A);
(ii) Within the floodway, as designated by the FP Overlay District;
(iii) In areas with severe landslide potential as shown on an adopted City of Springfield inventory or map;
(iv) Within locally significant wetlands and locally significant riparian areas and their setbacks as specified in SDC 4.3.117;
(v) Within the riparian area boundary of a Water Quality Limited Watercourse as specified in SDC 4.3.115;
(vi) Within the easement area of a 230 kV or greater transmission line;
(vii) Small irregularly shaped lots ${ }^{1}$; and
(viii) Publicly-owned land as described in (5), (6), (7), and (8) below.
(5) Streets - Any street or roadway dedicated as public right of way is subtracted from the gross area to calculate net density. The area does not take into account to what degree the street or roadway area is improved. This does not include private streets or

[^1]driveways. The area for any private street would remain in the net area considered to be in residential use.
(6) Sidewalks - Any sidewalk dedicated as public right of way is subtracted from the gross area to calculate net density. A public sidewalk located in an easement is not subtracted from the gross area. Private sidewalks (e.g. for multifamily housing developments, etc.) are not subtracted from the gross area.
(7) Parks - Any public park area including a publicly-owned Regional Park, Community Park, Neighborhood Park, or Linear Park is subtracted from the gross area to calculate the net density. Any Private Park, or private open space, if not dedicated would remain in the net area.
(8) Other public facilities - Any area for a public facility dedicated to the City of Springfield or other public agency is subtracted from the gross area to calculate net density. This includes storm water tracts dedicated to the City; however, it does not include private storm water facilities.

Additionally, any area, including easement areas, for a public facility that is adopted into the Eugene-Springfield Metropolitan Area Public Facilities and Services Plan (PFSP) is subtracted from the gross area. Any other public utility easement (PUE) that contains public utilities that are not adopted into the PFSP are not subtracted from the gross area (except as provided above under unbuildable land for 230 kV transmission lines).
"Public facility projects" adopted in the PFSP include:
(a) Water: Source, reservoirs, pump stations, and primary distribution systems. Primary distribution systems are transmission lines 12 inches or larger for Springfield Utility Board (SUB) and 24 inches or larger for Eugene Water \& Electric Board (EWEB).
(b) Wastewater: Pump stations and wastewater lines 24 inches or larger.
(c) Stormwater: Drainage/channel improvements and/or piping systems 36 inches or larger; stormwater detention and/or treatment facilities; outfalls; water quality projects; and waterways and open systems.
(d) Specific projects adopted as part of the Metro Plan are described in the project lists and their general location is identified in the planned facilities maps in Chapter II of the Eugene-Springfield Metropolitan Public Facilities and Services Plan (Public Facilities and Services Plan).
(A) Special provisions for lots/parcels with panhandle driveways:
(1) Panhandle driveways are permitted where dedication of public right-of-way is not required to meet the Street Network Standards contained in SDC 4.2.105(D) or (E) or to comply with the density standards in the applicable zoning district. Panhandle driveways are not permitted in lieu of a public street required to meet the Street Network Standards contained in SDC 4.2.105(D) or (E).

Commented [RM23]
Michael and Emma both commented and have concern. Discuss with Michael, Kristina, Emma, and possibly Jim D.

Commented [RM24]:
Michael comment.
Would this cover accessways and other transportation facilities not specifically labeled as sidewalk?

Commented [RM25]:
Michael comment.
Would this cover a tract.
Commented [RM26]:
Dennis Covert on the Res. TAC asked about density related to storm water retention areas. Does this answer the question? Or address the concern?

Commented [RM27]: Michael comment
A diagram explaining showing the general dimensional elements of panhandle for paving and area assumptions for easement and etc may be helpful.
(2) The area of the pan portion does not include the area in the "panhandle" driveway.
(3) The minimum paving standards for panhandle driveways are:
(a) Twelve feet wide for a single panhandle driveway from the front property line to a distance of 18 feet, where there is an unimproved street; and from the front property line to the pan of the rear lot or parcel, where there is an improved street; and
(b) Eighteen feet wide for a multiple panhandle driveway from the front property line to the pan of the last lot or parcel. This latter standard takes precedence over the driveway width standard for multiple unit dwelling driveways specified in Table 4.2.2.
(B) Buildable lots/parcels do not need to have frontage on a public street when access has been guaranteed via a private street or driveway with an irrevocable joint use/access easement as specified in SDC 4.2.120(A). In the residential districts, when a proposed land division includes single or multiple panhandle lots/parcels and the front lot or parcel contains an existing primary or secondary structure, an irrevocable joint use/access easement is allowed in lieu of the panhandles when the required areas to meet both the applicable panhandle street frontage standard and the required five foot wide side yard setback standard for the existing structure is available. In this case, the irrevocable access easement width standard is as follows:
(1) Fourteen feet wide for a single panhandle lot or parcel in the R-1 District; or
(2) Twenty feet wide for a single panhandle in the R-2 and R-3 District, or where multiple panhandles are proposed in any residential district.

## Section 4.7.300 - 4.7.400 - Special Standards and Regulations for Certain Uses in Residential Districts

## Subsections:

### 4.7.310 Duplex

4.7.315 Middle Housing
4.7.320 Triplex or Fourplex
4.7.325 Cottage Cluster Housing
4.7.330 Townhomes
4.7.335 Courtyard Housing
4.7.340 Accessory Dwelling Units (ADU's)
4.7.345 Manufactured Dwelling Parks
4.7.350 Residential Facility
4.7.355 Bed and Breakfast
4.7.360 Accessory Structures and Uses
4.7.365 Home Business
4.7.370 Place of Worship
4.7.375 Architectural Design Standards
4.7.380 Multiple unit housing (Clear and Objective Standards)
4.7.385 Multiple unit housing (Discretionary option)
4.7.390 Multiple unit housing Variances
4.7.395 Boarding and rooming houses
4.7.400 Emergency Medical Hardship

4,7,405 Registered or Certified Family Child Care Home
4.7.310 Duplex
(A) In instances where a development can meet the definition of a duplex and also meets the definition of a primary single unit dwelling with an Accessory Dwelling Unit (ADU), the applicant must specify at the time of application whether the development is a duplex or a primary single unit dwelling with an ADU. The application will be reviewed according to the standards and criteria applicable to the applicant's election.
(B) Additions to or conversion of an existing detached single-unit dwelling to a duplex is allowed provided that the conversion does not increase nonconformance with applicable clear and objective standards.
(C) A duplex in the R-2 district must be within the minimum and maximum density range for the applicable district.

### 4.7.315 Middle Housing

(A) Relationship to Other Code Standards
(1) Conflicts. In the event of a conflict between middle housing code provisions in this section and other code standards applicable to middle housing, the standards in this section prevail.
(2) Public Works Standards. Clear and objective exceptions to public works standards granted to detached single-unit dwellings (SD-Ds) must also be granted to duplexes.
(B) Sufficient Infrastructure. For all middle housing types (except duplexes) in the R-1, R-2, and R-3 districts applicants must demonstrate that Sufficient Infrastructure is provided or will be provided. The applicant must provide the information to demonstrate that Sufficient Infrastructure will be provided with the submittal of the development application for the proposed middle housing. The sufficient infrastructure must be provided prior to occupancy of the proposed middle housing. Sufficient Infrastructure must meet the established service levels as specified below.
(1) Sanitary Sewer. The subject property and any existing and proposed dwellings must be connected to sanitary sewer. The sanitary sewer must be designed and constructed in conformance with SDC 4.3.105, and Chapter 2 of the Engineering Design Standards and Procedures Manual (EDSPM).
(2) Stormwater. The subject property and any existing and proposed dwellings must have a Stormwater management system that is sufficient to detain, on the lot or parcel of origin, any increase in on-site surface water drainage, including roof drainage or other impervious surface drainage, to not increase flows from the lot or parcel above the flow levels that existed from the lot or parcel prior to the development of new middle housing
(3) Water. The subject property as well as any existing and proposed dwellings must be connected to a public water system. The public water system must be capable of meeting established service levels as determined by the Springfield Utility Board (SUB). Documentation must be submitted from SUB with the development application demonstrating that the water system meets the established service levels or what improvements must be completed by the applicant prior to occupancy of the proposed middle housing to ensure established service levels are met.
(4) Streets. The subject property must have access via public or private streets that meet the fire apparatus access road standards as required by and in compliance with the Oregon Fire Code.
(C) Master Planned Areas. Middle housing may be regulated or limited within development areas that are subject to an adopted Master Plan, as follows:
(1) If a Master Plan has been adopted by the city after January 1, 2021, all middle housing types must be allowed as provided in this code.
(a) The City must plan to provide urban water, sanitary sewer, stormwater, and transportation systems that accommodate at least 15 dwelling units per net acre.
(b) If proposed middle housing development exceeds the planned public service capacity of a master plan, the City may require the applicant to demonstrate, through amended public plan or similar mechanism, the sufficient provision of public services needed to serve the proposed development.
(c) The city may require a mix of two or more middle housing types within a master plan or portions of a master plan.

Commented [RM1]: Are these all clear and objective standards that can be approved through a type 1 process? Sufficient infrastructure? What is the established service level?

Can we reference the EDSPM? Ask Kristina.

[^2](d) The city may designate areas within the master plan exclusively for other types of housing, such as multiple unit housing residential structures or manufactured dwelling parks.
(2) If a master plan has been adopted by the city before January 1, 2021, it may limit the development of middle housing other than duplexes provided that the Master Plan authorizes in the entire master plan area a net residential density of at least eight dwelling units per net acre and allows all dwelling units, at minimum, to be detached single-unit dwellings or duplexes. This restriction applies to portions of the area not developed as of January 1, 2021.
(D) Examples of Duplex, Triplex, and Fourplex configurations. The following figures illustrate examples of possible configurations for duplexes, triplexes, and fourplexes. Other configurations are also possible and acceptable, provided the development meets the definitions and development standards for middle housing.

## Stacked duplex



Side-by-side duplex


Duplex attached by breezeway


Detached duplex units side-by-side


## Duplex attached by garage wall



## Attached triplex front and back



## Stacked fourplex



Detached duplex units front and back


Attached triplex side-by-side


Detached fourplex


### 4.7.320

Triplex and Fourplex
New triplexes and fourplexes, including those created by adding building square footage on a site occupied by an existing dwelling, must comply with the standards listed below. These standards do not apply to creation of a triplex or fourplex through conversion of a detached single-unit dwelling.
(A) Entry Orientation. At least one main entrance for each triplex or fourplex structure must meet the standards in subsections (1) and (2) below. Any detached structure for which more than 50 percent of its street-facing façade is separated from the street property line by a dwelling is exempt from meeting these standards.
(1) The main entrance must be within eight feet of the longest street-facing wall of the dwelling unit; and
(2) The main entrance must either:
(a) Face the street. See Figure 4.7-A;
(b) Be at an angle of up to 45 degrees from the street. See Figure 4.7-B;
(c) Face a common open space that is adjacent to the street and is abutted by dwellings on at least two sides. See Figure 4.7-C; or
(d) Open onto a porch (see Figure 4.7-D). The porch must:
(i) Be at least 25 square feet in area; and
(ii) Have at least one entrance facing the street or have a roof.

Figure 4.7-A. Main Entrance Facing the Street


Figure 4.7-B. Main Entrance at 45 Degree Angle from the Street


Figure 4.7-C. Main Entrance Facing Common Open Space


Figure 4.7-D. Main Entrance Opening onto a Porch

(B) Window and Door Coverage. A minimum of 15 percent of the area of all street-facing elevations must include windows or entrance door. Elevations separated from the street property line by a dwelling are exempt from meeting this standard. See Figure 4.7-E.

Figure 4.7-E. Window and Door Coverage

(C) Garages and Off-Street Parking Areas. Garages and off-street parking areas must not be located between a building and a public street (other than an alley), except in compliance with the standards in subsection (1) and (2) of this subsection.
(1) The garage of off-street parking area is separated from the street property line by a dwelling; or
(2) The combined width of all garages and outdoor on-site parking and maneuvering areas does not exceed a total of 50 percent of the street frontage. See Figure 4.7-F.

Figure 4.7-F. Width of Garages and Off-Street Parking Areas


A Garage and on-site parking and maneuvering areas
(B) Total street frontage

$$
\frac{A^{1}+A^{2}+A^{3}}{B} \leq 50 \%
$$

(D) Driveway Approach. Driveway approaches must comply with the following standards.
(1) The total width of all driveway approaches must not exceed 32 feet per frontage, as measured at the property line. See Figure 4.7-G. For lots or parcels with more than one frontage, see (3) below of this subsection.
(2) Driveway approaches may be separated when located on a local street. See Figure 4.7-G. If approaches are separated, they must meet the driveway spacing standards of SDC 4.2.120.

Figure 4.7-G. Driveway Approach Width and Separation on Local Street

(A) $x^{1}+x^{2}+x^{3}+x^{4}$ must not exceed 32 feet per frontage,
(B) Driveway approaches may be separated when located on a local street

Commented [RM4]: Comment from Michael L.
Let talk about how we go to this access density standard. I think the figure that is implied would help.

Commented [RM5]: Ask Michael L. about this.
His comment.
Requiring combined driveways on collectors and arterials to
minimize conflicts is loosely covered in the code, but we also have issues with these developments getting street trees, streetlights, and other frontage amenities without combining driveways.

Commented [RM6R5]: My read is that we can't require street trees etc. for middle housing types. The emphasis on equity and providing housing for all is overriding livability when it comes things that are nice to have such as street trees, as mandated by the state.
(3) In addition, lots or parcels with more than one frontage must comply with the following:
(a) Lots or parcels must access the street with the lowest transportation classification for vehicle traffic.
(b) For lots or parcels abutting an improved alley as specified in SDC 4.2.105, access must be taken from the alley. See Figure 4.7-H.
(c) Lots or parcels with frontage only on collector and/or arterial streets must meet the Site Access and Driveway Standards in SDC 4.2.120 applicable to collectors and/or arterials.
(d) Triplexes and fourplexes on lots or parcels with frontages only on local streets may have either:
(i) Two driveway approaches not exceeding 32 feet in total width on one frontage; or
(ii) One maximum 16-foot wide driveway approach per frontage. See Figure 4.7-I.

Figure 4.7-H. Alley Access


Commented [RM7]: Michael L comment
Let's chat about issues with our existing alley width standard as it relates to parking dimensions.

Commented [RM8]: Are there other standards that should be sited here also?

Commented [RM9]: Cite the code section for this.
Commented [RM10]: Comment from Michael.
Code Section 4.2-120 calls out minimizing conflicts when having to take access from arterials or collectors, but we do not have specific access density standards for arterials and collectors.

## Commented [RM11]: Comment from Michael

Our current for Duplex is 24 with and Ove width application you can go up to 30. Figure below essentially shows a duplex.

Figure 4.7-I. Driveway Approach Options for Multiple Local Street Frontages


Options for site with more than one frontage on local streets:
(A) Two driveway approaches not exceeding 32 feet in total width on one frontage (as measured $\mathrm{X} 1+\mathrm{X} 2$ ); or
(B) One maximum 16-foot-wide driveway approach per frontage.
(Note: Both options are depicted here for illustrative purposes only. The standards do not allow both Options $A$ and $B$ on the same site.)
(E) Conversions to Triplex and Fourplex. Internal conversion of an existing detached single unit structure or duplex to a triplex or fourplex is allowed provided that the conversion does not increase nonconformance with applicable clear and objective standards, unless increasing nonconformance is otherwise permitted by the development code.

### 4.7.325 Cottage Cluster Housing

## (A) Purpose and Title

Cottage Cluster Housing is a type of flexible site development or subdivision that allows four or more small-scale dwelling units, either attached or detached, grouped together around shared open space.

The Cottage Cluster provisions allow the use as an outright permitted use through a Type 1 ministerial process in all the residential land use districts if the development meets the following standards in (B) below. However, if the cottage cluster proposes a land division, the land division must also go through the land division process as specified in SDC 5.12.100.
(B) Density
(1) Minimum density of at least four units per net acre must be met.
(2) There is not maximum density for a cottage cluster housing project.
(C) Number of Dwelling Units
(1) A Cottage Cluster development must include a minimum of four dwelling units.
(D) Lot Size and Dimensions
(1) The minimum lot or parcel size for a cottage cluster housing development is 5,000 square feet for the entire project site.
(2) The minimum lot or parcel size for individual cottages in a cottage cluster housing project, when a land division divides the cottages onto their own lots or parcels, may be as small as the footprint of the cottage.
(3) There are no minimum dimensions for individual cottage lots or parcels.
(E) Dwelling Unit Size
(1) The maximum building footprint size for each dwelling unit is 900 square feet. For each dwelling unit, 200 square feet for an attached garage or carport is exempt from the 900 square foot maximum.
(2) Detached garages, carports, or other accessory structures are exempt from the 900 square foot maximum footprint.
(F) Accessory Structures. Accessory structures must not exceed 400 square feet in floor area.
(G) Setbacks. The following perimeter setbacks apply to the perimeter of a Cottage Cluster Project site.
(1) Front setbacks: Ten feet.
(2) Side setbacks: Five feet.
(3) Rear setbacks: Five feet.
(H) Building Separation. The minimum distance between structures must be in accordance with the building code requirements.
(I) Building Height. The maximum height of structures in a Cottage Cluster Project is 35 feet.
(J) Orientation. Cottages must be clustered around a common courtyard, meaning they abut the associated common courtyard or are directly connected to it by a pedestrian path, and must meet the following standards. See Figure 4.7-J.
(1) Each cottage within a cluster must either abut the common courtyard or must be directly connected to it by a pedestrian path.
(2) A minimum of 50 percent of cottages within a cluster must be oriented to the common courtyard by meeting the following:
(a) Have a main entrance facing the common courtyard;
(b) Be within ten feet from the common courtyard, measured from the façade of the cottage to the nearest edge of the common courtyard; and
(c) Be connected to the common courtyard by a pedestrian path.
(3) Cottages within 20 feet of a street property line may have their entrances facing the street.
(4) Cottages not facing the common courtyard, or the street must have their main entrances facing a pedestrian path that is directly connected to the common courtyard.
(K) Common Courtyard Design Standards. Each cottage cluster must share a common courtyard to provide a sense of openness and community of residents. Common courtyards must meet the following standards. See Figure 4.7-J.
(1) The common courtyard must be a single, contiguous piece.
(2) Cottages must abut the common courtyard on at least two sides of the courtyard.
(3) The common courtyard must contain a minimum of 150 square feet per cottage within the associated cluster.
(4) The common courtyard must be a minimum of 15 feet wide at its narrowest dimension.
(5) The common courtyard must be developed with a mix of landscaping, lawn area, pedestrian paths, and/or paved courtyard area, and may also include recreational amenities. Impervious elements of the common courtyard must not exceed 75 percent of the total common courtyard area.
(6) Pedestrian paths must be included in a common courtyard. Paths that are contiguous to a courtyard count toward the courtyard's minimum dimension and area. Parking areas, and driveways do not qualify as part of a common courtyard.
(L) Community Buildings. Cottage cluster projects may include community buildings for the shared use of residents that provide space for accessory uses such as community meeting rooms, guest housing, exercise rooms, day cares, or community eating areas. If community buildings are provided, they must meet the following standards.
(1) Each cottage cluster is permitted one community building.
(2) A community building that meets the development code's definition of a dwelling unit must meet the maximum 900 square foot footprint limitation that applies to cottages, unless a covenant is recorded against the property stating that the structure is not a legal dwelling unit and will not be used as a dwelling.

Figure 4.7-J. Cottage Cluster Orientation and Common Courtyard Standards

(A) A minimum of $50 \%$ of cottages must be oriented to the common courtyard.
(B) Cottages oriented to the common courtyard must be within 10 feet of the courtyard.
(C) Cottages must be connected to the common courtyard by a pedestrian path.
(D) Cottages must abut the courtyard on at least two sides of the courtyard.
(E) The common courtyard must be at least 15 feet wide at it narrowest width.

## (M) Pedestrian Access

(1) An ADA accessible pedestrian path must be provided that connects the main entrance of each cottage to the following:
(a) The common courtyard;
(b) Shared parking areas;
(c) Community buildings; and
(d) Sidewalks in public rights-of-way abutting the site or rights-of-way if there are not sidewalks.
(2) The pedestrian path must be hard-surfaced and a minimum of four feet wide.
(N) Windows. Cottages within 20 feet of a street property line must meet any window coverage requirement that applies to detached single-unit dwellings in the same residential land use district.

## (O) Parking

(1) The minimum number of required off-street parking spaces for a cottage cluster project is one space per dwelling unit.
(2) Off street parking spaces may be provided in a garage or carport.
(3) Off street parking space credits are allowed in conformance with the standards of SDC 4.6.110.
(P) Parking Design. See Figure 4.7-K.
(1) Clustered parking. Off-street parking may be arranged in clusters, subject to the following standards.
(a) A cottage cluster project with fewer than 16 cottages is permitted to have parking clusters of not more than five contiguous spaces in each parking cluster.
(b) A cottage cluster projects with 16 cottages or more is permitted to have parking clusters of not more than eight contiguous spaces in each parking cluster.
(c) Parking clusters must be separated from other spaces and other parking clusters by at least four feet of landscaping.
(d) Clustered parking areas may be covered.
(2) Parking location and access.
(a) Off-street parking spaces and vehicle maneuvering areas must not be located:
(i) Within five feet from any street property line, except alley property lines; or
(ii) Between a street property line and the front façade of cottages located closest to the street property line. This standard does not apply to alleys.
(b) Off-street parking spaces must not be located within five feet of any other property line, except alley property lines. Driveways and drive aisles are permitted within ten feet of other property lines.
(3) Screening. Landscaping, fencing, or walls at least three feet tall must separate clustered parking areas and parking structures from common courtyards and public streets.

## (4) Garages and carports

(a) Garages and carports (whether shared or individual) must not abut common courtyards.
(b) Individual attached garages up to 200 square feet in size are exempt from the calculation of maximum building footprint for cottages.
(c) Individual detached garages must not exceed 400 square feet in floor area.
(d) Garage doors for attached and detached individual garages must not exceed 20 feet in width.
(Q) Existing Structures. On a lot or parcel to be used for a cottage cluster project, an existing detached single unit dwelling on the same lot or parcel at the time of proposed development of the cottage cluster may remain within the cottage cluster project area under the following conditions:
(1) The existing dwelling may be nonconforming with respect to the requirements of this code.
(2) The existing dwelling may be expanded up to the maximum height in (I) above or the maximum building footprint in (E) above; however, existing dwellings that exceed the maximum height and/or footprint of this code cannot be expanded.
(3) The floor area of the existing dwelling does not count towards the maximum average floor area of a cottage cluster.
(4) The existing dwelling is excluded from the calculation of orientation toward the

## common courtyard.

Commented [RM20]
This seems excessive. Parking in a driveway should be allowed similar to a SFD??? We could reduce this dimension.

Comment from Michael
s this driveway throat depth. Should it match our Table 4.2-2
language and dimension?
Commented [RM21]
Comment from Michae
Are we okay on corners having parking between the street and Side Façade? Looks like we account for that with the screening requirement below?

Figure 4.7-K. Cottage Cluster Parking Design Standards

(A) Parking allowed in clusters of up to 5 spaces. Clusters separated by minimum 4 feet of landscaping
(B) No parking or vehicle area within 20 feet from street property line (except alley).
C. No parking within 10 feet from other property lines (except alley). Driveways and drive aisles permitted within 10 feet.
(D) Screening required between clustered parking areas or parking structures and public streets or common courtyards.
(E) Garages and carports must not abut common courtyards. Garage doors for individual garages must not exceed 20 feet in width.
(R) Accessory Structures. Accessory Structures must not exceed 400 square feet in floor area.
(S) Home Types
(1) Detached or attached dwelling unit types containing one to four dwelling units are allowed.
(2) Accessory dwelling units (ADUs) (either within, attached, or detached) are allowed for any detached or attached dwelling in a cluster housing development.

### 4.7.330 Townhomes

(A) New townhome units must comply with the requirements in subsections (A)(1) through (4) of this section.

For purpose of this section, a "Townhome" means (as defined in SDC 6.1.100) a dwelling unit that is part of a row of two or more attached dwelling units, where each unit is located on an individual Lot or Parcel and shares at least one common wall with an adjacent dwelling unit. Single unit attached homes may have detached garages or ADUs that share a common wall between the two lots or parcels.
(1) Areas Owned in Common. Common areas must be maintained by a homeowner's association or other legal entity. A homeowner's association may also be responsible for exterior building maintenance. A copy of any applicable covenants, restrictions, and conditions must be recorded and provided to the jurisdiction prior to issuance of building permits.
(2) Entry Orientation. The main entrance of each townhouse must:
(a) Be within eight feet of the longest street-facing wall of the dwelling unit, if the lot has public street frontage; and
(b) Either:
(i) Face the street. See Figure 4.7-A;
(ii) Be at an angle of up to 45 degrees from the street. See Figure 4.7B;
(iii) Face a common open space or private access or driveway that is abutted by dwellings on at least two sides; or
(iv) Open onto a porch. See Figure 4.7-C. The porch must:
(aa) Be at least 25 square feet in area; and
(bb) Have at least one entrance facing the street or have a roof.
(3) Unit Definition. Each townhouse must include at least one of the following on at least one street-facing façade. See Figure 4.7-L:
(a) A roof dormer a minimum of four feet in width; or
(b) A balcony a minimum of two feet in depth and four feet in width and accessible from an interior room; or
(c) A bay window that extends from the façade a minimum of two feet; or
(d) An offset of the façade that is a minimum of two feet in depth, either from the neighboring townhouse or within the façade of a single townhouse; or
(e) An entryway that is recessed a minimum of three feet; or
(f) A covered entryway with a minimum depth of four feet; or
(g) A porch meeting the standards of subsection (1)(b)(iv) of this section (C).

Balconies and bay windows may encroach into a required setback area.
(4) Windows. A minimum of 15 percent of the area of all street-facing elevations on each individual unit must include windows or entrance doors. Half of the window area in the door of an attached garage may count toward meeting this standard. See Figure 4.7-E.

Figure 4.7-L. Townhouse Unit Definition

(A)

Roof dormer, minumum of 4 feet wide
(B) Balcony, minimum 2 deet deep and 4 feet wide. Accessible from interior room.
(C) Bay window extending minimum of 2 feet from facade
(D) Facade oftset, minimum of 2 feet deep
(E) Recessed entryway. minimum 3 feet deep
(F) Covered entryway, minimum of 4 feet deep
(G) Porch, meets standards of subsection (1)(b)(iv) of section (C)
(5) Driveway Access and Parking. Townhouses with frontage on a public street must meet the following standards:
(a) Garage on the front façade of a townhouse, off-street parking areas in the front yard, and driveways in front of a townhouse are allowed if they meet the following standards. See Figure 4.7-M.
(i) Each townhouse lot has a street frontage of at least 15 feet on a local street.
(ii) A maximum of one driveway approach is allowed for each townhouse. Driveway approaches and/or driveways may be shared.
(iii) Outdoor on-site parking and maneuvering areas do not exceed 12 feet wide on any lot.
(iv) The garage width must not exceed 12 feet, as measured from the inside of the garage door frame.

Figure 4.7-M. Townhouses with Parking in Front Yard

(b) The following standards apply to driveways and parking areas for townhouse projects that do not meet all the standards in subsection (a) in this section.
(i) Off-street parking areas must be accessed on the back façade or located in the rear yard. No off-street parking is allowed in the front yard or side yard of a townhouse.
(ii) A townhouse project that includes a corner lot must take access from a single driveway approach on the side of the corner lot. See Figure 4.7-N.

Figure 4.7-N. Townhouses on Corner Lot with Shared Access

## SHARED ACCESS AND DRIVEWAY



## STREET

(iii) Townhouse projects that do not include a corner lot must consolidate access for all lots into a single driveway. The driveway and approach are not allowed in the area directly between the front façade and front lot line of any of the townhouses. See Figure 4.7O.

Figure 4.7-O. Townhouses with Consolidated Access

(iv) A townhouse project that includes consolidated access or shared driveways must grant access easements to allow normal vehicular access and emergency access.
(c) Townhouse projects in which all units take exclusive access from a rear alley are exempt from compliance with subsection (b) of this section.
(A) Detached courtyard houses on individual lots are subject to the same standards as single unit detached housing, except that a three foot minimum side yard setback is allowed on one side of a typical lot and a seven foot setback is required on the other side of the lot. As shown in Figure 4.7-P, this type of housing is permitted to allow development on narrow lots and still provide usable outdoor living area in side-oriented courtyards. The following standards are intended to promote compatibility and privacy between adjacent buildings and allow for building maintenance.
(1) Setbacks Adjacent to Non-Courtyard Housing Development. When a courtyard house shares a side property line with a non-courtyard development (including vacant lots), the courtyard building must be set back from the common property line by a minimum of seven feet.
(2) Construction and Maintenance Easement. Prior to building permit approval, the applicant must submit a copy of a recorded easement for every courtyard house that guarantees rights for the purpose of construction and maintenance of structures and yards. The easement must stipulate that no fence or other obstruction can be placed in a manner that would prevent maintenance of structures on the subject lot.
(3) Buffering. The building placement and design of windows must provide a buffer for the occupants of abutting courtyard lots. This standard is met by:
(a) Placing ground-floor windows along the courtyard side of the house where views are directed into the yard(s) for the subject house;
(b) By directing views away from neighboring lots yards (e.g., bay window); or
(c) By using frosted glass or other permanent window covering that obscures any view to the exterior but allows light into the interior.

These standards do not apply to adjoining non-zero lot line lots.

Figure 4.7-P - Courtyard Housing


### 4.7.340 Accessory Dwelling Unit (ADU)

(A) Purpose. An accessory dwelling unit is intended to:
(a) Provide the opportunity to add accessible and affordable units to existing neighborhoods and new residential areas;
(b) Provide flexibility to accommodate changes in household size or composition over the course of time, allowing for intergenerational living and on-site caretakers or assistants;
(c) Make efficient use of residential land; and
(d) Fit into the neighborhood while maintaining stability, property values.
(B) An accessory dwelling unit may be established by:
(1) Converting an attic, basement, or garage or any other portion of the primary dwelling;
(2) Adding floor area to the primary dwelling, including a second story;
(3) Constructing a detached accessory dwelling unit on a lot or parcel with a primary single unit dwelling; or
(4) Converting an existing dwelling unit to the accessory dwelling unit (if it is less than 800 square feet) and building a primary dwelling unit.

## (C) Applicability

(1) Accessory dwelling units are permitted on $\mathrm{R}-1$ properties with a primary dwelling.
(a) In instances where a development can meet the definition of a duplex and also meets the definition of a primary single unit dwelling with an Accessory Dwelling Unit (ADU), the applicant must specify at the time of application whether the development is a duplex or a primary single unit dwelling with an ADU.
(2) Accessory dwelling units are permitted on R -2 properties with a primary dwelling, according to the following standards.
(a) On a lot or parcel with area 6,650 square feet or less, one or two accessory dwelling units are permitted.
(b) On a lot or parcel with area greater than 6,650 square feet but not greater than 10,000 square feet, a minimum of two accessory dwelling units must be constructed.
(c) An accessory dwelling unit is not permitted on a lot or parcel with area greater than 10,000 square feet.
(d) If two accessory dwellings are constructed, at least one must be detached from the primary dwelling.
(3) Accessory dwelling units are permitted on R-3 properties with a primary dwelling, according to the following standards.
(a) On a lot or parcel with area 3,200 square feet or less, one or two accessory dwelling units are permitted.
(b) On a lot or parcel with area greater than 3,200 square feet but not greater than 4,800 square feet, a minimum of two accessory dwelling units are permitted.
(c) An accessory dwelling unit is not permitted on a lot or parcel with area greater than 4,800 square feet.
(d) If two accessory dwellings units are constructed, at least one must be detached from the primary dwelling.
(4) Accessory dwelling units are permitted within the Historic Overlay District subject to the provisions of SDC 3.3.910 through SDC 3.3.945.
(D) Review
(1) An accessory dwelling unit is reviewed under Type 1 procedure except in the Historic Overlay District or except as provided in SDC 4.7.340(F) and SDC 4.7.340(H)(3) when the accessory dwelling unit is reviewed under a Type 2 procedure.

## (E) Submittal Requirements

(1) A plan drawn to scale and dimensioned showing:
(a) The proposed accessory dwelling unit and its relation to the property lines;
(b) The primary dwelling and other structures on the lot or parcel including fences and walls;
(c) Existing and proposed trees and landscaping;
(d) Lot or parcel area and dimensions, percent of lot or parcel coverage, building height, entrance locations; location of utilities and meters, curb cuts, sidewalks (public and private) and off-street parking area;
(e) Stormwater destination and/or facility;
(f) A detailed floor plan of the accessory dwelling unit, drawn to scale with labels on rooms indicating uses or proposed uses; and
(g) A separate written response demonstrating how the required development standards listed in SDC 4.7-340(G) can be met.
(F) Development Standards. An accessory dwelling unit must meet the following standards:
(1) The accessory dwelling unit must meet all applicable standards in this Code including, but not limited to; setbacks, height, lot or parcel coverage, and building codes in effect at the time of construction.
(2) The accessory dwelling unit must contain a kitchen, bathroom, living, and sleeping area that are completely independent from the primary dwelling.
(3) The accessory dwelling unit must not exceed 800 square feet or the square footage of the primary dwelling (exclusive of the garage for the primary dwelling), whichever is less.
(4) The accessory dwelling unit must have an outside entrance that is separate from the entrance to the primary dwelling.
(5) A hard surface walkway, a minimum of three feet wide, must be provided from the primary entrance of the accessory dwelling unit to the street or walkway serving the primary dwelling.
(6) Each dwelling unit must have its own address.
(7) Outdoor storage and garbage areas must be screened from view from adjacent properties and those across the street or alley with a minimum 42-inch tall 100percent sight obscuring fence or enclosure on at least three (3) sides.
(8) If a Type 2 manufactured home or a towable structure (that is permitted, inspected and approved by the local authority having jurisdiction) is brought to the site as an accessory dwelling unit, it must have its tongue and towing apparatus removed
(G) Design Standards. An accessory dwelling unit within or attached to the main dwelling must either match the primary dwelling or meet the alternative standards. A newly constructed detached accessory dwelling unit must match the primary dwelling, meet clear and objective standards, or meet the alternative standards. Conversion of a structure permitted under SDC 4.7.105(A) to an accessory dwelling unit is not required to meet the design standards and may be approved under a Type 1 procedure; however, exterior alterations such as those necessary to meet building codes must meet relevant design standards below (match primary dwelling or meet clear and objective standards).
(1) Match Primary Dwelling. An accessory dwelling unit may be approved under Type 1 procedure if it meets the following design standards except that these standards may be altered when necessary to meet current fire or building codes:
(a) Exterior finish materials must be the same as or visually match those of the primary dwelling in terms of type, size, and placement.
(b) Roof pitch must be the same as the predominant roof pitch of the primary dwelling.
(c) The trim around the doors and windows must be the same type and finish as the primary dwelling.
(d) Windows must match those of the primary dwelling in terms of proportion (height and width ratio) and orientation (vertical vs. horizontal).
(e) Eaves must project from the accessory dwelling unit addition the same distance as the eaves on the primary dwelling.
(2) Meet Clear and Objective Standards. A detached accessory dwelling unit may be approved under Type 1 procedure if it meets the following design standards:

[^3](a) Only non-reflective siding and roofing materials are allowed.
(b) Minimum roof pitch is 3 in 12 .
(c) Eaves must project from the accessory dwelling unit at least one foot on all elevations.
(d) The primary entry must have a covered or roofed entrance with a minimum depth and width of three feet.
(3) Meet Alternative Standards. An accessory dwelling may be approved under Type 2 procedure if it meets the following design standards:
(a) Siding, roofing materials, and windows must be similar to those used on residential dwellings in the surrounding neighborhood.
(b) Entrances, windows, and balconies must be designed and located with consideration of the privacy of residential neighbors.
(H) Non-Conforming Lot or Parcel Sizes
(1) Accessory dwelling units are not permitted on lots/parcels that do not meet the applicable minimum lot or parcel size stated in SDC 3.2.215.

## (I) Prohibited Use

(1) Mobile homes, recreational vehicles, motor vehicles, and travel trailers cannot be used as an accessory dwelling unit. Type 2 Manufactured Homes and towable structures that are permitted, inspected, and approved by the local authority having jurisdiction are allowed.
4.7.345

A manufactured dwelling park is subject to site plan review, and the following criteria:
(A) Minimum Area Required. A manufactured dwelling park must consist of a minimum area of one acre.
(B) Space Size. The average area of a manufactured dwelling site must not be less than 4,000 square feet excluding roadway, recreation areas, and other accessory facilities. No manufactured dwelling site can be less than 2,000 square feet in area.
(C) Access. A manufactured dwelling park access must be located on public streets improved to meet minimum standards and which are improved to a point intersecting a collector or arterial street.
(D) Permitted Uses. A manufactured dwelling park may contain manufactured homes and accessory structures permitted in this chapter, community laundry and recreation facilities, and other common buildings for use by park residents only, and one residence other than a manufactured dwelling for the use of a caretaker or a manager responsible for maintaining or operating the property.
(E) Access Improvement Standards
(1) Park Streets. The minimum paved surface width of the roadway within an access way must be 24 feet if there is no parking allowed and 30 feet if parking is allowed on both sides. The first 50 feet of the access way measured from the public street must be surfaced to a minimum width of 30 feet and must be connected to the existing public street according to plans approved by the City.
(2) Improvement Standards. The improvement of driveways, walkways, streets, drainage, and other utilities must conform to adopted State standards for such or must conform to the City's Standards and Specifications manual, whichever is more restrictive.

### 4.7.350 Residential Facility

A Residential Facility must comply with the following standards.
(A) Licensing. All residential care homes and facilities must be licensed by the State of Oregon.
(B) Site Plan Review. Site Plan Review is required for new structures to be used as a residential facility, to ensure compliance with the licensing, parking, and other requirements of this code. A Residential Training Home is exempt from this requirement.

### 4.7.355

Bed and Breakfast
A bed and breakfast use is permitted in all Residential Districts within a structure used as a residence and must comply with the following standards.

## Commented [RM26]: Must be clear and objective

Commented [RM27]: Delete?
Commented [RM28]: See ORS 197.314(5)

Commented [RM29]: Not sure state law (ORS 197.314) allows us to regulate space size.
Commented [RM30]: lot
Commented [RM31]: Should this number be changed? Seems
high. Lower to 3000 (or less) to match R-1 lot size reduction.

Commend
standards
Commented [RM33]: Comment from Melissa
What about parking on one side?
Commented [RM34]: Michael comment.
We allow 20 foot curb to curb streets and when we add parking it is
8 feet for each side. Fire code needs to be checked on this one!

Commented [RM35]: Michael comment
Should be paved throughout for emergency access and a host of other reasons.

Commented [RM36]: Cant ref. this. These standards need revised.

Commented [RM37]: Will this push us to requiring our urban curb gutter and sidewalk standard?

Commented [RM38]: Defined and regulated by ORS 443.400.455
(A) Maximum Size. The bed and breakfast use is limited to a maximum of four bedrooms for guests and a maximum of eight guests per night.
(B) Employees. The bed and breakfast use may have up to one full time equivalent nonresident employee for the facility.
(C) Food Service. Food services may be provided only to overnight guests of the bed and breakfast use.
(D) Owner- or Operator-Occupied. The bed and breakfast inn must be owner- or operatoroccupied and must maintain the exterior physical characteristics of a single unit dwelling.
(E) Location. There must be at least 400 feet of separation along the same street between bed and breakfast uses.
(F) Signs. Signs must meet the standards of City of Springfield Municipal Code 8.200, Signs.
(G) Monitoring. All bed and breakfast uses must register with the City of Springfield for Transient Room Tax and must maintain a guest logbook. It must include the names and home addresses of guests, guests' license plate numbers if traveling by car, dates of stay and the room number of each guest. The log must be available for inspection by City staff upon request.

### 4.7.360 Accessory Uses and Structures

Accessory uses and structures are those of a nature customarily incidental and subordinate to the primary use or structure on the same lot. Typical accessory structures include detached garages, sheds, workshops, greenhouses, and similar structures. This section does not apply to accessory dwelling units (ADUs). For standards applicable to ADUs, see SDC 4.7.340. Accessory structures must comply with all the following standards and the applicable land use district. Where conflicting or more permissive standards exist in this section, these standards prevail.
(A) Primary Use Required. An accessory structure or use is only allowed on a lot or parcel after the primary use is established. The accessory use must be a permitted use in the land use district.

## (B) Restrictions

(1) A kitchen is not allowed.
(2) A wet bar is not allowed to be installed within an accessory structure unless the property owner signs a City of Springfield compliance form stating that the structure will not be used as a dwelling unit.
(C) Floor Area. The maximum floor area of an accessory structure in a residential land use district must not exceed 1,500 square feet.
(D) Building Height. The building height of a detached accessory structure must not exceed 25 feet. In order to consider the accessory structure to be attached to the primary dwelling

[^4]Commented [RM40]: Define?

Commented [RM41]: Define?
unit, it must be attached by one of the following options and there must be an opening that allows for internal access through livable space to the primary portion of the dwelling unit:
(1) The accessory structure must share a common wall for at least 25 percent of the length of the common wall of the primary dwelling unit; or
(2) The entire length of one elevation of the accessory structure must be attached to the primary dwelling unit.

The shared or attached wall must be the wall of an enclosed interior space, and does not include porches, patios, decks, or stoops.

### 4.7.365 <br> Home Business

A home business is a lawful activity carried on within a dwelling or accessory structure by a permanent occupant of the dwelling. A home business is permitted provided that meets all the following standards.
(A) The primary use of the building is a dwelling
(B) The business is a secondary use that does not significantly affect the residential character of the dwelling or neighborhood.
(C) Compliance with the following standards must always be maintained.
(1) There must not be any display which would indicate from the exterior that the building is being used for any purpose other than a residential dwelling.
(2) There must not be any outside storage of materials visible from public property or adjacent private property.
(3) Mechanical equipment, unless compatible with residential purposes, is prohibited.
(4) There must not be any offensive noise, vibration, smoke, dust, odors, heat, or glare noticeable at or beyond the property line resulting from the home business.
(5) The home business must not create hazardous traffic conditions or utilize on-street parking of nearby properties.
(6) If the proposed home business requires any modification to the dwelling or accessory structure of a nature that is not typically found in a residential district, the proposed home business is considered inappropriate and prohibited
(7) No merchandise, other than what is produced on-site, can be sold to the public from premises.
(8) The use or storage of heavy equipment or heavy vehicles is not permitted. Heavy equipment and heavy vehicles includes but is not limited to semi-truck, truck and trailer, backhoe, tracked excavator, skid steer, refrigerator truck, livestock truck, commercial bus, farm tractor, garbage truck, tow truck, and log truck.

```
Commented [RM42]: Check muni code? Can we ref. muni
code for noise standard?
```

(9) Any home business, which requires more than one vehicle for its operation is prohibited. The one vehicle permitted is limited to a passenger vehicle, passenger van, or light-duty pick-up truck.
(10) No residence is allowed to be used as a headquarters or dispatch center where employees or subcontractors report to the residence to be dispatched elsewhere.
(11) Customers are not allowed to physically access a home business beyond the hours of 7 a.m. to 6 p.m.
(12) The applicant must sign an agreement with the City acknowledging any applicable standards listed in Subsections (1) through (11), above.
(D) The following uses are prohibited as a home business.
(1) Automobile repair, including, but not limited to tune-ups, alignments, body-fender work, painting, detailing, and upholstering.
(2) Health salons, gyms, dance studios, aerobic exercise studios, karate, and judo instruction.
(3) Medical or dental offices.
(4) Mortician, hearse services.
(5) Tow truck services.
(6) Veterinary uses (including care, grooming, and boarding).
(7) Wholesale distribution taking up more than the equivalent of 40 percent of the primary residence.
(8) Gun dealers involving the storage of guns for sale or customers visiting the residence.
(E) Any home business:
(1) Which has been approved by the Planning Commission is subject to revocation by the Planning Commission if the home business is found to be in violation of the approval standards. The revocation will be sent to the applicant in writing. The home business must cease within 30 days of the receipt of the revocation notice. The revocation decision may be appealed to the City Council as specified in SDC 5.3.100.

## Commented [RM43]: Emma comment <br> Does this negatively impact carpooling capabilities? Currently my neighbor meets up in the morning and one of their employees

 leaves his car in on-street parking during the work day.
## Commented [RM44]: Emma Comment

```
Physical access? I assume virtual/online computer customer access
```

IS 24/7? Maybe need to update for telecommuting?
Commented [RM45]: Check hours comparted to Washburn overlay?? 8 to 6 . Comment from TAC 4/8/21

Commented [RM46]: Discussed with Emp TAC on 4/8/21.
Generally keep this list.

Commented [RM47]: One on one verses multiple "customers" at once??? Comment from TAC 4/8/21.

## Commented [RM48]: Emma comment.

Why? It seems as if some of these could fit well for home based small businesses. Perhaps consider removing this?

ASK Jim D.
Commented [RM49]: Chemicals used for use? Check with Amy C. from SUB????

### 4.7.370

(A) A place for people to gather for religious activity. Examples include church, synagogue, mosque, chapel, or meeting house. Includes the following associated uses (ORS 227.500).
(1) Worship services.
(2) Religion classes.
(3) Weddings.
(4) Funerals.
(5) Meal programs.
(6) Childcare, but not including private or parochial school education for prekindergarten through grade 12 or higher education.
(7) Providing housing or space for housing in a building or buildings that are detached from the place of worship provided:
(a) At least 50 percent of the residential units provided under this paragraph are affordable to households with incomes equal to or less than 60 percent of the median family income for Lane County.
(b) The real property is in a residential land use district and is located within the urban growth boundary.
(c) The housing or space for housing complies with applicable land use regulations and meets the standards and criteria for residential development for the underlying land use district; and
(d) The housing or space for housing is subject to a covenant appurtenant to the property. The covenant must restrict the owner and each successive owner of a building or any residential unit contained in a building from selling or renting any residential unit that is required to be affordable, as defined below, to a household with an income greater than the established affordability level for a period of 60 years from the date of the certificate of occupancy. The established affordability level is the household income is equal to or less than 60 percent of the median family income for Lane County.
(B) A place of worship must meet the following approval standards:
(1) Site Plan approval standards of SDC 5.17.100, including landscape requirements.
(2) Discretionary Use standards of SDC 5.9.100-5.9.125, as applicable.
(3) Must abut and take access from an arterial or collector street.

### 4.7.375

(A) Purpose. The architectural standards are intended to provide detailed, human-scale design, while affording flexibility to use a variety of building styles for certain types of development.
(B) Applicability. This section applies to the following,
(1) Multiple unit housing

Deleted: types of buildings

Deleted: building
(2) Public and institutional building(s) in Residential Districts.
(3) Commercial building(s) in Neighborhood Commercial District.
(4) Mixed-use building(s) in Residential Districts; and
(5) All other types of permitted/conditional nonresidential use buildings listed in Table 3.2.210 when built in a Residential District.
(C) Standards (Clear and objective). All buildings that are subject to this section must comply with all the following standards. The graphics provided with each standard are intended to show examples of how to comply and are for illustrative purposes only. Other building styles and designs can be used to comply, so long as they are consistent with the text of this section. An architectural feature may be used to comply with more than one standard.
(1) Building Form. All buildings must incorporate design features such as offsets, balconies, projections, window reveals, or similar elements to preclude large expanses of uninterrupted building surfaces, as shown in Figure 4.7-Q below. Along the vertical face of a structure, such features must occur at a minimum of every 40 feet, on each floor, and must contain at least two of the following features.
(a) Recess (e.g., deck, patio, courtyard, entrance, or similar feature) that has a minimum depth of six feet.
(b) Extension (e.g., floor area, deck, patio, entrance, or similar feature) that projects a minimum of two feet and runs horizontally for a minimum length of four feet; and/or
(c) Offsets or breaks in roof elevation of two feet or greater in height.

Figure 4.7-Q Building Form (Multiple unit housing example)

(2) Building Orientation. All building elevations adjacent to a street right-of-way must provide doors, porches, balconies, and/or windows. A minimum of 40 percent of street-facing elevations, and a minimum of 30 percent of side and rear building elevations, must meet this standard. Percent of elevation is measured as the horizontal plane (lineal feet) containing doors, porches, balconies, terraces and/or windows. The standard applies to each full and partial building story.
(3) Detailed Design. All buildings must provide detailed design along all elevations which are visible from the street(s) adjacent to the property (i.e., front, rear and sides).
(a) Menu Option (Type 1). Detailed design must be provided by using at least six of the following 12 architectural features on all applicable elevations, as appropriate for the proposed building type and style (may vary features on rear/side/front elevations).
(i) Dormers.
(ii) Gables.
(iii) Recessed entries.
(iv) Covered front porches.
(v) Pillars or posts.
(vi) Eaves (minimum 12-inch projection).
(vii) Window trim (minimum $31 / 2$ inches wide).
(viii) Bay windows.
(ix) Balconies.
(x) Offsets in the building face by a minimum of 18 inches.
(xi) Offsets or breaks in roof elevation of two feet or greater in height.
(xii) Decorative patterns on the exterior finish using shingles, wainscoting, and/or board and batten.
(xiii) Variation in façade building materials, including, but not limited to, tile, brick, and wood.

Figure 4.7-R Examples of Architectural Details

(b) Design Review Option (Type 2). Detailed design may be provided by showing compliance with the following design criteria through a Type 2 application process in accordance with SDC 5.1.130.
(i) The general size, shape, and scale of the structure(s) are architecturally compatible with the site and with the surrounding neighborhood, unless such compatibility with existing structures does not reflect the long-term purpose or intent of the underlying land use district of the subject site.
(ii) If the project includes a structure or structures greater than 20,000 square feet in floor area, the design must incorporate changes in direction and divide large masses into varying heights and sizes by breaking up building sections, or by the use of such elements as variable planes, projections, bays, dormers, setbacks, canopies, awnings, parapets, changes in the roofline, materials, color, or textures.
(iii) Exterior finish on vertical surfaces must be primarily of materials such as masonry/wood siding, shingles, or stucco. The use of sheet metal or plywood must not exceed 50 percent of the wall area. No smooth-faced cinder block construction is permitted on front elevations. Cinder block construction for side and rear elevations is permitted by approval through the review process.

### 4.7.380 Multiple Unit Housing (Clear and objective standards)

(A) Purpose. The purpose of the multiple unit housing standards is to provide for higher density housing in locations that are convenient to commercial uses and future transit opportunities.
(B) Review. Type 1 review process.
C) Development Standards for Multiple Unit Housing Developments, The following standards apply to multiple unit housing developments unless otherwise stated. These standards do not apply to Cottage Cluster Housing development.

## (1) Common Open Space

(a) Ten percent of the site area, for large scale (20 units or more) multiple unit housing developments, must be designated and permanently reserved as common open space. This standard is in addition to the required setback yard areas and any stormwater facilities.
(b) Five percent of the site area, for multiple unit housing developments under 20 units in size, must be designated and permanently reserved as common open space. This standard is in addition to the required setback yard areas and any stormwater facilities.
(c) For multiple unit housing developments that are part of a mixed-use building, there is no Common Open Space requirement.
(d) For multiple unit housing developments that have a net density of 20 dwellings units per acre in the R-2 district, or 30 dwelling units per net acre in the R-3 district the Common Open Space standard does not apply.
(2) Site area. The site area is defined as the lot(s) or parcel(s) on which the development is planned, after subtracting any required dedication of street right-ofway and other land for public purposes (e.g., public park or school grounds, etc.). Inventoried Natural Resources and historic buildings or landmarks open to the public and designated by the Springfield Comprehensive Plan may be counted toward meeting the Common Open Space requirements.
(3) Credit for Proximity to a Park. A common open space credit as specified below is allowed when the development is located within walking distance of a public park. There must be a direct, accessible, and maintained trail or sidewalk between the development and the park, and the walking route must not cross an arterial street to use this credit.
(a) A 100 percent credit is allowed when the development is located within onequarter mile walking distance.
(b) A 50 percent credit is allowed when the development is located within threequarters mile walking distance.
(4) Trash and Recycling Receptacle Storage. Trash and recycling receptacle storage must not be located within setbacks for property lines shared with R-1 district property and must be covered and screened on at least three sides with an evergreen hedge or sight obscuring fence or wall. The screening must be at least five feet in height. Receptacles must be located for access by trash pick-up vehicles.
(5) Landscaping, Fences, and Walls. Multiple unit housing developments must provide landscaping as specified in the following standards and in compliance with SDC 4.4.105.

## Commented [RM50]: ADA? What does this mean? Is this clear? <br> Commented [RM51]: Improvement standard for "trail"? ADA?

Commented [RM52]: Reference other section where these standards are contained. Solid waste disposal...
(a) A minimum of 15 percent of the site must be landscaped with a mix of vegetative ground cover, shrubbery, and trees. Trees, a minimum two inches (dbh - diameter at breast height) in caliper, and shrubbery, a minimum of 24 inches in height, must be planted. Bark mulch, rocks and similar non-plant material may be used to compliment the cover requirement but is not considered a sole substitute for the vegetative ground cover requirement.
(b) Street trees, a minimum two inches (dbh) caliper, must be placed within the planter strips between the curb and the sidewalk. Street trees must be planted a minimum of one per every 30 linear feet of street frontage, as specified in SDC 4.2.140.
(c) Fences in front yards and along any frontage used to comply with the building orientation standard are limited to three feet in height. Fences in other yards must comply with the fence standards specified in SDC 4.4.115, and the vision clearance standards specified in SDC 4.2.130; and
(d) The use of native and/or drought-tolerant landscaping is encouraged. All landscaping must be irrigated with a permanent irrigation system unless a licensed landscape architect submits written verification that the proposed plant materials do not require irrigation. The property owner must maintain all landscaping.
(6) Pedestrian Circulation. Multiple unit housing developments with more than 20 units must provide pedestrian circulation as specified in the following standards.
(a) Continuous internal sidewalks must be provided throughout the site. Discontinuous internal sidewalks are permitted only where stubbed to a future internal sidewalk on abutting properties, future phases on the subject property, or abutting recreation areas and pedestrian trails.
(b) Internal sidewalks must be separated a minimum of five feet from dwellings, measured from the sidewalk edge closest to any dwelling unit.
(c) The internal sidewalk system must connect all abutting streets to primary building entrances.
(d) The internal sidewalk system must connect all buildings on the site and must connect the dwelling units to the parking areas, bicycle parking, storage areas, all recreational facilities, common areas, and abutting public sidewalks and pedestrian trails.
(e) Surface treatment of internal sidewalks must be concrete, asphalt, or masonry pavers. The sidewalks must be at least five feet wide. Multi-use accessways (e.g., for bicycles, pedestrians, and emergency vehicles) must be of the same materials, and at least ten feet wide. Where emergency vehicle access is required, there must be an additional five feet on either side of the accessway to provide for a clear accessway of 20 feet in width. The additional five-foot area may be turf-block, grass-crete, or similar permeable material on a base of gravel capable of supporting fire equipment weighing 80,000 pounds.
(f) Where internal sidewalks cross a vehicular circulation area or parking aisle, they must be clearly marked with contrasting paving materials, elevation changes, speed humps, or striping. Speed humps are subject to review and approval by the Fire Marshal. Internal sidewalk design must comply with Americans with Disabilities Act (ADA) requirements.
(g) Where the internal sidewalks are parallel and abutting to a vehicular circulation area, the sidewalk must be raised or be separated from the vehicular circulation area by a raised curb, bollards, landscaping, or other physical barrier. If a raised sidewalk is used, the ends of the raised portions must be equipped with curb ramps.
(h) All on-site internal sidewalks must be lighted to a minimum of two foot-candles.
(7) Parking. Multiple unit housing developments must provide parking as specified in SDC 4.6.100-4.6.155
(8) Vehicular Circulation. Multiple unit housing developments must provide vehicular circulation as specified in the following standards. See Figure 3.2-R.
(a) The on-site driveway, or private street, system must connect with public streets abutting the site.
(b) Site access and driveways must conform to SDC 4.2.120.

### 4.7.385 Multiple Unit Housing (Discretionary option)

(A) Description. The Planning Commission may approve adjustments to the clear and objective multiple unit housing design standards listed in SDC 4.7.380 that preclude compliance under SDC 4.7.390. In addition, the applicant may choose this Type III Discretionary Use procedure when proposing an innovative design that may preclude compliance with one or more of the design standards under SDC 4.7.380. The multiple unit housing design standards are: Building Orientation; Building Form; Storage; Transition and Compatibility Between Multiple unit housing and R-1 Development; Open Space; Landscaping; Pedestrian Circulation; Parking; and Vehicular Circulation. The Planning Commission must find that the application complies with or exceeds the criteria for each applicable design standard. Criteria for design standards not relevant to the application do not require a finding by the Planning Commission, unless the guidelines in Subsections (B) through (I) are implemented.
(B) Building Orientation. The Planning Commission must find that the proposed design contributes positively to the neighborhood and overall streetscape by carefully relating building mass, frontages, entries, and yards to streets and to adjacent properties. This criterion may be met by complying with either (1) or (2) below, or by meeting SDC 4.7.390.
(1) Building Oriented to the street along a minimum of 50 percent of the site's frontage (See Figure 4.7-M). The "orientation" standard is met when all of the following criteria are met:
(a) Primary building entrances must face the street.

## Commented [RM54]: Emma comment

Do we mean speed humps or should this be changed to "raised crosswalks"? Or both?

Discuss with Emma and Michael

[^5](b) The front of the buildings must be within 25 feet of the front lot/parcel line, However, open, courtyard space in excess of 25 feet may be placed in front of building entrances. Open courtyard space is defined as usable, hard-surfaced space with pedestrian amenities including benches, seating walls or similar furnishings.
(c) Off-street parking or vehicular circulation must not be placed between buildings and streets used to comply with this standard.
(d) Wetlands, slopes over 15 percent as specified in SDC 3.3.500, and wooded areas protected by SDC 5.19.100, must not be counted as "frontage" for determining required building orientation. For example, if jurisdictional wetlands and/or wetland buffer occupy 100 feet out of a total of 400 feet, then only 300 feet is counted as "frontage" for determining required building orientation. In this example, 150 feet ( 50 percent) is the required amount of frontage to meet the building orientation requirement.

Building Orientation and Storage
Figure 4.7-M

(2) Considering the following guidelines:
(a) Orient buildings to an internal circulation system that mimics a public street in appearance (including, but not limited to sidewalks, landscaping, cross-walks, lighting, parallel parking), and does not diminish the appearance and safety of abutting primary public streets. Examples of "diminished appearance" include a fence along the sidewalk that isolates pedestrians between it and the street;
the location of trash receptacles, utility vaults, etc. in the "rear" yard (abutting a public street); and similar impacts on the streetscape.
(b) Other design elements that provide exceptional design, and on balance, justify approval of the development with less than full compliance with the building orientation standard. Examples of such design elements include protection of natural and cultural resources; minimization of slope and tree cutting impacts; provision of pedestrian amenities along the public street; and similar public benefits that effectively accomplish the intent of the standard.
(C) Building Form. The Planning Commission must find that the proposed design promotes building forms that contribute positively to a sense of neighborhood and to the overall streetscape. This criterion may be met by complying with either (1) or (2) below or by meeting SDC 4.7.390.
(1) Option 1 (See Figure 4.7-N).
(a) Structures that have one or two stories must not have continuous horizontal distance exceeding 160 feet (measured from end wall to end wall). However, as specified in Subsection 3.d., below, structures that have three or greater stories must not have a continuous horizontal distance exceeding 120 feet (measured from end wall to end wall).
(b) A minimum of 15 percent of the front façade (area measurement) shall contain windows or doors. All windows and doors shall provide four-inch trim or be recessed (i.e., into the front façade) to provide shadowing.
(c) Garages attached to living units and accessed from the street (front setback) shall be recessed at least four feet behind the front façade of a dwelling structure; and
(d) Exterior building elevations must incorporate design features including offsets, balconies, projections, window reveals, or similar elements to preclude large expansions of uninterrupted building surfaces. Along the vertical face of a structure, the features must occur at a minimum of every 30 feet, and on each floor shall contain a minimum of two of the following features:
(i) Recesses (e.g., deck, patio, courtyard, entrance, window reveals) that have a minimum depth of 3 feet;
(ii) Extensions (e.g., floor area, deck, patio, entrance) that have a minimum depth of 2 feet and minimum length of 4 feet; and/or
(iii) Offsets or breaks in roof elevation of 2 feet or greater in height.

## Building Form

 Figure 4.7-N
(2) Option 2
(a) Design exterior building elevations to avoid large expanses of uninterrupted building surfaces.
(b) Depict building scale consistent with nearby buildings; "scale" relates to the size of various features (including, but not limited to entries, roof surfaces, façades, windows and materials) as compared to those features on nearby buildings.
(c) Provide transitions to nearby buildings by massing; "mass" relates to the overall size or bulk of a building or its principal parts.
(d) Provide porches, bays, and balconies that compliment nearby buildings.
(e) Provide roof variations through offsets, breaks and/or extensions.
(f) Provide transition between the multiple unit housing and R-1 districts.
(g) Protect on-site and off-site natural and designated historic features.
(h) Provide human-scaled architectural detail.
(i) Provide visual variety in elevations, architectural details, colors, and materials, compatible with existing development
(D) Storage. The Planning Commission must find that unsightliness, noise and odor of exterior utilities, trash receptacle storage, and roof-mounted mechanical equipment is minimized by providing site facilities that are adequate and convenient for residents' needs and ensuring that site facilities are practical, attractive, and easily maintained. This criterion may be met by complying with either (1) or (2) below or by meeting SDC 4.7.390.
(1) Option 1 (See Figure 4.7-M)
(a) Adequate, accessible, and secure storage space must be provided for each dwelling. A minimum of 112 cubic feet of enclosed storage is required separate from the living unit. Garages and storage units adjoining a dwelling (e.g., attached to decks and patios) qualify as storage space.
(b) Trash receptacles must be screened from view by placement of a solid wood fence, masonry wall, or similar sight-obscuring, gated enclosure, from 5 to 6 feet in height, Obscuring landscaping must be planted a minimum 24 inches in height at planting around all exposed sides of the wall or fence, unless breaks are provided for gates. The required screening must meet the standards of SDC 4.4.100.
(c) No trash receptacles are allowed in any front yard setback, or within 25 feet of property lines abutting R-1 land use district or designated properties; and
(d) Ground-mounted equipment, including exterior transformers, utility pads, cable television, telephone boxes, and similar utility services, must be placed underground. Alternatively, equipment placed above ground, must be placed to minimize visual impact; or screened with a wall or landscaping. When walls are used they must be tall enough to completely screen the equipment at the time of the equipment installation. Landscaping must be planted tall enough to attain 50 percent coverage after 2 years and 100 percent coverage within 4 years.
(2) Option 2
(a) Provide trash receptacle areas that are adequately signed, accessible to residents and collection service, separated or buffered from living areas in order to avoid noise and odor problems
(b) Provide mailboxes large enough to accommodate large envelopes, packages, and newspapers.
(c) Keep the number and size of television and other receiving structures to a minimum. Screen or locate these structures to minimize visibility to on-site residents, residents of adjacent properties and the public, to the extent practicable.
(d) Provide adequate, accessible, and secure storage space for each dwelling.
(e) Provide ground or interior mounted mechanical equipment with screening as an alternative to roof-mounted equipment.
(f) Group together roof penetrations such as plumbing and exhaust vents, air conditioner units and transformer boxes whenever practicable. Use ridge vents on pitched roofs that are in public view.
(E) Transition and Compatibility Between Multiple unit housing and R-1 District development. The Planning Commission must find that the development is located and designed in a manner compatible with surrounding development by creating reasonable transitions between multiple unit housing and sites and adjacent R-1 districts. This criterion may be met by complying with either (1) or (2) below or by meeting SDC 4.7.390.
(1) Option 1: Multi-unit developments adjacent to properties designated R-1 district must comply with the transition area and compatibility standards listed below, unless it can be demonstrated that adjacent R -1 district property is committed to a non-residential use e.g., church) that is unlikely to change. In evaluating the status of an adjacent property, the Metro Plan designation shall take precedent over the current zone or use.
(a) When a single unit dwelling is within 75 feet of the subject multiple unit housing development site and the single unit dwelling is on the same side of the street and same block as the multiple unit housing site, a setback similar to that of the nearest single unit dwelling must be used for the front yard. "Similar" means the multiple unit housing development setback is within 5 feet of the setback provided by the nearest single unit dwelling. For example, of the single unit dwelling setback is 20 feet, then the multiple unit housing building must be set back by 15 to 25 feet. The minimum front yard setback is 10 feet, as specified in SDC 3.2.220; and
(b) A 25 -foot buffer area must be provided between multiple unit housing development and property lines abutting an R-1 district property line, not including those property lines abutting right-of-ways. Within the 25 -foot buffer area, the following standards apply:
(i) No vehicular circulation (i.e., driveways, drive lanes, maneuvering areas, and private streets) is allowed within the buffer, unless driveway placement within a buffer is required in order to comply with City, County or ODOT access management standards
(ii) Site obscuring landscaping is required and must meet the standards of SDC 4.4.100;
(iii) Building encroachments are allowed, provided no building may encroach more than 10 feet into the 25 foot buffer and no primary entrance can face the abutting $\mathrm{R}-1$ district property. Buildings must not exceed one story or 21 feet within the buffer, and must comply with all other applicable setbacks and transition areas specified elsewhere in this Code;
(iv) No active recreation areas (including, but not limited to: tot lots, swimming pools) are allowed within the 25 -foot buffer (garden spaces are not considered active recreation areas);
(v) Lighting must meet the standards in SDC 4.5.100;
(vi) Mechanical equipment must be screened from view in conformance with the standards of SDC 4.4.100, and must be buffered so that noise does not typically exceed 45 to 50 decibels as measured at the $\mathrm{R}-1$ property line. The City may require a noise study certified by a licensed acoustical engineer; and
(vii) All rooftop equipment must be hidden behind parapets or other structures designed into the building.
(c) Buildings, or portions of buildings abutting an R-1 district property line or designation (i.e., side or rear lot/parcel line) outside of the 25 -foot buffer described above, shall not exceed a building height greater than one foot for each foot distance from the R-1 district property line. For example, a building or portion of a building 30 feet in height shall be 30 feet from the $\mathrm{R}-1$ district property line. This standard applies up to a distance or 50 feet from the R-1 district property line.
(d) Structures within 50 feet of an R -1 district must not have a continuous horizontal distance exceeding 120 feet (measured from end wall to end wall).
(2) Option 2
(a) Setbacks, building heights, and massing are similar to, and/or promote a visual gradient between the multiple unit housing site and adjacent R-1 district.
(b) Screen with landscaping or place balconies and windows to maintain the privacy of abutting R-1 districts and multiple unit housing residents on-site and in abutting developments.
(c) Window treatments and other building components are similar in size, scale, and placement to those in the adjacent $\mathrm{R}-1$ districts, unless variation aids in transition.
(d) On site vehicular circulation and parking guides traffic away from abutting R-1 districts.
(e) Orient buildings along street frontages shared by the R-1 district, particularly when such orientation aids in transition.
(f) Use site obscuring landscaping, shade trees planted a minimum of six feet from property lines, or a minimum six foot high fence, when such screening aids in transition.
(g) Locate components of the multiple unit housing, which generate noise (such as recreation areas, parking lots, trash receptacles, heating and cooling equipment, etc.) where they will least disturb an abutting R-1 district.
(h) Locate and screen lights and mechanical equipment to minimize glare and noise to an adjoining R-1 district.
(i) Allow enclosed garage structures (not carports) between multiple unit housing buildings and abutting R-1 properties as a transition device when the width and height of proposed garage structures are similar to (or subordinate to) the width and height of adjacent R-1 garage structures.
(F) Open Space
(1) The Planning Commission must find that the open space component is located and designed in a manner compatible with surrounding development when:
(a) On-site and abutting natural features are integrated into the open space system of the multiple unit housing development.
(b) Amenities such as seating, children's play areas, lighting, and recreation facilities are provided within common open space areas and proportional to the needs of the development.
(c) A range of usable open space types (general, common, and private) is provided and they are integrated with abutting public open space, if it exists.
(d) Negative impacts to on-site or abutting wetlands, waterways, and natural areas are negligible.
(2) This criterion may be met by complying with either (a) or (b) below or by meeting SDC 4.7.390.
(a) Option 1. Multiple unit housing developments must provide both Common Open Space and Private Open Space as specified in the following standards (See Figure 4.7-Q).
(i) General. Inclusive of required yards, a minimum of 15 percent of the gross site area must be designated and permanently reserved an open space. The total required open space is the sum of setbacks, common open space, and private open space. Inventoried natural features (including regulated wetlands) and/or historic features on-site may be counted toward up to 50 percent of common open space requirements. See Chapter 6 for definitions of open space; open space, common; and open space, private.
(aa) Multiple unit housing developments in mixed-use buildings are exempt from these standards.
(ba) Multiple unit housing developments at densities exceeding 30 units per gross acre must include a minimum of 10 percent of the gross site as open space, which may be any combination of yards, common open space and private open space.
(ca) Multiple unit housing developments at densities less than 30 units per gross acre must provide open space as specified in the amounts specified below.
(ii) Common Open Space must be provided in all newly constructed multiple unit housing development as specified in the following standards:
(aa) A minimum of 0.25 square feet of common open space must be required for each square foot of gross residential floor area;
(ba) Common open space areas provided to comply with this standard must be at least 500 square feet with no horizontal dimension less than 15 feet;
(ca) A maximum of 15 percent of the required common open space can be on slopes greater than 25 percent; and
(da) Multiple unit housing developments must designate within common open space a minimum of 250 square feet of active recreation area (including, but not limited to: children's play areas, play fields, swimming pools, sports courts) for every 20 units or increment thereof. For example, a 60 -unit development shall provide a minimum area of 750 square feet for active recreation. No horizontal dimension can be less than 15 feet. Alternatively, as determined by the Director, qualified senior housing developments may be excluded from this requirement; however, all other common open space requirements apply;
(ea) Placement of children's play areas must not be allowed in any required yard setback or transition area;
(fa) Landscaping and/or natural vegetation must occupy a minimum of 50 percent of required common open space. On-site natural resources and historic features which are accessible to residents (including, but not limited to: by trails, boardwalks) may be used to partially or fully satisfy this requirements; and
(ga) Indoor or covered recreational space (including, but not limited to: swimming pools, sports courts, weight rooms) must not exceed 30 percent of the required common open space area.
(ha) Exemptions to the common open space standard may be granted for multi-unit developments of up to 60 units (or for the first 60 units of a larger project) when the developments are within $1 / 4$ mile (measured walking distance) to a public park; and there is a direct, improved, permanent, public, Americans with Disabilities Act (ADA)accessible, lighted, maintained pedestrian trail or sidewalk between the site and the park. An exemption will be granted only when the nearby park provides active recreation area, as defined by Subsection (da), above.
(ia) Phasing must not be used to circumvent common open space standards.
(ja) Common Open Space does not include required yards or transition areas unless authorized under SDC 4.7.385(F)(2)(b) or SDC 4.7.390.
(iii) Private Open Space must be provided in all newly constructed multiple unit housing developments, to comply with the following standards:
(aa) All private open space must be directly accessible from the dwelling unit through a doorway;
(ba) Dwelling units located at or below finished grade, or within five feet of finished grade, must provide a minimum of 96 square feet of private open space, with no dimension less than six feet; and
(ca) Private Open Space provided may be deducted from the required amount of Common Open Space. For example, a project with 37,500 square feet of gross floor area requires 9,375 square feet of Common Open Space under Subsection (ii)(aa), above. If 2,400 square feet of Private Open Space is provided, the minimum Common Open Space requirement may be reduced to 6,975 square feet ( $9,375-2,300$ )
(b) Option 2. Alternatively, this criterion may be found to be met by complying with the following guidelines:
(i) Locate buildings, parking, and circulation to minimize adverse impacts on natural features.
(ii) The amount of common recreation area is equal to the SDC 4.7.380(F)(2)(a) standard unless adjacent public recreation facilities, unique on-site facilities, or other similar open space/recreation facilities will be available to all residents of the site.
(iii) Provide linkages between on-site common open space and abutting public open spaces when open space uses are compatible.
(iv) The amount of private open space is equal to the SDC 3.2.240(D)(5)(c) standard unless equivalent opportunities for common open space are demonstrated (e.g., individual units enjoy common open space).
(G) Landscaping. The Planning Commission must find that landscaping, fences, and walls contribute to a quality living environment for all residents, improve the appearance of multiple unit housing developments, and promote transition between multiple unit housing development and surrounding land uses. This criterion may be met by complying with either (1) or (2) below or by meeting SDC 4.7.390
(1) Option 1. This criterion may be met by meeting the following standards. (See Figure 4.7-Q)
(a) A minimum of 15 percent of the site shall be landscaped with a mix of vegetative ground cover, shrubbery and trees. Trees, a minimum two inches
(dbh) in caliper, and shrubbery, a minimum of 24 inches in height, must be planted. Bark mulch, rocks and similar non-plant material may be used to compliment the cover requirement, but must not be considered a sole substitute for the vegetative ground cover requirement;
(b) Street trees, a minimum two inches (dbh) caliper, must be placed within the planter strips between the curb and the sidewalk. Street trees must be planted one per every 30 linear feet (minimum) of street frontage, as specified in SDC 4.2.140;
(c) Fences in front yards and along any frontage used to comply with the building orientation standard shall be limited to three feet in height. Fences in other yards shall comply with the fence standards specified in SDC 4.4.115, and the vision clearance standards specified in SDC 4.2.130; and
(d) The use of native and/or drought-tolerant landscaping is encouraged. All landscaping must be irrigated with a permanent irrigation system unless a licensed landscape architect submits written verification that the proposed plant materials do not require irrigation. The property owner must maintain all landscaping.
(2) Option 2. Alternatively, this criterion may be found to be met by complying with the following guidelines:
(a) Plant outdoor spaces around multiple unit housing developments with a mix of ground cover, shrubbery and trees. Also incorporate hard landscaping elements (e.g., paved sidewalks, courtyards) into the development.
(b) Use plants to provide visual relief along blank exterior walls, reduce building mass and bulk, define and shelter open space, provide privacy, break up and shade parking areas and help define building entries and sidewalks.
(c) Include enhancements, such as plazas, galleries, courtyards, widened sidewalks, benches, shelters, street furniture, artwork or kiosks for pedestrian amenities.
(d) Use vegetation, grade changes and low fences to define open space areas. Plant transition areas between multiple unit housing dwellings and surrounding $\mathrm{R}-1$ and less intensive uses to minimize the visual impact of the development.
(e) Incorporate a planting design that emphasizes:
(i) Visual surveillance by residents of common open space, parking areas, internal sidewalks, dwelling unit entries, abutting streets and public open spaces (i.e., mature plants do not block views of these areas);
(ii) Climate controls for summer shading and solar access during winter, and/or shielding from winter winds. Balance this guideline with visual surveillance objectives, above.
(f) Preserve significant trees and shrubbery on the site as reasonable. Significant trees mean trees which measure 5 inches DBE or greater. Significant shrubbery means shrubbery that is greater than 40 inches in height and is a native, noninvasive species. Trees and shrubs preserved to meet this standard must be identified on a Tree Protection Plan, in conformance with SDC 5.19.100.
(g) Provide small ornamental plants or other landscape features in coordination with the building's architecture to define the primary entry of a dwelling unit.
(h) Avoid high solid fences and walls along streets (e.g., fences greater than 3 feet in height), unless required for noise abatement or retaining walls.
(i) Incorporate landscaping, fences and walls that clearly delineate the public, communal and private areas of a development.
(j) Provide street tree planting, as required by SDC 3.2.240(D)(6) standards.
(k) Incorporate landscaping, fences and walls that do not conflict with sight lines for vehicles and pedestrians, and comply with the vision clearance standards specified in SDC 4.2.130.
(I) Choose landscape species for efficient maintenance. Incorporate native, drought-resistant species.
(m) Use noise-reducing, ornamental walls (e.g., masonry), as necessary, to minimize the transmission of noise.
(n) Incorporate landscaping, fencing and/or walls with dwellings that are close to high noise sources such as active recreation, busy streets, railway lines, or industry.
(o) Obscure or screen outlooks from windows, balconies, stairs, landings, terraces and decks or other private, communal or public areas within a multiple unit housing development. This can be accomplished with landscaping, fences or walls, where a direct view is available into the private open space of an existing adjacent single-family or multiple unit housing.
(p) Screen private open space and balconies by solid translucent screens or perforated panels or trellises which have a maximum of 25 percent openings and are permanent, of durable materials and designed, painted or colored to blend with the development.
(H) Pedestrian Circulation. The Planning Commission must find that pedestrian circulation systems are designed to provide separation between vehicles and pedestrians and provide clear, direct, safe, and identifiable connections within the multiple unit housing development and to other neighborhood uses. This criterion may be met by complying with either (1) or (2) below or by meeting SDC 4.7.390.
(1) Option 1. Multiple unit housing developments with more than 20 units must provide pedestrian circulation as specified in the following standards (See Figure 3.2-R).
(a) Continuous internal sidewalks shall be provided throughout the site. Discontinuous internal sidewalks shall be permitted only where stubbed to a future internal sidewalk on abutting properties, future phases on the subject property, or abutting recreation areas and pedestrian trails;
(b) Internal sidewalks shall be separated a minimum of five feet from dwellings, measured from the sidewalk edge closest to any dwelling unit;
(c) The internal sidewalk system shall connect all abutting streets to primary building entrances;
(d) The internal sidewalk system shall connect all buildings on the site and shall connect the dwelling units to the parking areas, bicycle parking, storage areas, all recreational facilities and common areas, and abutting public sidewalks and pedestrian trails;
(e) Surface treatment of internal sidewalks shall be concrete, asphalt or masonry pavers, at least 5 feet wide. Multi-use accessways (e.g., for bicycles, pedestrians and emergency vehicles) shall be of the same materials, at least 10 feet wide. Where emergency vehicle access is required, there shall be an additional 5 feet on either side of the accessway. The additional five foot area may be turf-block, grass-crete or similar permeable material on a base of gravel capable of supporting fire equipment weighing 80,000 pounds.
(f) Where internal sidewalks cross a vehicular circulation area or parking aisle, they shall be clearly marked with contrasting paving materials, elevation changes, speed humps, or striping. Speed humps shall be subject to review and approval by the Fire Marshal. Internal sidewalk design shall comply with Americans with Disabilities (ADA) requirements;
(g) Where the internal sidewalks are parallel and abutting to a vehicular circulation area, the sidewalk shall be raised or be separated from the vehicular circulation area by a raised curb, bollards, landscaping or other physical barrier. If a raised sidewalk is used, the ends of the raised portions shall be equipped with curb ramps; and
(h) All on-site internal sidewalks shall be lighted to a minimum of two foot-candles.
(2) Option 2. Alternatively, this criterion may be met by considering the following guidelines.
(a) Design each multiple unit housing development to contain an internal pedestrian circulation system that makes clear, easily identifiable and safe connections between individual units, parking, storage, common open spaces areas, and public sidewalks. Design of internal sidewalks to comply with the American with Disabilities Act (ADA) requirements.
(b) Design the pedestrian circulation system to provide safe crossings of streets, driveways, and parking areas, where crossings are necessary. Consider design
elements such as textured pavers, patterned concrete and raised surfaces to emphasize crossings.
(c) Design internal walkways and other pedestrian links to provide privacy for ground floor residents.
(d) Link the multiple unit housing development internal sidewalks to neighborhood uses that may be used by residents.
(e) Minimize vehicle and pedestrian conflicts.
(f) Integrate the design of the internal sidewalks with natural contours, topography, trees, other vegetation, waterways, wetlands, and other natural resources and features.
(g) Provide a convenient, accessible, direct, barrier-free route design.
(I) Parking. The Planning Commission must find that the placement of parking contributes to attractive street frontages and visual compatibility with surrounding areas and is located with consideration for the safety of residents. This criterion may be met by complying with either (1) or (2) below or by meeting SDC 4.7.390.
(1) Option 1. Multi-unit developments must provide parking design as specified in the following standards.
(a) Parking lots shall be placed to the side or rear of buildings as specified in the Building Orientation Standards. Parking shall not be placed along that portion of the street where building frontages are used to comply with the building orientation standard;
(b) Lighting shall be provided for safety purposes, and focused/shielded to avoid glare on adjacent properties or dwellings as specified in Section 4.5.100;
(c) There shall be 1 planter island for every 8 parking spaces. Planter islands shall be a minimum of 6 feet wide, exclusive of the curb, the full length of a parking space containing 1 shade tree (a minimum 2 inches (dbh) in caliper at planting) and vegetative ground cover. Trees shall be specimens capable of attaining 35 feet or more in height at maturity and shall not produce excessive fruit, nuts, or sap (i.e., die to pest damage). Bark mulch is not an acceptable substitute for vegetative ground cover in the planter island. Water quality features may be incorporated into planter islands. Landscape areas shall be evenly distributed throughout the perimeter of interior parking areas, where practicable. See Section 4.4.105(F). for recommended shade trees;
(d) A minimum 6 -foot wide planter area shall separate and visually screen parking from living area windows. The planter area shall include a mix of ground cover, shrubbery, and trees with appropriate growth habit (i.e., for narrow planters and any height limitations including balconies, overhangs, and eaves). Shrubbery in this planter area shall be at least 24 inches in height at the time of planting, and trees a minimum of 2 inches (dbh) in caliper at the time of planting. See Section 4.4.110;
(e) Parking lots shall be connected to all building entrances by means of internal sidewalks;
(f) All parking stalls fronting a sidewalk, or landscaped area shall be provided with a secure wheel bumper not less than 6 inches in height and set back from the front a minimum of 2 feet to allow for vehicle encroachment. Wheel bumpers, if used, shall be a minimum of 6 feet in length. As an option, the sidewalk or planter may be widened 2 feet beyond the minimum dimension required to allow for vehicle encroachment. The sidewalks and planters shall be protected by a curb not less than 6 inches in height. See also, Section 4.6.120(C);
(g) On corner lots/parcels, parking areas shall not be located within 30 feet of an intersection, as measured from the center of the curb return to the edge of the parking area (curb or wheel stop);
(h) All parking, maneuvering and loading areas abutting a property line or right-ofway shall provide perimeter lot/parcel landscaping. A minimum 5 -foot wide planting strip shall be planted with shade trees, a minimum 2 inches (dbh) in caliper, and a low level (e.g., 30 to 40 inches) evergreen hedge. See also Section 4.4-105;
(i) Decorative walls may be used in place of the hedge in Subsection h., above, and shall be placed no closer than 4 feet from the property line. The decorative wall shall be a minimum of 30 inches in height and no more than 40 inches in height, and shall comply with the vision clearance standards specified in Section 4.2-130. Decorative walls shall be constructed of textured concrete masonry (CMU) or similar quality material, and include a cap. The wall may be partially see-through (up to 40 percent) as appropriate for security purposes. The area between the wall and property line shall be landscaped with shade trees;
(j) Parking area landscaping shall be designed to reduce storm water runoff (e.g., through infiltration swales and other measures), as practicable; and
(k) Bicycle parking shall be provided as specified in Section 4.6-140-155 and may be incorporated into the landscaping design.
(2) Option 2. Alternatively, this criterion may be met by considering the following guidelines.
(a) Avoid placing parking lots, carports, garages, and driveways between the buildings and the street. To minimize the visual impacts, locate parking to a portion of the site least visible from the street.
(b) Provide rear and below grade parking where practicable.
(c) Use alley access for parking areas where practicable.
(d) Use low, dense hedges or landscape berms at the edges of parking lots to screen autos and direct pedestrians to entry and exit points.
(e) Provide no more parking than the "minimum" parking requirement, where practicable.
(f) Avoid placing parking lots, garages, and carports that abut and/or are visible from R-1 areas. As an alternative, locate parking next to arterial and collector streets with landscape buffering, when possible.
(g) Design garages and free standing carports to be visually compatible with, or screened from, adjacent R-1 uses and dwellings on-site (e.g., similar siding, trim, roof line and materials, detailing, and color, as applicable).
(J) Vehicular Circulation
(1) The Planning Commission must find that on-site vehicular circulation systems are:
(a) Designed to be clearly identifiable, safe, pedestrian-friendly, and interconnected.
(b) Designed to provide connectivity to the surrounding neighborhood streets while minimizing impacts on the arterial street system.
(2) This criterion may be met by complying with either (a) or (b) below or by meeting SDC 4.7.390.
(a) Option 1. Multiple unit housing developments must provide vehicular circulation as specified in the following standards (See Figure 3.2-R).
(i) The on-site driveway (or private street) system shall connect with public streets abutting the site;
(ii) Shared driveways shall be provided whenever practicable to minimize cross turning movements on adjacent streets. On-site driveways and private streets shall be stubbed to abutting MDR/HDR properties, at locations determined during Site Plan Review process to facilitate development of shared driveways; and
(iii) Parking areas shall be accessed from alleys when properties abut an alley, or an alley can reasonably be extended to serve the development.
(b) Option 2. Alternatively, this criterion may be met by considering the following guidelines.
(i) Design driveways and private streets to enhance connectivity to abutting streets.
(ii) Design internal site circulation to provide accessibility to and from the site.
(iii) Design the vehicular circulation system, together with other design elements, to reduce the apparent scale of large developments by organizing the site into smaller land units.
(iv) Where practicable, consolidate or share driveways and internal streets with driveways or internal streets serving abutting sites.
(v) Incorporate aesthetic and functional site design as it relates to vehicular circulation.
(vi) Provide vehicular circulation linkages that will integrate multiple family development with the surrounding area.
(vii) Provide the separation of pedestrian, bicycle, and vehicular traffic
(viii) Avoid out-of-direction travel between buildings and other facilities on the site (e.g., for delivery, service, etc.).
(ix) Locate service areas for ease of use and minimal conflict with circulation systems.
(x) Provide circulation systems that respond to site topography, natural contours, and natural resources, to minimize grading and resource impacts.
(xi) Provide shared parking with abutting sites where practicable.
(xii) Provide the use of alleys for vehicular access.
(xiii) Provide lighting for the safety of pedestrians and drivers.

### 4.7.390 Multiple Unit Housing Variances

(A) Description. The Director may approve an adjustment of up to 20 percent to the multiple unit housing design standards listed in SDC 4.7.390. The multiple unit housing design standards are: Building Orientation; Building Form; Storage; Open Space; Landscaping; Pedestrian Circulation; Parking; and Vehicular Circulation. There is one general criterion in Subsection (B), below that applies to all the design standards. In addition, each design standard has applicable criteria as specified in Subsections (C) through (G), below.

The Director must find that the application complies with the criteria for each applicable design standard; i.e., design standards modifications that the applicant does not specifically request in the application do not require a finding by the Director, and is not subject to review under this Section. Requests to modify the standards of SDC 4.7 .390 by more than 20 percent require review under SDC 5.21.130.
(B) General Criterion. The adjustment is necessary due to topography, natural features, easements, and similar physical or legal constraints preclude full compliance. Selfimposed conditions do not satisfy this criterion.
(C) Building Orientation. The adjustment results in a better overall streetscape. For example, design elements include: protecting and preserving vegetation and trees five inches (dbh) in caliper or greater; providing pedestrian amenities (i.e., between buildings and the street); providing building mass and architectural detailing that compliment adjacent uses
and landscaping; and similar elements that effectively accomplish the intent of the standard.

## (D) Building Form

(1) The adjustment provides equivalent neighborhood compatibility either by providing similar building mass and architecture, or through protection of vegetation and trees greater than five inches (dbh) in caliper (i.e., screening allows for contrasting building form).

## (E) Open Space

(1) The adjustment results in protecting vegetation and preserving trees five inches (dbh) in caliper or greater; providing pedestrian amenities; or providing locations for common open space which enhances safety and visibility.
(2) The Director may approve an adjustment in the common open space requirements for developments with 61 units or more if up to 50 percent if the site is within $1 / 4$ mile (measured walking distance) of a public park with active recreation facilities [as defined by SDC 3.2.240(D)(5)]; and there is a direct, improved, permanent, public, ADA - accessible, lighted, maintained pedestrian trail or sidewalk between the site and the park.
(3) The Director may approve a reduction in either the required private open space or required common open space areas if the proposal includes a proportional increase in the other type of required open space. This adjustment does not apply to required active recreation areas.
(F) Landscaping
(1) The adjustment results in a better overall transition from neighboring R-1 designated property, such as: protecting and preserving trees five inches (dbh) in caliper or greater; and
(2) The adjustment provides an equivalent degree of privacy, visual separation, and visual enhancement for residents and adjacent R-1 designated property.

## (G) Pedestrian Circulation

(1) The adjustment provides an equivalent degree of pedestrian circulation, safety, and comfort, as provided by the pedestrian circulation standards.
(2) The Director may approve an adjustment in the pedestrian circulation standard, notwithstanding Subsection (B), above and SDC 3.2.240(D)(7) if the residents do not require an internal sidewalk system in full compliance with the pedestrian circulation standards.
(A) Rooming and boarding house facilities in an R-1 District must be located on collector or arterial streets.
(B) One-half of an additional parking space must be provided for each boarding room. No additional required parking spaces must be located within the front yard setback.
(C) For structures on the Springfield Historic Inventory, any external modification must be fully compatible with the original design and may be subject to a Type 1 or Type 2 Historic District review in accordance with SDC 3.3.915.
(D) A minimum of 25 percent of the lot or parcel must be landscaped.

### 4.7.400 Emergency Medical Hardship

## (A) Purpose

(1) The Emergency Medical Hardship allows the placement of temporary living quarters, on a property with a habitable primary dwelling, for a person who is determined by a licensed physician, as specified in Subsection (D)(2)(a), below to be either:
(a) Terminally ill; or
(b) Recuperating from an illness, surgery, or injury; and
(c) The person is not physically or mentally capable of self-maintenance and is dependent upon a care provider being on site for assistance.
(2) Temporary means a period of 24 months, unless otherwise permitted in Subsection (G) below. The 24-month period includes an approval timeline of 12 months with an opportunity to obtain up to two six-month time line extensions at the staff level.
(3) Temporary living quarters means a road worthy, licensed, and insured recreational vehicle (RV) as defined in Chapter 6. Tent trailers are not be permitted as a temporary living quarters.
(4) The temporary living quarters must be occupied only by the person requiring medical assistance, or the care provider.
(5) The care provider must be a person who lives on-site, either in the primary dwelling, or the temporary living quarters, and provides necessary medical procedures, monitoring, and attention to the person requiring that care on a 24 -hour basis.
(B) Applicability. The Emergency Medical Hardship process is permitted only on property designated Low Density Residential (LDR) on the Eugene Springfield Metropolitan Area General Plan diagram (Metro Plan) and zoned R-1 within the city limits or R-1/UF-10 within the City's urban service area.
(C) Review. The initial application and any timeline extensions are reviewed under Type II procedure.
(D) Submittal Requirements.
(1) The application must include a plot plan, drawn to scale, showing:

Commented [RM60]: Copy provisions from existing 5.10-100. Refer also to other codes, look at Lane County, Bend, Eugene, etc.

Deleted:

Commented [RM61]: What is this referring to?
Commented [RM62]: What is this refering to?

[^6]requirements???? Reference to other section?
(a) Existing structures on the property and their setbacks from property lines;
(b) The proposed location of the temporary living quarters and its setbacks from property lines and other structures on the property; and
(c) The required utility connections for the temporary living quarters.
(d) For those applications within the City's urban service area, the plot plan must also show the location of any wells, septic tanks, and drain fields.
(2) The application must also include:
(a) A written report from a licensed physician, therapist, or professional counselor on official letterhead that indicates that the patient has a medical or physical hardship that requires care and attention in such a manner that the caretaker must reside on the same property.
(b) A statement from the applicant addressing:
(i) Whether the person requiring medical assistance or the care provider will reside in the temporary living quarters;
(ii) The type of temporary living quarters proposed, either: a motor home, residential trailer, a travel trailer, truck camper, or other RV as defined in Chapter 6 unless exempted in this Section;
(iii) Proof that the temporary living quarters is licensed and insured; and
(iv) A statement explaining why the circumstances are temporary in nature (estimated at 12 months or less) and what steps are being undertaken to address the circumstances prior to the elapsing of 12 months, or any extension thereof.
(E) Criteria. The Director must grant approval of the emergency medical hardship application if all the following criteria are met, including any conditions imposed in accordance with Subsection (F), below.
(1) A written report is provided from a licensed physician, therapist, or professional counselor on official letterhead that indicates that the patient has a medical or physical hardship that requires care and attention in such a manner that the caretaker must reside on the same property..
(2) The temporary living quarters must house either the person requiring medical assistance or the care provider.
(3) The temporary living quarters must be located on the same legal parcel as the primary dwelling. Only one temporary living structure is allowed on a property.
(4) The temporary living quarters is not be permitted within the front yard or street side yard setback.

## Commented [RM65]: This does not relate to an approval

 criteria(5) All residential trailers and other similar units used as temporary living quarters must be connected to sewer, water, and electrical services as proscribed by the Oregon State Building Code as adopted by the City.
(6) All travel trailers and other similar units used as temporary living quarters must have utility connections consistent with State law requirements for these units as in RV
parks.

Commented [RM67]: Can these be combined?
(F) Conditions
(1) The following conditions of approval are applied to all medical hardship approvals:
(a) No change in occupancy of the temporary living quarters is allowed under the permit; either the person requiring care or the care provider must reside within the temporary living quarters.
(b) The temporary living quarters use is limited to the use permitted in this Section and is not transferable to other persons or property. Under no circumstance can the temporary living quarters be used as a rental unit.
(c) The temporary living quarters use must cease upon the occurrence of the first of the following events:
(i) The medical hardship no longer exists; in this case, the temporary living quarters must be removed within 30 calendar days of cessation of the provision of care; or
(ii) Within 12 months of the date of application approval, unless there is an approved extension as specified in Subsection (G), below.
(2) Additional conditions of approval may be imposed to the extent necessary to satisfy the standards of Subsection (E), above, to comply with all applicable standards of this Code.
(G) Time Line Extensions. A request for an extension will not require a new application; however, a written request must be submitted to the Director 30 days prior to the expiration of the initial 12 -month approval timeline. The request must include written verification from a licensed physician stating that the person requiring care as specified in Subsection (D)(2)(a)., above continues to need care. Staff must review the request to ensure that the applicant remains compliant with the approval criteria specified in Subsection (E), above and any conditions of approval required under Subsection (F), above. Upon expiration of the initial 12-month approval timeline, the temporary living unit may be extended as follows:
(1) Staff Approved Timeline Extensions. The applicant may obtain no more than two sixmonth timeline extensions from staff.
(2) Criteria of Approval for Timeline Extensions. Staff approval of any timeline extension request is based upon:
(a) The physician's verification of condition that the patient still requires care; and
(b) Staff's verification that the temporary living quarters is still in compliance with the initial conditions of approval.
(H) Compliance. The temporary living quarters must maintain compliance with all conditions of approval. Violation of the provisions of this Section, or determination that the need can no longer be verified, is the basis for termination of approval.

### 4.7.405 Registered or Certified Family Child Care Home

(A) The registered or certified family child care home must be the same address as the residence of the provider.
$(B)$ The child care must be provided in the providers family living quarter's of the provider's home.
(C) The provider may care for not more than 16 children, including provider's own children, and without regard to full-time or part-time status.

## Section 6.1.100 - Definitions

## Subsections:

### 6.1.105 Meaning of Common Words

6.1.110 Meaning of Specific Words and Terms

### 6.1.105 Meaning of Common Words

(A) All words used in the present tense include the future tense.
(B) All words in the plural include the singular, and all words used in the singular include the plural unless the context clearly indicates to the contrary.
(C) The word "shall" directly and clearly imposes a duty upon someone or something; the subject of the sentence is obligated to do something. The term means "is required to" or "has a duty to". This term is mandatory.
(D) The word "must" is mandatory.
(E) The word "may" is permissive.
(F) Words defined in this Section may also be defined in Springfield Development Code (SDC) 6.1.100
(G) Where words are not defined in this Section, the following sources are consulted: the Springfield Development Code, including specifically SDC 6.1.100; the Metro Plan; State of Oregon Revised Statutes (ORS), State of Oregon Administrative Rules (OAR's); and any dictionary of common usage, all of which will be interpreted by context.

### 6.1.110 Meaning of Specific Words and Terms

A
AASHTO. American Association of State Highway and Transportation Officials.
Abutting (or Abut). Adjoining with a common boundary line. However, where two or more lots or parcels adjoin only at a corner or corners, they are not be considered abutting unless the common property line between the two lots or parcels measures eight feet or more in a single direction.

Access. The approved means by which vehicles have ingress and/or egress to an approved lot/parcel or development area.

Accessory Dwelling Units (ADU's). A secondary, self-contained dwelling that may be allowed only in conjunction with a detached single-unit dwelling. An accessory dwelling unit is subordinate in size to the primary detached single-unit dwelling. An accessory dwelling unit has its own outside entrance and a separate kitchen, bathroom, and sleeping area. An accessory dwelling may be located within, attached to, or detached from the primary single unit dwelling.

Accessory Structure. A structure of secondary importance or function on a site. In general, the primary use of the site is not carried on in an accessory structure. Accessory structures are generally detached from the primary structure. If accessory structures are attached to the primary structure, their structural framework is independent or semi-independent from the primary structure. For example, a porch, deck, or stairs that have their own footings or foundation are accessory structures even though they may be attached to the primary structure. A balcony that is supported totally
by the framework of the primary structure is not considered an accessory structure. Agricultural structures, including, but not limited to, barns, silos, hay sheds, drying sheds, and greenhouses are exempt from the Specific Development Standards of the underlying zoning district when located on land two acres or larger or on any lot/parcel with a valid farm deferral tax classification from the Oregon State Department of Revenue. Notwithstanding this exemption, land use activities conducted on land with agricultural structures must otherwise conform to the list of permitted uses within the underlying zoning district. (See also Primary Structure; Extension, Architectural; and Incidental Equipment; in SDC 6.1.100)

Accessway. A dedicated easement or right-of-way intended to allow pedestrians and bicyclists convenient linkages, where no public street access exists, to streets, residential areas, neighborhood activity centers, industrial or commercial centers, transit facilities, parks, schools, open space, or trails and paths.

Adaptive Reuse. A permitted use of a building that is different from its original or previous use, often involving conversion work involving substantial modifications.

Adjacent. Abutting or located directly across a right-of-way.
Administrative Office. A building or portion of a building, in which persons are employed in the day-to-day management or direction of a single business or division of that business.

Agriculture. The cultivation of tree crops, plants, orchards, pasture, flower, berry and bush crops or the keeping, raising or breeding of livestock or poultry where permitted by the Springfield Municipal Code, 1997, and on any lot/parcel with a valid farm deferral tax classification from the Oregon State Department of Revenue. Agricultural structures, as defined elsewhere in this Code, also is defined as "Agriculture."

Alley. A service way providing means of public access to abutting property and not intended for general traffic circulation.

Alter, Alteration. A modification in use of a structure that may or may not involve construction. As used in SDC 3.3.900, any construction, erection, remodeling, restoration, reconstruction, removal or exterior painting affecting the appearance or position of an Historic Landmark Site or Structure within or outside of a designated Historic District.

Animal Clinic. A business establishment in which veterinary services are provided to small domestic pets on an out-patient basis with no overnight boarding allowed.

Animal Hospital. A place where animals are given medical or surgical treatment and the boarding of animals is limited to short-term care incidental to the hospital use.

Appeal. A request for a review of a final decision by the Director, Planning Commission, or City Council in accordance with applicable procedures, based on the standards of this Code.

Applicant. A person submitting an application; the owner of affected property, or the owner's duly authorized representative. The City Attorney may require proof of the
sufficiency of the representative's authorization by the owner to act as applicant on the owner's behalf.

Approval Authority. The individual or public body which has jurisdiction for making a decision on an application under the provisions of this Code.

Aquifer. A geologic formation, group of formations, or part of a formation that is capable of storing and transmitting water in sufficient quantity to supply wells or springs.

Automobile-dependent. A use where automobiles and/or other motor vehicles are served by the use and the use would not exist without them, such as vehicle repair, gas station, car wash, or auto and truck sales. Automobile-dependent also includes a driveup or drive-through that does not have any indoor customer seating.

Automobile-oriented use. A use where automobiles and/or other motor vehicles are an integral part of the use, such as drive-up, drive-in, and drive-through facilities.
Automobile-oriented drive-up and drive-throughs must have indoor seating. Without indoor customer seating the use is classified as automobile-dependent as defined above.

Automobile wrecking. The dismantling or disassembling of motor vehicles, including large truck or heavy machinery, or trailers, or the storage, sale salvage, or dumping of dismantled, partially dismantled, obsolete, or wrecked vehicles, or their parts. An automobile wrecking use includes a wrecking yard. More than two dismantled, obsolete, or inoperable motor vehicles or parts thereof on one lot constitutes a wrecking yard.

Backhaul Network. The land lines that connect a WTS provider's radio signals to one or more cellular telephone switching offices and/or local or long distance providers, or the public switched telephone network.

Base Flow. The portion of a stream flow that is not run-off and results from seepage of water from the ground into a channel. The primary source of running water in a stream during dry weather.

Bed and Breakfast Facility. A structure designed for and occupied as a single-family dwelling, in which travelers are lodged for sleeping purposes for two weeks or less and a morning meal provided, and for which compensation is paid. A Bed and Breakfast Facility is not a hotel, motel, boarding house or rooming house.

Berm. A mound of earth used to deflect sound or used as a buffer in landscaping provisions to separate incompatible areas or to provide aesthetic enhancement in site design.

Bicycle or Bike Lane. A portion of a street that has been designated, by striping, signage and pavement markings, for the exclusive use of bicycles.

Bicycle Parking Space. A space for one standard bicycle within a lighted and secure bicycle rack, placed in a paved area.

Commented [RM4]: Check procedures code section

## Commented [RM5]: Check against procedures

Removed from procedures. What replaced? Hearings Authority???
Check the rest of the code for this term.

Commented [RM6]: Comment from Michael
Should we distinguish between drive thru uses with out seating would be classified as Auto dependant? How does this work with drive up and drive in?

Bikeway. Any street, path or way which in some manner is specifically designated for bicycle travel, regardless of whether the facilities are designated for the exclusive use of bicycles or are to be shared with other transportation modes.

Block. An area of land containing one or more lots/parcels surrounded by public or private streets.

Block Length. The distance along a public or private street between the centerline of two intersecting streets, including "T" intersections but excluding cul-de-sacs.

Block Perimeter. The sum of all block lengths for a given block, also measured as the distance to travel once completely around the block, ending at the starting point as measured from the centerline of the street.

Boarding House. A building where lodging and meals are provided for more than two weeks for compensation. This definition excludes bed and breakfast facilities.

Bond, Performance or Security. Collateral security for the performance of a specific action or duty imposed by the City.

Buildable Area of a Lot/Parcel. The area of a lot/parcel enclosed within the setback boundaries, exclusive of easements.

Building. Any structure used or intended for sheltering any use or occupancy. As used in SDC 3.3.400 Floodplain Overlay District, the terms "building" and "structure" are synonymous, and are framed, erected, constructed or placed to stand temporarily or permanently on a tract of land. This definition specifically includes a mobile home, manufactured home and any accessories, and gas or liquid storage tanks principally above ground.

Building Board of Appeals. A board appointed in accordance with Section 2.500 to 2.574 of the Springfield Municipal Code, 1997, to hear requests for alternate building methods/materials.

Building Envelope. That portion of a lot/parcel that has no development restrictions where the placement of driveways and structures can be established. The building envelope does not include the area of any required setbacks, tree protection plans, conservation zones or other protected areas as authorized by a limited land use decision.

Building footprint. As applicable to Cottage Cluster Housing development specified in SDC 4.7.325(E)(1), The horizontal area as seen in plan, measured from outside of all exterior walls and supporting columns. It includes dwellings and any area of attached garage that exceeds 200 square feet. It does not include detached garages or carports; accessory structures; trellises; patios; areas of porch, deck, and balcony less than 30 inches from finished grade; cantilevered covers, porches or projections; or ramps and stairways required for access.

Building Height. The vertical distance above a reference datum measured to the highest point of the coping of a flat roof, to the deckline of a mansard roof, or to the average height of the gables of a pitched or hipped roof. The maximum height of a
stepped or terraced building is the maximum height of all segments of that building. The reference datum is, which either of the following of the 2 measurements that results in the greater building height.
(1) The reference datum is the lowest grade when the highest ground surface within a 5 foot horizontal distance of the exterior wall is not more than 10 feet above the lowest grade.
(2) The reference datum is 10 feet higher than the lowest grade when the ground surface described in A , above is 10 feet above the lowest grade.

Building Official. The person responsible for the administration and enforcement of the Building Safety Codes; the duly authorized representative of the Director responsible, in consultation with the City Engineer, for the interpretation of SDC 3.3.400 Floodplain Overlay District.

Building Permit. Written permission issued by the Building Official that construction may commence in accordance with this Code and the Building Safety Codes.

Building Safety Codes. A book of codes including the Springfield Building Code Administrative Code, the Structural Specialty Code, the Mechanical Specialty Code, the Electrical Specialty Safety Code and the Plumbing Specialty Code.

Build-To Line. A line parallel to the property line that prescribes a consistent plane of building façades along a public street and in certain circumstances, alley frontages. The build-to line provides predictable results in the urban form by requiring a set location for the buildings as opposed to the range of possible locations that a minimum setback allows. The build-to line can be adjusted by utilizing maximum building setbacks.

Burden of Proof. The duty of producing evidence or establishing a given proposition in order to establish that the party seeking affirmative relief or action is entitled to relief or action by the applicable ordinances and statutes.

Business Park. A development on one or more lots/parcels under common ownership with 2 or more separate buildings to accommodate light industrial uses, including, but not limited to, office research and development, manufacturing, assembly, warehousing and distribution, large administrative headquarters, and other professional and administrative uses. Light industrial uses permitted within the business park have no significant potential for major pollution, adverse visual impacts, or nuisance or hazard factors; and are planned, designed, constructed and managed on an integrated and coordinated basis with special attention given to on-site vehicular circulation, off-street parking, utility needs, building design and orientation and open space, landscaping, noise control, outdoor storage and other site improvements as may be required by this Code.

Calendar Day. Any day of the year, including official City holidays and weekends. If any effective date or deadline falls on a weekend or holiday, the date or deadline will be effective on the next City working day.

Cannabinoid. Any of the chemical compounds that are the active constituents of marijuana.

Cannabinoid Concentrate. A substance obtained by separating cannabinoids from marijuana by:
(1) A mechanical extraction process; or
(2) A chemical extraction process using a nonhydrocarbon-based or other solvent, such as water, vegetable glycerin, vegetable oils, animal fats, isopropyl alcohol or ethanol.

Cannabinoid Edible. Food or potable liquid into which a cannabinoid concentrate, cannabinoid extract or dried marijuana leaves or flowers have been incorporated.

Cannabinoid Extract. A substance obtained by separating cannabinoids from marijuana by:
(1) A chemical extraction process using a hydrocarbon-based solvent, such as butane, hexane or propane;
(2) A chemical extraction process using the hydrocarbon-based solvent carbon dioxide, if the process uses heat or pressure; or
(3) Any other process identified by the commission, in consultation with the authority, by rule.

Cannabinoid Product. A cannabinoid edible and any other product intended for human consumption or use, including a product intended to be applied to the skin or hair that contains cannabinoids or dried marijuana leaves or flowers.

Carport. A roofed accessory structure providing parking space which is open on two or more sides.

Cell. A geographic area where a single radio transmission sending/receiving station (per provider) and the equipment necessary to connect these radio calls to land lines or other cells are located.

Certificate of Occupancy. A document issued by the Building Official allowing the occupancy or use of a structure and demonstrating that the structure or use has been constructed in compliance with all applicable City codes and ordinances.

Change of Use. A change from one existing permitted use to another permitted use in the applicable zoning district. Change of use includes changes that require construction or alteration to land or water outside of existing buildings, structures, or open storage areas; and that substantially alters or affects land or water-also, as used in SDC 3.4.280C., making a different use of the land or water. Change of use does not include a change of use of a building or other structure that does not substantially alter or affect the land or water upon which it is located, the sale of property, or modifications of existing structures, as may be permitted by this Section.

Commented [RM8]: Review this definition to make sure it matches up with new use categories, site plan process, and MDS, etc.

Childcare Facility. Any facility that provides child care to children, including a day nursery, nursery school, child care center, certified or registered family child care home, or similar unit operating under any name. Also see ORS 329A.

For the purpose of a "Registered or Certified Child Care Facility" as allowed by ORS 239A.440, the following terms apply:
"Certified" means the certification that is issued under ORS 329A. 280 by the Office of Child Care to a family child care home, child care center, or other child care facility.
"Registered" means the registration that is issued under ORS 329A. 330 by the Office of Child Care to a family child care home where care is provided in the family living quarters of the provider's home.

ORS 329(A). 250
(5)"Child care facility" means any facility that provides child care to children, including a day nursery, nursery school, child care center, certified or registered family child care home or similar unit operating under any name, but not including any:
(a) Preschool recorded program.
(b) Facility providing care for school-age children that is primarily a single enrichment activity, for eight hours or less a week.
(c) Facility providing care that is primarily group athletic or social activities sponsored by or under the supervision of an organized club or hobby group.
(d) Facility operated by:
(A) A school district as defined in ORS 332.002;
(B) A political subdivision of this state; or
(C) A governmental agency.
(e) Residential facility licensed under ORS 443.400 to 443.455 .
(f) Babysitters.
(g) Facility operated as a parent cooperative for no more than four hours a day.
(h) Facility providing care while the child's parent remains on the premises and is engaged in an activity offered by the facility or in other nonwork activity.
(i) Facility operated as a school-age recorded program.

Church. See "Place of worship".
City. The City of Springfield.
City Council. The Springfield Common Council.
City Engineer. An Oregon Registered Professional Engineer who is an officer of the City and is charged with the supervision and construction of public improvements and the enforcement of City ordinances as they relate to public improvements, or a duly authorized representative.

City Recorder. The Springfield Finance Director, or a duly authorized representative.
City Surveyor. An Oregon Registered Professional Land Surveyor who is charged with conducting surveys of City facilities and with the enforcement of certain City ordinances and State statutes as they relate to subdivision and partitioning of land.

Clean Water Act (CWA). A federal law established in 1972 to restore and maintain the chemical, and physical and biological integrity of water, including lakes, river aquifers and coastal areas.

Clinic. A facility consisting of single or multiple offices where a group of medical, allied health professions and alternative caregivers provide diagnosis, care and treatment of persons primarily on an outpatient basis.

Club. An association of persons (whether or not incorporated), religious or otherwise, for a common purpose, but not including groups which are organized primarily to render a service carried on as a business for profit.

Cluster Subdivision. A form of subdivision development that permits flexibility in dimensional requirements by reducing lot/parcel size, setback, street width and other developmental standards to allow a more flexible design than is permissible under the conventional subdivision process. This form of subdivision preserves open space and creates innovative residential designs that emphasize affordability and home ownership.

Commercial Use - the use of land involving buying or selling of goods and services as the primary activity.

Common Courtyard. A common area for use by residents of a cottage cluster. A common courtyard may function as a community yard. Hard and soft landscape features may be included in a common courtyard, such as pedestrian paths, lawn, groundcover, trees, shrubs, patios, benches, or gazebos.

Common Wall. A wall or set of walls in a single structure shared by two or more dwelling units. The common wall must be shared for at least 25 percent of the length of the side of the building of the dwelling units. The common wall may be any wall of the building, including the walls of attached garages.

Community Park. A park, normally between 15 and 100 acres in size, which provides a variety of moderate density use recreation and/or cultural opportunities and is centrally located for citizens of the community and immediate outlying areas.

Conceptual Street Map. A map adopted into the Transportation System Plan depicting existing and future multi-use path and arterial and collector street alignments.

Condominium. A form of ownership that is regulated in part by ORS 100.005 et seq. that may be applied to any dwelling type. Existing and new dwellings may be converted to condominium ownership; however, new dwellings must comply with the development standards specified in this Code for the particular type of dwelling.

Congregate Care Facility. A building serving more than 15 elderly or infirm persons where daily meals are provided outside of each individual dwelling unit, on-site nursing facilities are available and the majority of residents do not own automobiles.

Construction Activity. Includes, but is not limited to, clearing, grading, excavation, and other site preparation work related to the construction of buildings, and heavy

Commented [RM11]: Keep? Still a use listed?

Commented [RM12]: See SDC 3.2.315(A). Needed there? Or just here? Or both?
construction (for example, highways, streets, bridges, tunnels, pipelines, transmission lines and industrial non-building structures)

Convenience Store. A small grocery typically open extended hours.
Corporate Headquarters. A building or portion of a building in which persons are employed in the management or direction of a business consisting of one or more divisions or groups of companies. To be considered a corporate headquarters, the business must meet the applicable employee threshold specified elsewhere in this Code. Businesses that do not meet the applicable employee threshold are considered an administrative office.

Cottage. An individual dwelling unit that is part of a cottage cluster.
Cottage Cluster. A grouping of no fewer than four dwelling units per gross acre, each with a footprint of less than 900 square feet that includes a common courtyard. Cottage Cluster units may be located on a single Lot or Parcel, or on individual Lots or Parcels. Cottage cluster may also be known as "cluster housing," "cottage housing," "bungalow court," "cottage court," or "pocket neighborhood". See SDC 4.7.325 Cottage Cluster.

Cottage Cluster Project. A development area with one or more cottage clusters. Each cottage cluster that is part of the cottage cluster project must have its own common courtyard.

Courtyard. An open, unoccupied space other than a required exterior yard, which usually provides amenities such as gardens, planters, seating, or art.

Courtyard housing. Detached "zero lot line" dwellings on individual lots subject to the same standards as detached single unit dwellings, except that a three-foot minimum side yard setback is required on one side of a typical lot. This type of housing allows development on smaller (i.e., narrower) lots and provides usable outdoor living area in side-oriented yards. See SDC 4.7.335, Courtyard Housing.

Commented [RM13]: Def from MS4 permit. Keep? Move to section on stormwater? Limited to just residential development

Commented [RM14]: Should we allow clusters to be 3 units? Rules allow minimum number of units to be $3,4,5$, or no min .

Commented [MR15]: HB 2001

## Deleted: site

Commented [RM16]: Delete and replace with "Common Courtyard" above? Where else is this term used? Search.
$\qquad$
Commented [RM17R16]: No

Figure 6.1-A. Courtyard housing


Cul-de-Sac. A short local street which has one end open to traffic and is terminated by a vehicle turn around, the cul-de-sac bulb.

Cultivation or Cultivate. All phases of growth of marijuana from seed to harvest.
Curb. The raised concrete border along the edge of a street or paved area.
Curb Cut. The opening along the curb line at which point vehicles may enter and/or leave the public street.

Cut. A portion of land surface from which earth is removed by excavation; the depth below the original ground surface or excavated surface.

D
Dance Hall. Any place of business whose primary function is dancing.

Dbh. The diameter of a tree measured $4-1 / 2$ feet above the ground at the base of the tree.

Dedication. The transfer of property interests from private to public ownership for a public purpose.

Delineation. (From Oregon Health Department rules): The determination of the extent, orientation, and boundaries of a wellhead protection area using factors, for example: geology, aquifer characteristics, well pumping rates and time of travel.

Demolition. Razing, destroying, dismantling, defacing, or in any other manner causing partial or total ruin of an Historic Landmark Site or Structure within or outside of a designated Historic Landmark District.

De Novo. A hearing where new evidence may be provided, distinguished from a hearing based solely on an existing record.

Density, net. The number of dwelling units for each acre of land in residential use, excluding: dedicated streets; dedicated parks; dedicated sidewalks; and other public facilities.

Density, gross. The number of dwelling units for each acre of land including, but not limited to, areas devoted to streets, parks, sidewalks, and other public facilities.

Design Standard. A standard related to the arrangement, orientation, materials, appearance, articulation, or aesthetic of features on a dwelling unit or accessory elements on a site. Design standards include, but are not limited to, standards that regulate entry and dwelling orientation, façade materials and appearance, window coverage, driveways, parking configuration, pedestrian access, screening, landscaping, and private, open, shared, community, or courtyard spaces.

Designated Beneficial Use. The purpose or benefit to be derived from a watercourse. For the Willamette and McKenzie Rivers and all other streams and tributaries, the following beneficial uses apply: Public domestic water supply, private domestic water supply, industrial water supply, irrigation, live stock watering, anadromous fish passage, salmonid fish rearing, salmonid fish spawning, resident fish and aquatic life, wildlife, fishing, boating, water contact recreation aesthetic quality and hydro power (excluding the Willamette River).

Developable Acre. 43,560 square feet of land that can be developed that includes common open space or recreational facilities reserved for the use of residents in a development, but excludes public property, including, but not limited to, parks and dedicated streets. At the request of the developer, the Director may exclude portions of the site that cannot be developed due to physical constraints, including, but not limited to, natural resources that are listed within a local inventory.

Development. Any human-made change to improved or unimproved real estate, including, but not limited to, a change in use; construction, installation or change of a structure; subdivision and partition; establishment or termination of a right of access; storage of materials, equipment or vehicles on the land; drilling and site alteration due to land surface mining, filling, grading, dredging, paving, excavation or clearing of trees and
vegetation. Agricultural uses (including agricultural structures), when otherwise permitted by the base zoning district, are exempt from this definition unless agricultural structures are placed within adopted special flood hazard zones. As used in SDC 3.3.400, Floodplain Overlay District, any human-made change to improved or unimproved real estate located within the area of special flood hazard, including, but not limited to, buildings and other structures, mining, dredging, filling, grading, paving, excavation, or drilling operations. As used in SDC 3.4.280(C), any activity within the Glenwood Riverfront portion of the WG Overlay District that would alter the elevation of the land; remove or destroy plant life; cause structures of any kind to be installed, erected, or removed; or result in a measurable change of any kind.

Development and Public Works Department. The department responsible for the administration of this Code and the implementation of the Metro Plan within Springfield's Urban Growth Boundary.

Development Approval. Approval granted by the Director for a development which is in compliance with this Code and the Metro Plan and precedes the issuance of a Building Permit.

Development Area. The area subject to any application required by this Code.
Development, Phased. A project that is developed incrementally, with each phase capable of functioning independently of the others.

Development Review Committee. City staff, representing each affected division and department of the City, and affected agencies and utility providers that meet on a regular basis to review land use requests and development proposals.

Direct Tributary to a Water Quality Limited Watercourse. A direct tributary to a Water Quality Limited Watercourse (WQLW) is one that flows directly into a WQLW, excluding those watercourses that flow into the WQLW as a piped connection, where the pipe system extends more than 200 feet upstream of the connection point or is one that is a diversion from a WQLW and that discharges into either a WQLW or other direct tributary to a WQLW and where the water quality if the diverted flow at the discharge point has been degraded when compared with the water quality at the diversion point.

## Director. The Community Development Division Director or their designee,

Discretionary Use. Any use not permitted outright in a particular zoning district because of its potentially incompatible characteristics requiring review by the Planning Commission or Hearings Official to determine whether that use should be permitted, and if so, adding any conditions of approval necessary to ensure compatibility with adjacent uses.

DNAPL, Dense Non-Aqueous Phase Liquids. A group of hazardous materials that are denser-than-water (specific gravity greater than one), have low solubility rate, and degrade slowly to other compounds that are even more of a health hazard. For the purpose of Springfield's drinking water protection, DNAPL chemicals are defined as "all chemicals displaying the characteristics of a DNAPL chemical or a material containing a substance considered a DNAPL chemical." A list of DNAPLs regulated within the

Deleted: Development and Public Works Director
Deleted: duly authorized representative who is responsible for the administration and interpretation of this Code

Drinking Water Protection Overlay District must be as adopted by SUB on November 10, 1999.

Door area. The area of the portion of a door other than a garage door that moves and does not include the frame.

Downtown Exception Area. An area defined by the Willamette River on the west, 8th Street on the east, the alley between north B and north C Streets on the north, and a line north of the Southern Pacific Railroad tracks on the south.

Downtown Planning Area. The area under the jurisdiction of the Springfield Downtown Refinement Plan that includes Springfield's traditional Downtown area and the BoothKelly redevelopment area.

Drainage Way. A natural or constructed watercourse which has the specific function of transmitting stream water or storm run-off water from a point of high elevation to a point of low elevation which convey significant seasonal concentrations of water over the surface of the land.

Dripline. A roughly circular land area measured beneath a tree. The approximate center of the area is the trunk of the tree, and the radii are equal to the horizontal measures of the longest branches.

Drive-Through Business. An establishment that sells products or provides services to occupants in vehicles where payment is made and the product or service is picked up at a drive-up window. This use includes, but is not limited to, the operation of drive-up or a drive-through service at a restaurant, bank or financial institution, personal services, and retail sales (e.g., pharmacy).

Driveway. A vehicular access that provides connection between a structure or parking area on private property and the public street system. "Driveway" may include a private easement to provide vehicular access to more than two or more properties.

Driveway approach. The edge of a driveway where the driveway abuts a public right of way.

Figure 6.1-B. Driveway approach


Driveway, Curb Return. A driveway defined on both sides by a full height curb.
Driveway, Joint Use. A driveway serving two or more properties.
Driveway, Standard Driveway. A driveway created by depression of the street curb at its approach.

Drop-Off Space. A paved, clearly marked short-term (less than 20 minutes) parking space, generally within 50 feet of a main building entrance, separated from required parking for staff and long-term visitors.

DSL. The Oregon Department of State Lands.
Duplex. Two dwelling units on one lot or parcel in any configuration. Units may be attached vertically or horizontally or detached.

Dwelling Unit (Dwelling or unit). A single unit providing complete independent living facilities for one or more persons, including permanent provisions for living, sleeping, eating cooking and sanitation.

Easement. An interest in property owned by another that entitles its holder to a specific limited use or enjoyment of that property.

Elevation. The term is based on context and is either: a vertical distance above or below a fixed reference level; or a particular side of a building.

Emergency Shelter. The use of a church, school, motel, hotel, or other structure for housing the homeless on a short term basis due to a natural disaster or other reason.

Endangered Species Act (ESA). A Federal law established in 1973 that provides significant protection for various species of fish, wildlife and plants facing extinction that are listed as needing protection.

Engineer. A Registered Professional Engineer, licensed by the State of Oregon to practice in a specific branch of engineering.

Engineering Design Standards and Procedures Manual (EDSPM). A document containing design standards and procedures prepared by the Public Works Department and adopted by resolution of the City Council. These standards and procedures are applicable to public and private improvements and allow City staff to provide certainty to developers and consultants to ensure safe, efficient, and cost effective transportation, sanitary sewer, and stormwater management system projects within the City and its Urban Growth Boundary.

Excavation. The mechanical removal of earth material.
Exempt Tree or Vegetation. The full height and breadth of vegetation that the Director has identified as "solar friendly" as specified in this Code; and any vegetation listed on a plat map, a document recorded with the plat, or a solar access guarantee as exempt.

Ex Parte, Communication. A communication made at the instance of, or for the benefit of one party without notice to, contest by, or at least without an opportunity to be heard being given to other parties who will be bound or directly affected by the communication.

Ex Parte, Proceeding. An action taken at the instance or benefit of one side only without notice to, contest by, or without the opportunity to be heard by other parties who will be bound or directly affected by the proceeding.

Extension, Floor Area. An increase in the amount of floor area within an existing building.

Extension, Architectural. Architectural appendages, including, but not limited to, cornices, eave overhangs, porches and balconies extending beyond an exterior wall of a building. (See also Accessory Structure.)

Exterior. Any portion of the outside of an Historic Landmark Site or Structure or any addition thereto which can be seen from a public place.

FCC. The Federal Communications Commission; the Federal agency that regulates interstate and international communications by radio, television, wire, satellite and cable.

Fell. To remove or cut a tree or the intentional use of any procedure, the natural result of which is to cause the death or substantial destruction of the tree. Fell does not include normal trimming, pruning or topping of trees.

## Deleted: Family

Deleted: . Two or more persons related by blood, lega adoption, guardianship or marriage living together; or unless modified by the Federal Fair Housing Law as it unless modified by the Federal rair Housing Law as it 5 persons who need not be related (as above) living together in a dwelling unit.II

Fence. A structure which serves as an enclosure, barrier or screen that is not part of a building.

Fence, Sight Obscuring. A fence which screens an area or object, including, but not limited to, solid wood or metal fences or slatted cyclone fences.

Fill. Sand, gravel, earth or other approved materials of any composition placed or deposited on the earth's surface by humans.

Final Map. The finished drawing of the survey of a property line adjustment containing information necessary to comply with this Code and requirements resulting from review of the Preliminary Plan.

Final Site Plan. The plan containing information necessary to comply with this Code and requirements resulting from review of the Preliminary Site Plan to which all construction improvements must conform.

Final Survey. The recorded survey of a property line adjustment containing information necessary to comply with this Code and any conditions of approval resulting from review of the Preliminary Survey.

Finance Department. The Springfield Finance Department.
Finding. A written statement of facts, reasoning in support of conclusions, and determinations based on the evidence presented in relation to adopted criteria that are accepted by the Approval Authority in support of a decision.

Flood/Flooding. A general and temporary condition of partial or complete inundation of normally dry land areas from the overflow of inland or tidal waters and/or the unusual and rapid accumulation of run-off of surface waters from any source.

Flood, Base. The flood having a one percent chance of being equaled or exceeded in any given year. Also referred to as the "100 year flood." Designation on maps always includes the letters A or V .

Flood Hazard, Area of Special. The land in the floodplain subject to a one percent or greater chance of flooding in any given year. Designation on maps always includes the letters A or V.

Flood Insurance Rate Map (FIRM). The official map on which the Federal Insurance Administration has delineated both the areas of special flood hazards and the applicable risk premium zones.

Flood Insurance Study. The official report provided by the Federal Insurance Administration that includes flood profiles, the Flood Boundary-Floodway Map, and the water surface elevation of the base flood.

Flooding, Area of Shallow. A designated AO or AH Zone on the Flood Insurance Rate Map (FIRM). The base flood depths range from one to three feet; a clearly defined channel does not exist; the path of flooding is unpredictable and intermediate; and,
velocity flow may be evident. AO is characterized as sheet flow and AH indicates ponding.

Floodway. The channel of a river or other watercourse and the adjacent land areas that is reserved in order to discharge the base flood without cumulatively increasing the water surface elevation more than one foot.

Floor Area. The enclosed area of each full floor area a building measured to the external face of the external walls.

Floor Area Ratio (FAR). The amount of floor area of a building or structure in relation to the amount of site area, expressed in square feet. For example, a floor area ratio of 0.7 to 1 means 0.7 square feet of floor area for every one square foot of site area. FAR is calculated by dividing the total floor area of building by the total site area. See Figure 6.1-C

Figure 6.1-C. Floor Area Ratio


Foster Home. Any dwelling or facility maintained and operated for the boarding and housing of more than 5 children who are not related by blood or marriage to the owner/operator of the dwelling or facility.

Fourplex. Four dwelling units on one lot or parcel. Units may be attached vertically or horizontally or detached.

Fraternal Organization. A group of people formally organized for a common interest, usually cultural, religious or entertainment, with regular meetings, rituals and formal written membership requirements.

Frequent Transit Corridor. Arterial and collector roadways forming a Frequent Transit Network, as identified in the adopted Springfield Transportation System Plan, representing the highest order of transit service along major thoroughfares within the City. Characteristics of Frequent Transit Network corridors include, but are not limited to: 10-15 minute transit frequency during peak travel times, a well-connected street and transit network providing circulation integrated with pedestrian and bicycle connections, support and compatibility with urban design goals for development along the corridors, geographically equitable coverage serving populations protected by Title VI of the 1964 Civil Rights Act, and high-quality transit station amenities.

Front Façade. The façade with the main entry door and front porch or recessed entry.
Frontage. That portion of a lot or parcel that abuts a dedicated public alley, street, or highway or an approved private alley, street, or shared court private access drive.

Future Development Plan. A line drawing (required for some land division proposals, or building permits in the City's urbanizable area) that includes the following information: the location of future right-of-way dedications based on the Springfield Transportation System Plan (including the Conceptual Street Map); block length and lot/parcel size standards of the SDC; a re-division plan at a minimum urban density established in this Code based on the existing Metro Plan designation of the property for any lot/parcel that is large enough to further divide; and the location of hillsides, riparian areas, drainage ways, jurisdictional wetlands and wooded areas showing how future development will address preservation, protection or removal.

Garage. A completely enclosed accessory building or portion of a main building intended for the parking of motor vehicles.

Garage, Repair. A building used for the repair of motor vehicles, including body and fender work, painting, or engine and transmission overhaul.

Grade. The degree of rise or descent of a sloping surface.
Grade, Average Finished. The average finished ground level at the midpoint of all walls of a building. Where walls are parallel to and within five feet of a sidewalk, alley or public way, the ground level is measured at the elevation of the sidewalk, alley or public way.

Grade, Finished. The elevation of the surface of excavation or fill placement.
Grading. Any stripping, cutting, filling, stockpiling of earth or land, including the land in its cut or filled condition.

Gross Acre/Gross Acreage. A measurement of land that occurs before public streets or other areas reserved for public use are deducted from that land.

Gross Density. See "Density, gross".
Gross Floor Area. The total floor area of a building including areas used exclusively for the service of a building; for example: mechanical equipment spaces and shafts; elevators; stairways; escalators and ramps; public restrooms; and enclosed loading docks or ramps.

Ground Cover. Grasses or nursery plants cultivated to keep soil from being blown or washed away.

Group Care Home. Any dwelling or facility maintained and operated exclusively for the care, boarding, housing and rehabilitation of more than 15 persons who are ill, physically or mentally disabled, and/or elderly, the majority of whom generally do not drive an automobile. This definition includes but is not limited to homes for the aged, nursing homes and congregate care facilities.

Halfway House. Any dwelling or facility for the care, boarding and housing of more than 5 persons who have been released from institutional care or who are placed in lieu of institutional care, i.e., work release programs.

Hazardous Materials. Those chemicals or substances which are physical or health hazards as defined and classified in the most recently adopted or amended Fire Code by the City, whether the materials are in usable or waste condition.

Hazardous Waste. Consistent with the Federal Resource Conservation and Recovery Act, a waste or a combination of wastes, which because of its quantity, concentration, or physical, chemical or infectious characteristics may cause or significantly contribute to an increase in serious irreversible illness or pose a substantial present or potential hazard to human health, safety, welfare or to the environment when improperly treated, stored, transported, used or disposed of, or otherwise managed; however, not to include solid or dissolved materials in irrigation return flows or industrial discharges which are point sources subject to permits under the Federal Water Pollution Control Act of 1967 as amended, or source, special nuclear, or by product material as defined by the Atomic Energy Act of 1954.

Hearings Authority. An individual or group designated to hear Type 3 applications for land use decision.

## Height. See "Building Height".

Heliport. An area, either at ground level or elevated on a structure, licensed or approved for the loading and takeoff of helicopters, and including auxiliary facilities, for example: parking, waiting room, fueling and maintenance equipment.

Helistop. A heliport, but without auxiliary facilities, for example: parking, waiting room, fueling and maintenance equipment.

High Impact Facility. A public or semi-public facility which serves development and which requires pre-planning or discretionary approval and special design features to
mitigate land use conflicts, including, but not limited to, visual, olfactory, or auditory impacts.

Highway Ready. Reference to a recreational vehicle that is on wheels or a jacking system, is attached to the site only by quick disconnect type utilities and security devices, and has no permanently attached additions.

Hillside Area. Any area in which the average slope exceeds 15 percent.

## Historical Commission. The Springfield Historical Commission.

Historic Site. A structure or place of historic and cultural significance and designated accordingly by the City, State or Federal Government.

Historic Landmark District. A geographic area designated in accordance with this Code which includes Historic Landmark Sites or Structures.

Historic Landmark Inventory. A list of sites or structures which have been designated "Historic Landmark" in accordance with this Code.

Historic Landmark Site or Structure. A building, structure, object, site or geographic area, within the city limits and the City's urbanizable areas, within or outside of a designated Historic Landmark District, which has been listed on the Historic Landmark Inventory.

Homeowner's Association. A non-profit association governed by a declaration of protective restrictions, conditions, covenants, and charges made by the developer through which each lot/parcel owner or other described land area owner of a development is automatically subject. The purpose of the homeowner's association is to provide reasonable rules and regulations to enforce the covenants and restrictions and to keep, control, and maintain the common properties within the development. The association also provides for the assessment procedure to assure necessary funds. If the property is to be developed in phases, all phases must belong to the same association. The City Attorney must review drafts of the declaration prior to Final Plat approval.

Hospital. A facility consisting of one or more buildings where health practitioners, allied health professions and alternative caregivers provide diagnosis, care and treatment of persons including convalescence and care during and after pregnancy, or for any other reason, where patients may be admitted for short-stay, day surgery, emergency service or overnight stay, or for a longer period.

Hotel. A building in which lodging is provided to guests for compensation, consisting of a lobby and individual sleeping quarters, typically without cooking facilities, with separate entrances opening directly to an internal hallway. Parking may be on-site or in a separate parking structure.

Hybrid Multi-Way Boulevard. A street design that accomplishes the fundamental goal of vehicular through traffic movement including transit facilities and also creates a pedestrian-friendly environment by providing slip lanes for local traffic, on-street parking,
safe pedestrian and bicycle facilities, and by locating buildings closer to or at the right-ofway line.

Impervious Surface. Any surface that either prevents or delays the infiltration of water into the soil as it entered under natural conditions preexistent to development, and/or a surface area that causes water to run off the surface in greater quantities or at an increased rate of flow than prior to development. Common impervious surfaces include: building roofs; traditional concrete or asphalt paving on walkways, driveways, parking lots, gravel lots and roads; and heavily compacted earthen materials.

Improvement Agreement. A written agreement, executed by the property owner in consideration for the City deferring the construction of public improvements required for the development.

Incidental Equipment. Rooftop or pole mounted structures that cast insubstantial shadows or have minimal visual impact, including, but not limited to: antennas, chimneys, solar collectors, small satellite dishes and flagpoles, but excluding large satellite dishes. (See also Accessory Structure.)

Increase in Impact/Increased Impact. This definition includes, but is not limited to, additional traffic or noise generation, additional run-off or increase in impervious surface, additional shadow casting or diminished views, additional air or water borne pollution, additional hours of operation, or an increase in the risk of fire or structural hazard as the result of development.

Incubator Development. Facilities that accommodate new business establishments spun-off from the research, development, and testing laboratories of a major institution, a related institution, or larger high- or bio-technology industry. If on-site manufacturing or production capabilities are included within an incubator development, the establishment will be classified as an industrial use.

Industrial Park. A development on one or more lots/parcels under common ownership with two or more separate buildings that are designed, constructed and managed on an integrated and coordinated basis. Industrial parks are intended to accommodate heavy industrial uses as primary uses and office research and development, light manufacturing, light assembly, warehousing and distribution, large administrative headquarters, and other professional and administrative uses as secondary uses.

Infill. The development of vacant, bypassed lands located in an area that is mainly developed.

## Infill, residential:

(1) The development of up to four dwellings on land that is designated for residential use where at least 75 percent of the abutting properties have a structure, but not counting any abutting property that is large enough that it can be divided into five or more lots, or is currently developed with multiple unit housing.
(2) A situation in which a single unit dwelling is removed to make way for up to four new dwellings (e.g., a single unit dwelling, duplex, triplex, or fourplex).
(3) "Residential infill" does not apply to land that is large enough that it can be divided into five or more lots consistent with the minimum lot size of the zoning district.

Invasive Plants. Non-native plants that spread quickly, are highly competitive and difficult to control or eliminate. Introduced intentionally or accidentally through human actions and spread by seed, by birds, by wind, or vegetatively, these exotic plants can destroy native plants, choke waterways, degrade recreational areas and necessitate costly maintenance. The Invasive Plants List is a listing of plants that the City considers undesirable for use in landscaping within its jurisdiction.

Inventoried Natural Resource. Any scenic areas, water areas, vegetation, wildlife and wildlife habitat that appears in an adopted Metro Plan Inventory.

Joint Use Access Agreement. A legally binding agreement between two or more property owners describing the rights and responsibilities of each owner regarding the use of a shared access to a public street.

K
Kennel. Any premises on which three or more dogs over the age of 6 months are housed, groomed, boarded, trained or sold for compensation.

ㄴ
Land and Drainage Alteration Permit (LDAP). A City permit for any fill, grading and excavation that is required before any site preparation work can begin.

Landscape Architect. A person registered with the State of Oregon to practice Landscape Architecture.

Landscaping. The term "landscaping" includes, but is not limited to, vegetative ground cover, grass, shrubs, trees, flowers and garden areas, ornamental concrete or stonework areas, permanent outdoor furniture and permanent irrigation. "Landscaping" also includes retention or reintroduction of native vegetation.

Land Use Decision. A final decision or determination made by the Planning Commission, Hearings Official or City Council that concerns the adoption, amendment or application of the Statewide Planning Goals; a Metro Plan or refinement plan provision; a land use regulation; or new land use regulation. This definition does not include a decision which does not require interpretation or the exercise of factual, policy, or legal judgment; approves, approves with conditions or denies a subdivision or partition; or approves or denies a building permit.

LEED (Leadership in Energy and Environmental Design). A nationally accepted benchmark for the design, construction and operation of high-performance, energyefficient buildings.

Light Industrial Manufacturing. The secondary processing of previously prepared materials into components or the assembly of components into finished products. In the Campus Industrial District this use is divided into categories as follows based upon the number of employees at occupancy: large-scale means 50 or more employees; medium-
scale means 20-49 employees; small-scale means fewer than 20 employees per business. These thresholds are applicable at the time of new development. In the case of redevelopment, the Director may reduce these thresholds if the applicant submits a business plan stating that the threshold can be met by a date certain.

Linear Park. A public or private park that provides public access to trail-oriented activities, which may include walking, running, biking, or skating, and preserves open space. A linear park consists of a multi-use path, pedestrian trail, or bikeway, and related facilities.

Listed Species. The Endangered Species Act provides for listing plant and animal species into the following categories: Listed Endangered Species and Listed Threatened Species. An endangered species is an animal or plant listed by regulation as being in danger of extinction. A threatened species is any animal or plant that is likely to become endangered within the foreseeable future.

Live/Work Unit. An integrated dwelling unit and working space that is occupied and utilized by a single housekeeping unit in a structure that has been modified or designed to accommodate joint residential occupancy and work activity. The live/work unit must include complete kitchen and sanitary facilities in compliance with applicable building standards. The working space must be reserved for and regularly used by one or more occupants of the unit (e.g., professionals, entrepreneurs, and artists), in addition to any other employees. The commercial/employment use must be allowed only as permitted by the applicable zoning district.

Loading Space. An off-street space or berth serving a business for the temporary parking of commercial vehicles while loading or unloading, while not block driveway aisles and having an appropriate means of ingress and egress.

Lot. A portion of land shown as part of a recorded subdivision or any area of land described by metes and bounds in a recorded deed, record of survey or other appropriate document, recorded in the office of the County Recorder that complies with the provisions of the State of Oregon and this Code. Unless specifically exempted, land that is divided or reconfigured without having been approved in accordance with this Code cannot be deemed a buildable lot.

Lot Coverage. The area of a lot, parcel, property, or development area covered with structure.

Lot/Parcel, Corner. A lot/parcel abutting two or more streets at their intersection, in which the interior angle formed by the extensions of the street lines is 135 degrees or less. In the event that any street line is a curve at its point of intersection with a lot/parcel line other than a street line, the tangent of the curve at the point is considered the direction of the street line.

Lot/Parcel Depth. The distance from the midpoint of the front lot/parcel line to the midpoint of the rear lot/parcel line.

Lot/Parcel Dimension, North-South. The length of a line beginning at the midpoint of the northern lot/parcel line and extending in a southerly direction perpendicular to the northern lot/parcel line until it reaches a property boundary.

Lot/Parcel Frontage. That portion of a lot/parcel which abuts a street. For the purpose of determining yard requirements, all sides of a lot/parcel abutting a street is considered frontage.

Lot/Parcel, Interior. A lot/parcel other than a corner lot/parcel and having frontage on only one street.

Lot/Parcel Line. A line of record bounding a lot/parcel which divides one lot/parcel from another or from a public or private street or any other public space.

Lot/Parcel Line, Front. The lot/parcel line abutting a street right-of-way. Where more than one lot/parcel line abuts street right-of-way, the property address determines the front lot/parcel line. For purposes of the solar access standards, it is the lot/parcel line abutting a street. For corner lots/parcels, the front lot/parcel line is that with the narrowest frontage. When the lot/parcel line abutting a street is curved, the front lot/parcel line is the chord or straight line connecting the ends of the curve. For a panhandle lot/parcel, the front lot/parcel line is the lot/parcel line that is most parallel to and closest to the street, excluding the handle portion of the lot/parcel.

Lot/Parcel Line, Northern. The lot/parcel line that is the smallest angle from a line drawn true east-west and intersecting the northernmost point of the lot/parcel, excluding the handle portion of a panhandle lot/parcel. If the north line adjoins an un-developable area other than a required yard area, the northern lot/parcel line is at the north edge of the un-developable area. If two lot/parcel lines have an identical angle relative to a line drawn true east-west, then the northern lot/parcel line is a line 10 feet in length within the lot/parcel parallel with and at a maximum distance from the front lot/parcel line.

Lot/Parcel Line, Rear. The lot/parcel line which is opposite and most distant from the front lot/parcel line. For a triangular shaped lot/parcel, the "rear lot/parcel line" is a line 10 feet in length entirely within the lot/parcel, connecting the side lot/parcel lines, which is parallel to the front lot/parcel line or parallel to the chord of a curved front lot/parcel line.

Lot/Parcel Line, Side. Any lot/parcel line other than a front or rear lot/parcel line.
Lot/Parcel, Minimum Area of. The smallest lot/parcel area established by this Code on which a use or structure may be located in a particular district.

Lot/Parcel, Panhandle. A lot/parcel which has access to a public right-of-way by means of a narrow strip of land, commonly known as the "panhandle" or "handle."

Lot/Parcel, Pan Portion. The portion of a panhandle lot/parcel, exclusive of the handle, on which a structure may be placed.

Lot/Parcel, Through. A lot/parcel which fronts upon two streets which do not intersect at the boundaries of the lot/parcel.

Lot/Parcel Width. The horizontal distance between the midpoints of the side lot/parcel lines. The handle of a panhandle lot/parcel is not included when computing lot/parcel width.

Lowest Floor. The lowest floor of the lowest enclosed area (including basement). An unfinished or flood resistant enclosure, usable solely for parking of vehicles, building access or storage, in an area other than a basement area, is not considered a building's lowest floor, provided that the enclosure is not built to render the structure in violation of the applicable non-elevation design requirements.

Low Impact Facility. Any public or semi-public facility that has minimal olfactory, visual or auditory impacts which is permitted subject to the design standards of this Code.

Maintain. To continue in existence; to preserve and care for a development area so that it remains attractive and functional in accordance with the provisions of this Code.

Maintenance Inspection. A site inspection that identifies precisely what must be done to a development previously approved by the City in order to comply with standards and conditions in effect when the development was originally approved.

Major Electrical Transmission Line. An electrical transmission line which carries 115 KV or more of electricity.

Mall. A shopping center where stores front on both sides of a pedestrian way which may be enclosed or open.

Manufactured Dwelling. A residential trailer, mobile home, or manufactured home.
(1) Residential Trailer. A structure constructed for movement on the public highways that has sleeping, cooking, and plumbing facilities, that is intended for human occupancy that is being used for residential purposes and was constructed before January 1, 1962.
(2) Mobile Home. A structure constructed for movement on the public highways that has sleeping, cooking, and plumbing facilities, that is intended for human occupancy, that is being used for residential purposes and that was constructed between January 1, 1962 and June 15, 1976, and met the construction requirements of Oregon mobile home law in effect at the time of construction.
(3) Manufactured Home. A structure constructed for movement on the public highways that has sleeping, cooking, and plumbing facilities, that is intended for human occupancy, and was constructed on or after June 15, 1976 in accordance with federal manufactured housing construction and safety standards in effect at the time of construction.

Manufactured Dwelling Park. Any place where 4 or more manufactured dwellings are located within 500 feet of one another on a lot/parcel or tract under the same ownership, the primary purpose of which is to rent space to any person for a charge or fee paid or to be paid for the rental use of facilities or to offer space free in connection with securing the trade or patronage of the person. Manufactured dwelling park does not include a lot located within an approved subdivision being rented or leased for occupancy by no more
than one mobile home per lot if the subdivision was approved by local government unit having jurisdiction under an ordinance adopted pursuant to ORS 92.010 to 92.190.

Manufactured Dwelling Pad. A paved space in a manufactured dwelling park for the placement of a manufactured dwelling that includes utility connections.

Manufactured Dwelling Space. Any portion of a manufactured dwelling park which is designated or used for occupancy of one manufactured dwelling, including its accessory structures and its outdoor living areas, but exclusive of space provided for the common use of tenants for example, roadways and guest parking.

Manufactured Dwelling Space Line. A line within a manufactured dwelling park which establishes setback distances from streets, accessory buildings or structures and other manufactured dwellings.

Marijuana. The plant Cannabis family Cannabaceae, any part of the plant of the Cannabis family Cannabaceae and the seeds of the plant Cannabis family Cannabaceae. "Marijuana" does not include industrial hemp, as defined in ORS 571.300.

Marijuana Business. Any person or entity appropriately licensed by the Oregon Health Authority or the Oregon Liquor Control Commission that sells, produces, cultivates, grows, wholesales, processes, researches, develops or tests medical marijuana or recreational adult use marijuana within the City of Springfield.

Marijuana Grow Sites. A specific location registered by the Oregon Health Authority and used by the grower to produce marijuana for medical use by a specific patient.

Marijuana Items. Marijuana, cannabinoid products, cannabinoid concentrates and cannabinoid extracts.

Marijuana Processing. The preparing, compounding, testing or conversion of marijuana into cannabinoid products, cannabinoid concentrates, and cannabinoid extracts for medical or recreational purposes.

Marijuana Production. The manufacture, planting, cultivation, growing, or harvesting of marijuana as licensed by the Oregon Liquor Control Commission or Oregon Health Authority.

Marijuana Retailer. A person or entity licensed by the Oregon Liquor Control Commission or Oregon Health Authority to sell marijuana items to a consumer in this state.

Marijuana Retail Outlet. A business location that sells marijuana items to a consumer or patient.

Marijuana Testing Laboratory. A laboratory that tests marijuana items for producer, processor, wholesaler or retail outlets.

Marijuana Wholesaler. A person or entity that purchases marijuana items in this state for resale to a person other than a consumer.

Market Area. The geographic area from which a particular use can reasonably expect to attract customers.

Master Planned Community. Add the def. from OAR 660-046-0020(10)?
Medical Marijuana Dispensary. A medical marijuana facility or entity registered with the Oregon Health Authority under ORS 475.300.

Metro Plan/Eugene-Springfield Metropolitan Area General Plan. The general land use plan and policies for the Eugene/Springfield metropolitan area including any subordinate refinement plan or functional plan. The controlling land use document for urban, urbanizable and rural land under the jurisdiction of the Metro Plan.

Mid-Block Connector. A narrow street and/or a bicycle/pedestrian corridor not less than 20 feet in width that reduces larger blocks to more walkable dimensions ( 250 to 350 feet maximum). A mid-block connector may be a public right-of-way or privately owned and may include active use frontages with overlooking windows and pedestrian-level lighting. Limited service or parking access to the interior of a block is encouraged. On-street public parking may be provided, where feasible. Sidewalks may be located on each side of a two-way street or on one side for a one-way street. A non-vehicular connector must be designed as a "24-7" publicly accessible bicycle/pedestrian way.

Middle Housing. Duplexes, triplexes, fourplexes, cottage cluster housing, and townhomes.

Minerals. Includes soil, coal, stone, crushed hard rock quarry products, metallic ore and any other solid material or substance excavated for commercial, industrial or construction use from natural deposits. "Minerals" do not include loam, sand, gravel or other aggregate materials created and/or deposited by water movement.

Minimum Level of Key Urban Services. The minimum level of facilities and services that are provided to an area in an orderly and efficient manner to allow urban development to occur. They consist of sanitary sewers, solid waste management, water service, fire protection, police protection, parks and recreation programs, electric service, land use controls, communications facilities, public schools on a district-wide basis, and paved streets with adequate provision for storm-water run-off and pedestrian travel.

Mining Spoils. All waste materials, solid, rock, mineral, liquid, vegetation and other materials resulting from or displaced by quarry and mining extraction operations within the operating permit area, including all waste materials deposited in or upon lands within the operating permit area.

Mini-Warehouse. A building or group of buildings in a controlled-access and fenced compound that contains varying sizes of individual, compartmentalized, and controlledaccess stalls or lockers for the storage of a customer's goods or wares. No sales, service, or repair activities other than the rental of storage units are permitted on the premises.

Mixed-Use Building or Development. A building or development characterized by either a vertical or horizontal physical integration of uses. A mixed-use building is a
structure at least two stories in height that includes a mix of uses such as retail and office uses, residential and commercial uses, or commercial and light industrial uses. A mixed-use development includes multiple buildings, usually of multiple stories, designed to assure a diversity of compatible land uses that may include a mixture of residential, office, retail, services, recreational, live/work units, flex space uses, and other miscellaneous uses allowed in a zoning district.

Modification. A request submitted to change a final approval of any development proposal or a modification as may be permitted to a Plan District development or building standards.

Modification of application. The applicant's submittal of new information after an application has been deemed complete and prior to the close of the record on a pending application that would modify a development proposal by changing one or more of the following described components: proposed uses, operating characteristics, intensity, scale, site layout (including but not limited to changes in setbacks, access points, building design, size or orientation, parking, traffic or pedestrian circulation plans), or landscaping in a manner that requires the application of new criteria to the proposal or that would require the findings of fact to be changed. It does not mean an applicant's submission of new evidence that merely clarifies or supports the pending application.

Motel. A building or group of buildings in which lodging is provided to guests for compensation, consisting of individual sleeping quarters, with or without cooking facilities, with separate entrances opening directly on a parking area.

Multi-Use Path. A paved facility intended to be used by pedestrians, skaters (inline or roller), and bicyclists that has no or minimal cross-flow by motor vehicles. The multi-use path is generally designed for two-way travel. The multi-use path may be separated from and aligned with the public right-of-way within an easement or located within the public right-of-way.

Multiple Unit Housing. Five or more dwelling units on an individual lot or parcel, except for Cottage Cluster housing, and not counting Accessory Dwelling Units (ADUs).

National Register of Historic Places. The official list, established by the National Historic Preservation Act, of sites, districts, buildings, structures and objects significant in the nation's history or whose artistic or architectural value is recognized.

Native Plants, Native Vegetation. Plant species that are indigenous to a local area and adaptable to the local climate, soils and hydrology as distinguished from plant species that have been deliberately or accidentally imported or introduced from other areas by humans or human activities.

Natural Resources. These include, but are not limited to, water and geologic features, significant natural vegetation, wildlife habitats and archaeological and scenic resources as inventoried in the working papers of the Metro Plan.

Neighborhood Activity Center. Any public park or recreation facility, public or private school, government service, commercially zoned property, or mixed-use zoned property.

Neighborhood Park. A park, traditionally from 5 acres to 15 acres in size, which provides easily accessible recreation areas serving neighborhood citizens and providing high density active or passive use.

Neighboring. The area in the immediate vicinity of a proposed development that would be materially affected by a proposal.

Net Density. See "Density, net".
Noise Attenuating Barrier. A structural barrier designed and constructed with the primary function of containing sound within a specific use area.

Noise Sensitive Property. Real property normally used for sleeping, or normally used for schools, churches, hospitals or public libraries, excluding industrially related residential uses, i.e., night watchman quarters.

Non-Commercial Agricultural Uses. The raising of crops, plants or farm animals on property where allowed by this Code for the sole use of the owners or tenants of that property and not for wholesale or retail sale.

Non-Exempt Tree or Vegetation. Vegetation that is not exempt from the solar access regulations.

Notice. The announcement of a decision of the Director by mail to adjacent property owners/occupants within 300 feet of the subject property indicating the nature of the decision and the method of appeal; the announcement of a public hearing by mail to property owners/occupants within 300 feet of the subject property and advertisement in a newspaper of general circulation in the area, indicating the time, place and nature of the public hearing in compliance with ORS 197.762.

NPDES. National Pollutant Discharge Elimination System.

## OAR. Oregon Administrative Rule.

Official Zoning Maps. Maps delineating the boundaries of the various zoning districts within the city limits and the City's urbanizable area that are adopted by ordinance and maintained by the Development Services Department.

Occupancy, Certificate of. A required certificate allowing occupancy of a structure or development area after it has been determined that the requirements of this Code and other applicable Codes have been met. No structure or development area may be occupied without having first received a Certificate of Occupancy.

Open Space. Land or water essentially unimproved and set aside, dedicated, designed or reserved for public use or enjoyment, or for the use and enjoyment of owners and occupants of land abutting or neighboring the open space.

Open Space, Common. Land normally within or related to a development, not individually owned or dedicated for public use, which is designed and intended for the common use or enjoyment of the residents of the development and may include
recreational and other accessory structures and improvements in accordance with this Code.

Open Space, Private. Areas intended for the private use of an individual dwelling unit, normally including patios and landscaped areas; not to include off-street parking, maneuvering, loading or delivery areas, and designed for outdoor living and recreation.

Open Space, Public. Areas intended for public use, either privately owned and maintained or dedicated to the City, normally including swimming pools, recreation courts, patios, open landscaped areas, and greenbelts with pedestrian, equestrian, and bicycle trails, not to include off-street parking or loading areas or driveways, and designed for outdoor living and recreation or the retention of an area in its natural state.

## ORS. Oregon Revised Statutes.

Outdoor Storage. The keeping in an unroofed area of any goods, junk, material, merchandise or vehicles for more than 24 hours.

Outdoor Storage Area. A primary use that occurs on property for the purpose of outdoor storage of vehicles, equipment or materials, including, but not limited to, vehicle, equipment and boat sales or rental lots; commercial storage lots; mobile/manufactured home, camper and RV sales lots; fleet parking lots; and lumber, gardening, fuel and other similar building material yards.

Outdoor Storage Yard. A secondary use that occurs on any property for the purpose of the outdoor storage of associated materials and equipment, other than wrecking yards.

Outfall. The point of discharge from a river, pipe, drain or other device to a receiving watercourse.

Overburden. The soil, rock and similar materials that lie above natural deposits or minerals.

Owner. An individual, firm, association, syndicate, partnership or corporation having proprietary interest to seek development of land.

Parcel. This term includes a unit of land created by partitioning land as defined in ORS 92.010 that is in compliance with this Code and in the case of Property Line Adjustments, properties created by deed or land sales contract, if there were no applicable planning, zoning, or partitioning ordinances or regulations. A Parcel does not include a unit of land created solely to establish a separate tax account.

Parking. The temporary storage of operational motor vehicles that are not for sale, lease or rent and which are intended to be used for customers and employees of a business and industry or residents and visitors in a residential development.

Parking Bay. An extension of the width of a street that allows for the parking of motor vehicles, usually associated with hillside development.

Parking Lot. An off-street area with a permanently maintained paved surface, for the parking of motor vehicles.

Parking Space. A permanently maintained paved surface with proper access for one standard size or compact automobile.

Parking Space, Disabled. A parking space that is reserved for use by disabled persons who hold the appropriate permit issued by the Oregon Department of Motor Vehicles and/or the Springfield Police Department.

Parking Space, Off-Street. An approved space for the parking of a motor vehicle which is not located on a dedicated street right-of-way.

Partition Land. The division of land into two or three parcels within a calendar year, but does not include:
(1) A division of land resulting from a lien foreclosure, foreclosure of a recorded contract for the sale of real property or the creation of cemetery lots;
(2) An adjustment of a property line by the relocation of boundaries where an additional unit of land is not created and where the existing unit of land reduced in size by the adjustment is not in conflict with any applicable Ordinance;
(3) A sale or grant by a person to a public agency or public body for State highway, county road, city street or other right-of-way purposes provided that the road or right-of-way complies with the applicable comprehensive plan and ORS 215.213(2)(q) to (s) and $215.283(2)(\mathrm{q})$ to (s). However, any property divided by the sale or grant of property for State highway, county road, city street or other right-of-way purposes continue to be considered a single unit of land until the property is further subdivided or partitioned;
(4) The division of land resulting from the recording of a subdivision or condominium plat; or
(5) A sale or grant by a public agency or public body of excess property resulting from the acquisition of land by the State, a political subdivision or special district for highways, county roads, city streets or other right-of-way purposes when the sale or grant is part of a property line adjustment incorporating the excess right-of-way into adjacent property. The property line adjustment must be approved or disapproved by the applicable local government. If the property line adjustment is approved, it must be recorded in the deed records of the county where the property is located.

Partition Plat. A final map and other writing containing all the descriptions, locations, specifications, provisions and information concerning a partition.

Party. The following persons or entities are defined as parties:
(1) The applicant and all owners or contract purchasers of record, as shown in the files in the Lane County Department of Assessment and Taxation, of the property which is the subject of the application.

Commented [RM29]: Check procedures
(2) Any person who makes an appearance and/or submits testimony to the Approval Authority.

Pedestrian Trail. A surfaced path that is designed and reserved for the exclusive use of pedestrian travel.

Pedestrian Way. A paved right-of-way through a block to facilitate pedestrian access to adjacent streets and properties.

Permanent Irrigation System. An approved water piping system installed underground for the purpose of irrigating all portions of landscaped areas.

Permit. Discretionary approval of a proposed development of land. "Permit" does not include:
(1) A limited land use decision;
(2) A decision which determines the appropriate zoning classification for a particular use by applying criteria or performance standards defining the uses permitted within the zone, and the determination applies only to land within an urban growth boundary;
(3) A decision which determines final engineering design, construction, operation, maintenance, repair, or preservation of a transportation facility which is otherwise authorized by and consistent with the comprehensive plan and land use regulations; or
(4) An expedited land division.

Person. An individual, corporation, governmental agency, business trust, estate, partnership, association, or any other legal entity.

Petition for Improvement. A petition submitted for construction and improvements as required by this Code.

Physical Features. These features include, but are not limited to, significant clusters of trees and shrubs, watercourses shown on the Water Quality Limited Watercourse Map and their riparian areas, wetlands and rock outcroppings.

Pipeline. A line of pipe with pumps, valves and control devices for conveying liquid, gasses or finely divided solids.

Place of worship. A place for people to gather for religious activity. Examples include church, synagogue, mosque, chapel, or meeting house. Includes associated uses as described in SDC 4.7.370. (ORS 227.500)

Plan District. A planning tool that addresses concerns unique to an area when other zoning tools cannot achieve the desired results. An area may be unique based on natural, economic or historic attributes; be subject to problems from rapid transition in land use; or contain public facilities that require specific land use regulations for their efficient operation. Plan Districts provide a means to modify zoning regulations for specific areas defined in special plans or studies. Each Plan District has its own
nontransferable regulations. This contrasts with base zone and overlay zone provisions, which are intended to be applicable in more than one area. However, Plan Districts are not intended for small areas or individual properties.

Planning Commission. The Springfield Planning Commission.
Planted. Landscaping with living plant materials consistent with SDC 4.4.100.
Plat. A map, containing all the descriptions, locations, specifications, dedications, provisions or other information concerning a subdivision, partition or replat of either.

Plot Plan. A rough sketch map of a site plan or land division of sufficient accuracy to be used for the purpose of the identification of issues and development impacts.

Prefabricated Dwelling. A building or structural unit that has been in whole or substantial part manufactured at an off-site location to be wholly or partially assembled on-site, but does not include a mobile home, trailer or recreational vehicle. Prefabricated structures are regulated under the State of Oregon Structural Specialty Code.

Preliminary Approval. The approval prior to Final Approval, after specific elements of a development or Site Plan have been approved by the Approval Authority and agreed to by the applicant.

Preliminary Plan. A clearly legible drawing of the proposed lay out of the lots/parcels involved in a property line adjustment which provides a basis for the Approval Authority to approve or disapprove the application.

Primary Structure. A structure of chief importance or function on a site. In general, the primary use is carried out in a primary structure. However, in the $R-1$ District (unless specified elsewhere in this Code), a site may have more than one primary structure. The difference between primary and accessory structure is determined by comparing the size, placement, similarity of design, use of common building materials and the orientation of the structures on the site (See also Accessory Structure and Accessory Dwelling Unit).

Private Elementary/Middle Schools. A facility operated by a person or private agency offering education in kindergarten and/or grades 1-8 or any part thereof not as defined in ORS 345.505 et. seq.

Private Park. A park available for public use owned by a non-public agency or private individual.

Properly Functioning Condition. The state of the physical, chemical, and biological aspects of watershed ecosystems that will sustain healthy salmonid populations. Properly functioning condition generally defines a range of values for several measurable criteria rather than specific, absolute values, including, but not limited to, hydraulic run-off, transport, channel migration, native vegetation succession.

Property line. A line which divides one property from another or from a public or private street or any other public space.

Deleted: Low Density Residential
Deleted:

Property Line Adjustment. The relocation of a common property line between two abutting properties.

Public Facilities Plan. A Refinement Plan of the Metro Plan addressing sanitary and storm sewers, water distribution systems and transportation. The transportation element is addressed through the TransPlan.

Public Hearing. A meeting announced and advertised in advance that is open to the public, with the public given an opportunity to provide testimony.

Public Utility Facility. Structures, facilities and equipment necessary to serve development by a government, public utility, utility cooperative, or private company.
(1) Low Impact. Telephone and cable telephone lines, poles, junction boxes, exchanges and repeater stations; electric power distribution lines (less than 69 KV ) and poles; sanitary sewer pipe lines, pumps or lift stations; storm sewer pipe lines, ditches and other storm-water management or water quality ponds, wetland, or swales; gas distribution pipe lines; water pipe lines, valves, well fields, pump stations and attendant facilities; water reservoirs and water storage tanks less than 300,000 gallons or 30 feet in height, and water treatment facilities, including filtration plants, less than 2.5 million gallon capacity per day.
(2) High Impact. Electric power transmission lines (greater than 69 KV ), poles and substations; gas pipe line valve stations; sanitary sewer treatment plants or effluent ponds; water reservoirs and water storage tanks greater than 300,000 gallons or 30 feet in height; water treatment facilities, including filtration plants greater than 2.5 million gallon capacity per day; fire/ambulance stations.

Quarry and Mining Extraction Operation. All or any part of the process of removing mineral deposits exposed by any method, including open-pit mining operations, auger mining operations, shaft mining, the construction of borrow pits, processing of extracted minerals and exploration activities. Expansion of a quarry and mining extraction operation is the enlargement of the operation requiring the modification of the Reclamation Permit specified under ORS 517.790. Quarry mining and extraction operation does not include normal road maintenance and stabilization of hillsides.

Quarry and Mining Operator. Any individual, public or private corporation, political subdivision, agency, board or department of this State, any municipality, partnership, association, firm, trust, estate or any other legal entity whatsoever that is engaged in quarry and extraction operations.

Quarry and Mining Owner. The person possessing legal rights to the mineral deposit being mined.

Reclamation. The employment of procedures in a quarry and mining extraction operation designed to minimize as much as practicable the impact the operations have on the environment, and to provide for the rehabilitation of land effected by the operations. Reclamation includes the rehabilitation of plant cover, soil stabilization, water
resource protection and other measures appropriate to the subsequent beneficial use of the mined and reclaimed lands.

Reclamation Permit. Permission to operate a quarry and mining extraction operation (to include a plan for reclamation) granted to an operator by the State Department of Geology and Mineral Industries under the requirements of ORS 517.790, upon referral, review and approval by the Director.

Recreation Center, Community. A public, indoor facility providing for a variety of recreation/leisure-related activities, for example: swimming, meetings, court sports, arts and crafts, dancing, banquets, parties, games, day-care, classes/instruction, performances, fitness/exercise, and social referral services.

Recreational Marijuana. Any marijuana intended for recreational use which meets all requirements for recreational marijuana contained in this Chapter, Oregon state law, and any other applicable law.

Recreational Vehicle (RV). A vacation trailer or other unit, with or without motive power, which is designed for human occupancy and to be used temporarily for recreational, seasonal or emergency purposes and has a gross floor space of less than 400 square feet. The term includes camping trailers, camping vehicles, motor homes, park trailers, bus conversions, van conversions, tent trailers, travel trailers, truck campers and any vehicle converted for use or partial use as a recreational vehicle. The unit must be identified as a recreational vehicle by the manufacturer or converter.

Redevelopment. A project that entails construction activities, occurs on a previously developed site and results in the addition or replacement of impervious surface. Redevelopment does not include: Maintenance activities; Construction Activities conducted to ameliorate a public health or safety emergency or natural disaster; and/or Construction Activities within an existing footprint to repair or replace a site or a structure
damaged by a public health or safety emergency or natural disaster.

Refinement Plan Diagram. A map contained in a Refinement Plan showing plan designations that are more specific than shown on the Metro Plan Diagram.

Regional Headquarters. A building or portion of a building in which persons are employed in the regional management or direction of a business consisting of a number of divisions or a regional subsidiary of a corporate headquarters. The divisions can be either geographical or located within one building. To be considered a regional headquarters, the business must meet the applicable employee threshold specified elsewhere in this Code. Businesses that do not meet the applicable employee threshold is considered an administrative office.

Regional Park. A large area of natural quality for outdoor recreation for example, swimming, boating, camping and picnicking, and for wildlife habitat and natural resource conservation. Generally comprising 100 acres or more, where 80 percent of the land is reserved for natural open space and 20 percent is used for recreation development.

Registered or Certified Family Child Care Home. See Definition for Childcare Facility. Also see ORS 329A.

Registered Geologist. A person who is registered as a geologist by the State of Oregon.

Replat, Major. The elimination and/or relocation of more than two exterior and/or interior common boundary lines or property lines within a recorded Subdivision; or an increase in the number of lots; or decrease of two or more lots within a recorded Subdivision.

Replat, Minor. The elimination and/or relocation of no more than two exterior and/or interior common boundary lines or property lines within a recorded Subdivision or Partition; or a decrease of one lot/parcel within a recorded Subdivision or Partition.

Relocation. A shift or rotation of a common boundary between two abutting lots or parcels.

Research and Development. The study, testing, analysis, and development of products, processes, or services, including the manufacturing of products. This use is divided into categories as follows based upon the number of employees at occupancy: large-scale means 50 or more employees; medium-scale means 20-49 employees; small scale means fewer than 20 employees per business. These thresholds are applicable at the time of new development. In the case of redevelopment, the Director may reduce the at occupancy threshold if the applicant submits a business plan stating that the threshold can be met by a date certain.

Reserve Strip. A strip of property, usually one foot wide, controlling access to a street.
Residential Care Facility. A facility licensed under ORS 443.400 to 443.455 that provides residential care in one or more buildings on contiguous properties:
(1) For six or more socially dependent individuals or individuals with physical disabilities; or
(2) For fewer than six socially dependent individuals or individuals with physical disabilities if the purpose of the facility is to serve individuals with co-occurring behavioral health needs who are more appropriately served in smaller settings.

Residential Home. A home licensed by or under the authority of the Department of Human Resources under ORS 443.400 to 443.825 which provides residential care alone or in conjunction with treatment or training or a combination thereof for five or fewer individuals who need not be related. Staff persons required to meet Department of Human Resources licensing requirements must not be counted in the number of facility residents, and need not be related to each other or to any other resident of the residential home. This definition includes residential treatment homes, residential training homes and adult foster homes.

Residential infill. See "Infill, residential".
Residential use. Of, relating to, or connected with a residence or residences.
Retail Sales. Establishments engaged in selling goods or services to the general public for personal or household consumption. Retail trade may include wholesale trade, but only as a secondary use.

Commented [RM34]: This language can stay under HB 2583 because we are not regulating based on related or unrelated status -this "need not be related" language just clarifies no relationship is considered.

Retaining Wall. An engineered structure constructed to hold back or support an earthen bank.

Review Authority. The Director, Planning Commission, Hearings Official, or City Council of the City of Springfield.

Right-of-Way. Land acquired by purchase, reservation, dedication, forced dedication, prescription or condemnation intended to be occupied by a street, crosswalk, railroad, electric transmission lines, oil or gas pipeline, water line, sanitary/storm sewer and other similar facilities.

Riparian Area. Riparian areas are vegetated areas (generally consisting of trees, shrubs, and grasses) located along both sides of water bodies and are transitional boundaries between land and water environments. Riparian zones act as buffers to protect surface waters from contamination and are habitats for a large variety of animals and birds.

Riparian Area Functions. These functions include, but are not limited to, maintaining temperature; maintaining channel stability; providing flood storage; providing groundwater recharge; removing sediments; reducing contaminants, for example, excess nutrients, oils and grease, metals, and fecal coliform; moderating stormwater flows; and providing fish and wildlife habitat. Degraded riparian function means that one or more of the functions listed above are at risk.

Roadway. The portion of a street right-of-way used for vehicular traffic.
Rooming House. A building or portion thereof where lodging, but not meals, is provided for more than two weeks for compensation. This definition excludes bed and breakfast facilities.

Run-Off. Water that flows across the land surface rather than being absorbed.

Safe Drinking Water Act (SDWA). A federal law established in 1974, to protect drinking water and its sources (rivers, lakes, reservoirs, springs, and ground water) and sets standards for drinking water quality and oversees the states, localities, and water suppliers who implement those standards.

School. A building where individuals gather to receive educational instruction, either public or private, except as otherwise specifically defined in this Code. School does not include a childcare facility as defined in this Chapter.

Screen. A visual barrier obscuring an abutting or neighboring structure or use by fencing, walls, berms, or densely planted vegetation.

Service Station. An establishment selling fuel and oil for vehicles which may include the following additional services: selling, servicing and installing tires, batteries, accessories and related products; furnishing minor repair and service when conducted entirely within an enclosed building, and at which incidental services are conducted. "Minor repair and
service," as used in this definition, is understood to exclude activities such as painting, bodywork, steam cleaning, tire recapping, and engine overhaul.

Setback. An area where buildings and certain structures cannot be constructed, measured from the property line. A setback may be referred to as "yard", as defined in this section, including "yard, front", "yard, rear", and "yard, side". This definition does not include solar setback.

Shade Point. The part of a building or non-exempt tree that casts the longest shadow onto the adjacent northern lots/parcels when the sun is at an altitude of 22.6 degrees and an azimuth ranging from 30 degrees east and west of true south; excluding a shadow caused by a narrow object, including, but not limited to, a mast or whip antenna; a dish antenna with a diameter of three feet or less; a chimney, utility pole, or wire. The height of the shade point is measured from the shade point to either the average elevation at the front lot/parcel line or the elevation at the midpoint of the front lot/parcel line. If the shade point is located at the north end of the ridgeline of a building oriented within 45 degrees of the true north-south line, the shade point computed according to the previous sentence may be reduced by 3 feet. If a structure has a roof oriented within 45 degrees of the true east-west line with a pitch that is flatter than 5 feet (vertical) in 12 feet (horizontal), the shade point will be the eave of the roof. If a roof has a pitch that is 5 feet in 12 feet or steeper, the shade point will be the peak of the roof.

Shadow Pattern. A graphic representation of an area that would be shaded by the shade point of a building or vegetation when the sun is at an altitude of 22.6 degrees and an azimuth ranging between 30 degrees east and west of true south.

Shared Use Path. A bikeway physically separated from motorized vehicular traffic by an open space or barrier and either within the highway right-of-way or within an independent right-of-way. Shared use paths may also be used by pedestrians, skaters, wheelchair users, joggers, and other non-motorized users.

Shelter Home. Any dwelling or facility maintained and operated for the boarding and housing of more than five abused or battered persons who are not related by blood or marriage to the owner/operator of the dwelling or facility.

Shopping Center. A group of commercial establishments planned, developed, and managed as a unit with off-street parking and circulation provided on the property.

Sidewalk. The portion of a street or highway right-of-way designated for preferential or exclusive use by pedestrians.

## Single Dwelling, Attached. See Townhome

Single-unit Dwelling, Detached (SD-D). One dwelling unit on its own lot or parcel that does not share a wall with any other dwelling unit, other than an accessory dwelling unit.

Single Room Occupancy (SRO's). A building or buildings that provides living units that have separate sleeping areas. The building may or may not have separate or shared cooking facilities for the residents. For the purposes of determining residential density, four SRO rooms equal one dwelling. Fractional dwellings will be rounded to the next higher number, e.g., five SRO rooms equal two dwellings. SROs can be located in any

Commented [RM36]: Delete if removing solar setback
standards?

Commented [RM37]: This is a problem under HB 2583, likely just need to regulate as a single dwelling unit.

## Commented [RM38]: Move to special standards or leave here

 in def's?residential building [occupancy] including single unit homes, multiplexes, multi-unit housing, etc.

Site Plan. The development plan for a development area that meets the standards of this Code.

Siting Standard. A standard related to the position, bulk, scale, or form of a structure or a standard that makes land suitable for development. Siting standards include, but are not limited to, standards that regulate setbacks, dimensions, bulk, scale coverage, minimum and maximum parking requirements, utilities, and public facilities.

Slope. An inclined ground surface, the inclination of which is expressed as percent of horizontal distance to vertical distance.

Small Engine Repair. Maintenance and repair of household and non-automotive engines less than 100 cubic centimeters (cc's) in displacement.

Solar Access. Unobstructed exposure to direct sunlight, excluding limited obstruction as expressly permitted by this Code.

Solar Access Height Limit. A series of contour lines establishing the maximum permitted height for non-exempt vegetation on lots/parcels affected by a Solar Access Guarantee.

Solar Access Guarantee. A document issued by the city that describes the maximum height that non-exempt vegetation is allowed to grow on lots/parcels to which a solar access permit applies.

Solar Feature. A device or combination of devices or elements that does or will use direct sunlight as a source of energy for heating or cooling of a building, heating or pumping of water, and generating electricity. Examples of a solar feature include a window oriented to within 45 degrees east and west of true south, a solar greenhouse, or a solar hot water heater. A solar feature may be used for purposes in addition to collecting solar energy, including, but not limited to, serving as a structural member or part of a roof, wall or window. A south-facing wall enclosing an unheated area, and without windows and without other features that use solar energy is not a solar feature for the purposes of this ordinance (for example, an unheated garage).

Solar Setback. The distance from the northern lot/parcel line to the shade point, measured from the mid-point of the northern lot/parcel line and extending in a southerly direction.

South or South-facing. True south or 20 degrees east of magnetic south.
Springfield Municipal Code. Springfield Municipal Code, 1997 and any amendment thereto.

Standard. A measure of physical attributes and/or policy conformance which must be satisfied in order to allow a proposed land use or development to be established or modified.

Standard Construction Specifications. Standards governing the construction of all public improvements within the City, adopted by the Council, dated 1981, and as may be amended.

Start of Construction. Includes substantial improvement, and means the date the building permit was issued, provided the actual start of construction, repair, reconstruction, placement, or other improvement was within 180 days of the permit date. The actual start means either the first placement of permanent construction of a structure on a site, for example, the pouring of slab or footings, the installation of piles, the construction of columns, or any work beyond the stage of excavation; or the placement of a manufactured home on a foundation. Permanent construction does not include land preparation, including clearing, grading and filling; nor does it include the installation of streets and/or walkways; nor does it include excavation for a basement, footing, piers, or foundation, or the erection of temporary forms; nor does it include the installation on the property of accessory buildings, for example garages or sheds not occupied as dwelling units or not part of the main structure.

## State. The State of Oregon.

Stormwater. Water derived from a storm event or conveyed through a storm sewer water management system.

## Stormwater Best Management Practices (BMPs).

(1) Nonstructural. Strategies implemented to control stormwater run-off that focus on pollution prevention, including, but not limited to, alternative site design, zoning and ordinances, education, and good housekeeping measures.
(2) Structural. Engineered devices implemented to control, treat or prevent stormwater run-off pollution.

Stormwater Management Plan. A policy document adopted and, as modified from time to time, approved by resolution of the City Council setting forth the policies and procedures to be used in reviewing development proposals that alter or affect the natural, pre-development flow of stormwater. These policies and procedures are to be applied to public and private improvements and allow City staff to provide certainty to developers and consultants to permit them to design and submit for approval safe, efficient, and cost effective stormwater management system projects within the City and its Urban Growth Boundary.

Stormwater Management System. The structures, facilities, and practices utilized by the City and/or a development to control and manage the quantity and quality of groundwater discharges and surface water run-off, including stormwater run-off, nonstorm generated run-off and floodwaters.

Street. Any roadway and associated right-of-way that provides access to one or more lots/parcels and that is a part of the city-wide street system.

Street, Improved. A street that includes a fully paved surface, curb, gutter, storm drainage, sidewalk, street trees (where applicable) and street lighting, all constructed to City standards.

Street, Private. Any roadway and associated land that is functionally similar to a public street, constructed to City standards, but not dedicated to the City.

Street, Unimproved. A street that lacks any of the features of an improved street.

Strip Commercial. Commercial development set in a linear pattern along one or both sides of a street.

Structure. Anything constructed or built, any edifice or building or any kind or any piece of work artificially built up or composed of parts joined together in some definite manner. As used in SDC 3.3.400, Floodplain Overlay District, a walled or roofed building including a gas or liquid storage tank that is principally above ground.

Structure, Parking. A parking garage located aboveground or underground consisting of two or more levels.

Structure, Primary. A structure, or combination of structures, of chief importance or function on a site. In general, the primary use is carried out in a primary structure. A site may have more than one primary structure. The difference between primary and accessory structure is determined by comparing the size, placement, similarity of design, use of common building materials, and the orientation of the structures on the site. (See also Accessory Structure and Accessory Dwelling Unit.)

Subdivide Land. To divide an area or tract of land into four or more lots when the area or tract of land exists as a unit or contiguous units of land under single ownership at the time of subdivision.

Subdivision. Either an act of subdividing land, or an area or tract of land subdivided as defined in this Section.

Subdivision Plat. A final map and other writing containing all the descriptions, locations, dedications, provisions and information concerning a subdivision.

Sufficient Infrastructure. The following level of public services to serve new Triplexes, Fourplexes, Townhouses, or Cottage Cluster Housing development:
(1) Connection to a public sanitary sewer system capable of meeting established service levels.
(2) Connection to a public water system capable of meeting established service levels.
(3) Access via public or private streets meeting adopted emergency vehicle access standards to a city's public street system.
(4) Storm drainage facilities capable of meeting established service levels for storm drainage.

Sunchart. A photograph, or a scaled drawing prepared or certified by a licensed or certified architect, landscape architect, engineer, planner or utility solar technician,
showing the positions of the sun during different hours of the day and months of the year, and the southern skyline. A sunchart uses as coordinates a grid of the sun's altitudes in 10 degree increments and solar azimuths in 15 degree increments.

Survey. The location of the legal boundaries of an area and the division of that area into lots or parcels, streets and other features with all necessary corners or dividing lines marked or monumented, prepared by a surveyor in accordance with State law.

Surveyor. A registered professional land surveyor in the State of Oregon.

Tentative Plan. A clearly legible drawing of the lots or parcels and other elements of a partition or subdivision which provides a basis for the approval authority to approve or disapprove the general layout of the development.

Time of Travel Zone (TOTZ). The area mapped pursuant to Oregon Health Division Delineation Certification \#002R which identifies the time it takes groundwater to flow to a given well or wellhead.

Top of Bank. For a given watercourse, the top of bank is the same as the "bankfull stage." The "bankfull stage" is defined as the stage or elevation at which water overflows the natural banks of streams or other waters of the State and begins to inundate the upland. The ground elevations on both sides of the watercourse are examined and the lower grade break elevation; the elevation where water would leave the channel in a particular reach is used. The elevation of the lower bank controls the bank full elevation for a watercourse reach. The edge of the bankfull watercourse typically corresponds to the start of the floodplain. The start of the floodplain is often characterized by:
(1) A berm or other break in slope from the watercourse bank to a flat valley bottom, terrace or bench;
(2) A change in vegetation from bare surfaces or annual water-tolerant species to perennial water-tolerant or upland species; and
(3) A change in the size distribution of surface sediments (e.g., gravel to fine sand) (Figure 6.1-D).

Figure 6.1-D.
Indicators for Determining Bankfull Width


In the absence of physical evidence, the 2-year recurrence interval flood elevation may be used to approximate the bankfull stage.

Townhouse (Townhome). A dwelling unit constructed in a row of two or more attached units, where each dwelling unit is located on an individual lot or parcel and shares at least one common wall with an adjacent unit. A townhouse is also commonly called a rowhouse, attached house, or common wall house.

Townhouse Project. One or more townhouse structures constructed, or proposed to be constructed, together with the development area where the land has been divided, or is proposed to be divided, to reflect the Townhouse property lines and any commonly owned property.

Traffic Impact Study. An analysis of the effects of a proposed development on the transportation system, and of traffic impacts on neighboring properties.

Traffic Study. A limited analysis of the operational aspects and traffic safety issues of a particular development area, including, but not limited to, on-site traffic circulation and access design and operation.

Triplex. Three dwelling units on one lot or parcel. Units may be attached vertically or horizontally or detached.

Urban Growth Boundary. A site-specific line that separates urban or urbanizable land from rural land and which appears on the Metro Plan Diagram.

Urban Land. Land which is located within an incorporated City.
Urbanizable Land. All land outside the city limits but inside the Urban Growth boundary.
Use. The purpose for which land and structures are arranged, designed, intended, occupied or maintained. Any activity taking place on land or in or on structures.

Use, Accessory. A use or uses within a primary commercial, office and/or employment building that is for the employees' benefit and that does not generally serve the public, including, but not limited to, building maintenance facilities, central mail rooms, child care, conference rooms, employee restaurants and cafeterias, indoor recreation areas, and indoor recycling collection centers. The accessory use is not considered a secondary use and does not have to meet any percentage standard; however, the accessory use must be part of a primary use building.

Use/Activity, Water-Dependent. A use or activity that requires access to the Willamette River for water-borne transportation, recreation, energy production, or source of water.

Use/Activity, Water-Oriented. A use or activity whose attraction to the public is enhanced by a view of or access to the Willamette River.

Use/Activity, Water-Related. A use or activity that is not directly dependent upon access to the Willamette River, but which provides goods or services that are directly associated with water-dependent land or waterway use, and which, if not located adjacent to the river, would result in a public loss of quality in the goods or services offered. Except as necessary for water-dependent or water-related uses or activities, residences, parking lots, spoil and dump sites, roads and highways, restaurants, businesses, factories, and mobile home parks are not generally considered dependent on or related to water location needs.

Use Category. A grouping of land uses which have similar operating characteristics and land use impacts.

Use, Nonconforming. The use of land or structures, or the size, height, location or number of structure, formerly permitted or otherwise lawful, but which currently does not comply with existing standards or provisions of this Code.

Use, Permitted. Any use allowed in a zoning district and subject to the restrictions applicable to that zoning district.

Use, Primary. An activity or combination of activities of chief importance on the site. One of the main purposes for which the land or structures are intended, designed, or ordinarily used. A site may have more than one primary use. The primary use usually occupies more than 50 percent of the gross floor area of a building or more than 50 percent of a development area. Tree removal and timber harvesting are not primary uses within the Urban Growth Boundary.

Use, Re-Use. Any change in use, tenancy or occupancy of a building.
Use, Secondary. Any approved use of land or a structure that is incidental and subordinate to the primary use, and located in the same building or in the same development area as the primary use. No secondary use can occupy more than 50 percent of the gross floor area of a building or more than 50 percent of a development area occupied by the primary use. Secondary uses must not occur in the absence of primary uses. Secondary uses are not accessory uses.

Use, Special. Any use of land or a structure which due to its operating characteristics or land use impact is permitted under prescribed conditions in the applicable zoning district.

Use, Temporary. A use established for a fixed period of time that does not involve the construction or alteration of any permanent structure.

Use, Water Dependent. A use that requires access to the Willamette River for waterborne transportation, recreation, energy production, or source of water.

Use, Water Related. A use that is not directly dependent upon access to the Willamette River, but which clearly benefits from the access.

Utility Provider. Any agency or private company which provides the public with electricity, gas, heat, steam, communications, rail transportation, water, sewage collection, or other similar service.

Variance. An exception to a requirement of this Code. This definition does not include use variances; a variance cannot be used in lieu of a zone change.

Vision Clearance Area. A portion of land established at street, alley, or driveway intersections in which nothing may obstruct the sight distance of motorists entering or leaving the intersection, unless specifically exempted by this Code.

Warehousing. The storage of finished and unfinished products and materials within an entirely enclosed building. This use may include facilities for regional wholesale distribution, if permitted by the applicable land use district.

Waste Storage. A place where waste containers, including compactors, dumpsters, and garbage cans, are collectively stored. Waste storage includes, areas used to collect and store refuse or recyclable materials. Exempt from this subsection are waste storage areas for detached Single-unit Dwellings, middle housing types, and areas used for the temporary storage of wood pallets or cardboard.

Watercourse. Rivers, streams, sloughs, drainages including intermittent stream and seeps, ponds, lakes, aquifers, wetlands and other waters of the State. This definition also includes any channel in which a flow of water occurs, either continuously or intermittently, and if the latter with some degree of regularity. Watercourses may be either natural or artificial. Specific watercourses that are protected by this Code are those shown on the water quality Limited Watercourse Map.

Water Quality Limited Watercourses (WQLW). Those watercourses within the City and its urbanizing area that are specified on the WQLW Map.

Waters of the State. These waters include lakes, bays, ponds, impounding reservoirs, springs, wells, rivers, streams, creeks, estuaries, marshes, inlets, canals, the Pacific Ocean within the territorial limits of the State of Oregon, and all other bodies of surface or underground waters, natural or artificial, inland or coastal, fresh or salt, public or private (excluding those private waters which do not combine or effect a junction with natural surface or underground waters), which are wholly or potentially within or bordering the State or within its jurisdiction.

Wellhead Protection. Implementation of strategies within a wellhead protection area to minimize the potential impact of containment sources on the quality of groundwater used as a drinking water source by a public water system.

Wellhead Protection Area. A Drinking Water Protection Area for a groundwatersupplied drinking water source.

Wellness Center. A facility, owned by a public agency, operated by a public or nonpublic agency or private individual or firm, offering wellness-related health services and/or treatment to the public, including, but not limited to, diabetes and health education classes, physical, speech and occupational therapy, and fitness and nutrition services, but excluding alcohol and drug rehabilitation facilities other than prevention education.

Wetlands. Areas inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances to support, a prevalence of hydophitic vegetation typically adapted for life in saturated soil conditions. Wetlands include swamps, marches, bogs, and similar areas excluding those constructed as water quality or quantity control facilities.

Wheel Stop. A permanent and secured device in each parking stall which blocks the front wheels of a vehicle.

Wholesale Trade. Establishments or places of business primarily engaged in selling merchandise to retailers; to industrial, commercial, institutional, or professional business users, or to other wholesalers; or acting as agents or brokers and buying merchandise for, or selling merchandise to, the individuals or companies. Wholesale trade may include retail trade as a secondary use when wholesale trade is the primary use. Wholesale trade does not include storage and sale of bulk fuel oil, bulk fuel, explosives or other hazardous material, or live animal sales other than small domestic pets when the sales are made from the premises. Wholesale trade by brokerage only, with no display or storage of merchandise on the premises, is considered a Business Office use.

## Windthrow. Trees felled by wind.

Wireless Telecommunications Systems (WTS). The sending and receiving of radio frequency transmissions and the connection and/or relaying of these signals to land lines and other sending and receiving stations (cell sites), and including cellular radiotelephone, personal communications services, enhanced/specialized mobile radio, and commercial paging services. Terms and definitions associated with WTS facilities, and the standards that regulate their siting and design are found in SDC 4.3.145(E).

Wooded Lot/Parcel. A lot/parcel or parcel 10,000 square feet or larger, above 670 feet in elevation, which contains more than 5 trees 8 inches or greater dbh.

Working Day. Monday through Friday, exclusive of official City holidays.
Wrecking Yard/Salvage Yard. Any lot/parcel or structure used for the storage, dismantling or sale of inoperable motor vehicles, trailers, machinery and/or building materials or parts.

Yard. For the purpose of establishing setbacks, yard is an open space on a lot which is unobstructed from the ground upward except as otherwise provided in this code.

Yard, front. An open space extending the full width of the lot between the front facade of a building or the front of an unenclosed porch and the front lot line, unoccupied and unobstructed from the ground upward except as specified elsewhere in this code.

Yard, rear. An open space extending the full width of the lot between the rear facade of a building and the rear lot line, unoccupied and unobstructed from the ground upward except as specified elsewhere in this code.

Yard, side. An open space extending from the front yard to the rear yard between the side facade of a building and the nearest side lot line, unoccupied and unobstructed from the ground upward except as specified elsewhere in this code.

Yard, through-Lot/Parcel Rear Yard: The first 10 feet of land paralleling street right-ofway this is parallel to and most distant from the front yard property boundary used for address purposes.

Yard, Street Side Yard: The first 10 feet of land paralleling street right-of-way, which intersects the front yard property boundary.

Youth Hostel. Any building designed or intended to provide temporary accommodations for traveling young people.

Zoning District. A specifically delineated area or district within the Urban Growth Boundary that implements the Metro Plan within which the use of land is regulated and development standards are applied.

## Middle Housing Implementation Community Survey Report



## Purpose of the Development Code Update

The purpose of the Development Code Update Project is to update the Springfield Development Codes that could support efficient, timely, and clear development review. The updated development code will also support Springfield's economic development priorities and will honor Springfield's hometown feel now and in the future.

The development code update is an opportunity to provide for more housing of all shapes and sizes for all residents of the city of Springfield, as well as provide increased opportunities for job creation. A new development code will support housing affordability in Springfield by making the process more predictable and lowering development costs and creating a more diverse housing stock. In the wake of the pandemic, housing costs have risen, and the market has become extremely tight in Springfield. The code update will be a major step towards creating clear approval options for a greater variety of new housing and allowing more residents to find or create a place that suits their preferences and needs.

## Development Code Update - Phase 1 Middle Housing Implementation

The State of Oregon law requires that the local governing authorities such as the City should have clear and objective standards for housing. Additionally, new state laws (Housing Bill 2001) require Springfield to allow Middle Housing developments; bringing significant changes to the housing code sections of the Development Code.

Middle Housing includes duplexes, triplexes, fourplexes, cottage clusters and town homes. Some of these middle housing types can be either attached or detached. In other words, they are residential living units for two or more households but fewer than a typical apartment building. Middle housing can create housing
 opportunities for low-and middleincome households, smaller households as well as young adults and seniors.

## Public Outreach Survey - Executive Summary

The Development Code Update Project launched its outreach survey in the beginning of July 2021 and the public was invited to participate in the survey to provide feedback for the Development Code Update - Phase I which includes Middle Housing . The survey
asked questions and public opinion regarding Middle Housing code standards that the City could adopt in order to comply with the Oregon State Housing Bill 2001 (or HB 2001).

In addition to the survey the Springfield Development Code Update project has engaged the public via its virtual Public Open House. Through the virtual open house public has the opportunity to explore about the Springfield Development Code Update project or connect with the City staff regarding any questions or concerns they may have about the draft Springfield Development Code Update.

The goal of the Community Engagement Plan for the Development Code Update project is to ensure that the members of the Springfield community have the relevant and updated information about the project so they can engage and provide valuable input to the project.

## Structure of the Survey

The questions in the survey were based on levels of implementing House Bill 2001. The state adopted minimum standards in the Oregon Administrative Rules (OAR) that serve as a baseline for complying with the bill. The questions asked community members whether Springfield should do the minimum required to comply with the OAR's, referred to as the "Allow" option, or go beyond the minimum required, referred to as the "Encourage" and "Maximize" options.

The survey incorporated eight questions pertaining to the following middle housing standards;

1. lot size
2. lot coverage
3. height restrictions
4. parking requirements
5. design flexibility and standards

Additionally, community members had the option to provide comments on each of these questions.

The survey had an optional demographic section that asked the community members questions regarding their residency status in Springfield, current living situation, race/ ethnicity, gender identity and age range. These questions helped the staff understand who was able to engage and provide input to the project and whose opinion wasn't
heard in the survey. The optional last section of the survey asked the community members to share any additional input or comment about the project.

The public survey was published in both English and Spanish language and there was a total of 80 respondents to the survey. There were no respondents to the Spanish version of the survey, however for the English version 10\% of the respondents selected Hispanic/Latino as their race/ethnic identity.

## Question 1

The first survey question asked the community members about the applicable standards for the new middle housing development in the city.

> Should the City allow duplexes, triplexes, and fourplexes by only meeting the minimum state standards and require the units to be attached, or should the City maximize more duplex, triplex, and fourplex units by allowing the units to be detached units on a lot to provide more flexibility?

Out of the 80 total respondents who took the survey, 77 answered this question while 3 people chose to skip it. Approximately $80 \%$ of the respondents or 62 people want the development codes to maximize the state standards. This means that the development codes for the middle housing development should allow the structures to be detached.

Fourteen percent of the survey respondents, or 11 people, want the development codes to require duplexes, triplexes and fourplexes to be attached.

Fig 1: Question 1 survey result


Four people (the 5\% that choose "other") provided comments on this question with concerns about parking requirement, neighborhood aesthetics and crowded neighborhood.
"While I like the idea, parking is not being addressed nor is the wear and tear on neighborhood streets."
"Minimize crowding on land while allowing some development, I bought my home and don't want plexes all around me."
"Depends on the style of the neighborhood. In a street of 2-story houses, tiny, detached units would look out of place. But a townhouse attached plex would match."
"Should not allow."

## Question 2

In the outreach survey, the second question asked the respondents about the siting of triplex and fourplex dwellings on a minimum lot size.

## Should the City allow triplex and fourplex dwelling on smaller lot sizes than the 5,000 and 7,000 square foot sizes mandated by the State?

Seventy-six people answered this question while 4 respondents skipped this question. Approximately $38 \%$, or 29 people, agree that the City standards should follow the State standards that will allow a triplex on a 5000 square foot lot size and a fourplex on a 7000 square foot lot size. About $22 \%$, or 28 survey respondents, want the City to Maximize minimum lot size requirement, which mean the development codes should allow triplexes and fourplexes on any lot size as long as other siting standards are met.

About $22 \%$, or 17 respondents to the survey chose the Encourage option, which would allow a smaller minimum lot size than the state standard. This option would allow a triplex and fourplex to be sited on a smaller lot size under 5,000 and 7,000 square feet and set a smaller minimum lot size standard for these types of middle housing.

Fig 2: Question 2 survey result


2 people who chose 'other' as their response commented:
"Allow reduction only for detached plexes"
"NO NO NO"

## Question 3

The third question in the survey asked the community members about height limit for the middle housing types.

> What height limit should the City require for most middle housing types?

Seventy-five people chose to answer this question while 5 skipped this survey question. An equal number of respondents chose Allow and Maximize as their answer. Twentyseven people (36\%) want the city development codes to follow State law that require lowest height limit for the middle housing types, while an additional 27 people (36\%) also want the development codes to have no maximum height limit. In this case the size of the structure would be regulated by other standards.

Twenty-one survey respondents (28\%) want to development codes to Encourage the middle housing height limit, this would mean that the height limit for duplexes, triplexes and fourplexes could be higher than the single-family homes.

There were no public comments received for this survey question.

Fig 3: Question 3 survey result


## Question 4

The fourth survey question asked the respondents about lot coverage requirement for the middle housing types.

When building new middle housing, how much of the lot should be allowed to be covered?

Seventy-two people responded to this question while 8 people chose to skip it. In the survey results, 17 people ( $23.6 \%$ ) chose the Allow option, which means the City development codes should require the lowest lot coverage allowed under the state law, which is currently $45 \%$ of the lot size.

Twenty-seven survey respondents (37.5\%) want the development codes to Encourage lot coverage size which mean that middle housing should be allowed to cover more than $45 \%$ of the lot size.

Similarly, 27 survey respondents ( $37.5 \%$ ) want the development codes to Maximize lot coverage standard. This option does not set any maximum lot coverage standard, but it
would regulate other standards such as the setbacks, parking, and the need for stormwater management.

One of the respondents commented that, "The development codes should only allow increased coverage (more than 45\%) if it also requires neighborhood parks/open space within a block or two."

Fig 4: Question 4 survey result


## Question 5

The fifth question in the outreach survey asked about parking requirements for the new middle housing developments.

## When building new middle housing, how much space should be dedicated to parking?

The state law only allows cities to require a maximum one parking space per dwelling. Out of 72 respondents who chose to answer this question, 41 people, about $60 \%$, do not think the city should require less than one parking space per dwelling.

Fifteen people, approximately 21\%, chose the Encourage option which meant the development codes should require less parking than the state law. In this case, on-street parking could count toward the new middle housing development parking requirement
or less parking could be required near places where it is easier to get around without a car.

Fourteen respondents, about 19 \%, chose the Maximize option which could require even less parking than the other two options or no parking at all for each individual home.

Two respondents chose to comment on this question;
"Parking spaces per unit"
"The state rules account for a family with 2 cars to live in a place, the duplex's tend to have 4 or more cars per address so either a limit of cars or required off street parking should be considered."

Fig 5: Question 5 survey result

When building new middle housing, how much space should be dedicated to parking?


## Question 6

The sixth question in the survey asked about the level of design standards that the city should adopt for the middle housing developments.

What level of design standards should the City use for middle housing?
Out of 80 total respondents 70 people chose to answer this question. $20 \%$ of the survey respondents, or 14 people, want the city to adopt the highest level of design standards
allowed by the state law. This would limit design flexibility but may encourage more diversity of design. It may add cost to providing housing.

Twenty-seven respondents, approximately 39\%, feel that the development codes should encourage less restrictive design standards than the Allow option. This option would encourage middle housing to use basic design features but at the same time leave room for design flexibility. This option could also potentially reduce the cost for middle housing development.

Twenty-eight survey respondents, or40\%, want the City to Maximize the level of design standards. This mean that the development codes should require few or no design standards. This option would permit a range of design standards and flexibility and could result in more efficient and lower cost housing.

One survey respondent commented on this question and wants the development codes to have the provision for incentives to allow "flexibility: affordability, greater landscaping, etc."

Fig 6: Question 6 survey result

What level of design standards should the City use for middle housing?


## Question 7

For the seventh question, the survey asked the community members about the general direction for middle housing development in the Springfield community.

## In general, what direction do you feel is the best for your Springfield community?

Sixty-nine people answered this question, 18 people, or $26 \%$, want the development codes to Allow middle housing by meeting minimum standards required by the state law. This option would require more regulations, less flexibility, and less potential to reduce the future cost of housing in the community.

Twenty-one people, or $30 \%$, of the survey respondents want the city to Encourage more middle housing by removing code barriers and increasing flexibility to provide housing. This option would have less regulations, more design flexibility, and reduce potential housing cost than the Allow option.

Twenty-seven people, or 39\%, agree that the development code should Maximize the middle housing development by minimizing regulations and applying code standard bonuses for such developments. This option would have the least regulation, most flexibility and the most potential to reduce future cost of providing housing in the community.

Fig 7: Question 7 survey result
In general, what direction do you feel is the best for your Springfield community?


Three survey respondents (4\%) commented on this question with various suggestions. One respondent wants the development codes to "encourage some regulations such as parking \& maximize others such as any dwelling type on individual lots".

Other survey respondent commented; "Designate historic houses; limit number of highdensity units per residential outline, do not subsidize developers, be mindful \& creative in allowing current single homes to be bought \& turned into a 'mini-tropolis' of ugly, uncreative, nondescript units that have no seeming spirit to the development \& architectural construct."

A third person responded as, "Expand on undeveloped land rather than crowd out neighborhoods."

## Question 8

## Feedback and Comments

The last survey question asked the respondents to share their feedback and comments about the Phase 1 Middle Housing Implementation. There were 30 comments received to this question. People commented on various aspects of Middle Housing development such as the development standards, parking space requirement, aesthetics, and quality of the middle housing. People also commented about the increasing crowd in a neighborhood and suggested to have middle housing in new undeveloped areas of the community.

Several people commented about increasing the affordable housing stock in the Springfield community.

The comments received from the survey respondents:
"We need rules and regulations. But we need to loosen a few things so that ALL people can have a home."
"Even apartment communities that have one space per unit still struggle with parking when there are multi-car families or roommates with their own vehicles. Requiring each unit to have its own off-street parking space should be the minimum for every development."
"With the housing cost in Springfield, people will be looking towards middle housing. Instead of continuing to make people share rooms in a custom-built home that is overpriced, in rent, create some type of cost-effective detached dwelling options that are more affordable."
"The key to preserving the feel of single-family neighborhoods is the outside appearance. Regulation should cover \# of cars in the common streets thru zone parking permits and on property as well as landscaping/weed control for fire prevention."
"I appreciate Springfield accepting input. I hope that Springfield does not go the way of Eugene in the ridiculously, nondescript facades that are being designed. Create a signature model "We can do better". Keep prospect in mind regarding the viability and perspective of how the community will present in the years to come. Do not displace low-income residential units "mobile home parks - which are the best low-income housing units available currently - for monolithic, high-end units. Set standards to include the low-income community; do not just create a paper trail of intention."
"Density is good, especially near transit options like bus routes and *separated* bike paths, but primary concern is quality of buildings. New rules should encourage existing Springfield residents and property owners to expand on their own properties and reduce real estate investor incentive to throw up low-quality housing that they will fail to maintain and will be falling down after 20 years of rain and extreme weather.""
"I appreciate the opportunity to add my voice on this topic. I hope that Springfield also has a plan in place to make sure a healthy portion of this new development is truly affordable."
"Maximizing the amount of middle housing allowed and minimizing regulation is the smartest option and would be a great step towards lowering housing costs, thereby creating more supply and lowering the excessive demand there is for housing at this point in time."
"At first I didn't care to much about having multiple housing units on one lot. I know it is necessary to increase opportunities for more to be homeowners. If the city can make these dwellings look nice, upscale and provide a bit of niceties to the homes, that would be great for potential homeowners."
"While housing is needed and important, so is community safety, aesthetics, and space. We need to look for options that are less likely to look crowded, such as many cars on the street or tiny detached units that have families crammed together. The town house option looks the nicest and allows families to have a more "upscale" option for less. An especially efficient option would be to have housing over commerce. This would reduce cars on the road allowing people can shop where they live."
"We should remove as many barriers as humanly possible to incentivize the construction of new housing."
"Affordable market rate is important. I want a garage and lots of windows, but I don't need granite countertops. Units should match aesthetic of street and neighborhood. No ugly boxes. Look to classic house plans. Washburne already had plexes that match the area."
"I consider maximizing middle housing essential to the community's health and wellbeing."
"The MDR zone should allow the same flexibility in housing options as the LDR zone"
"Please consider becoming well acquainted with the extensive literature on the deleterious health effects of high density living before making any decisions. Thank you."
"What are the options and differences for the Washborne Historic Distric Development Codes?"
"While I fully agree that more housing is needed I feel not enough thought is given to infrastructure to support more homes."
"Keep the government out of people's homes. It's okay to regulate for safety reasons, however, you cannot tell me how many windows I must have on the front of my development property and how to design it aesthetically."
"We also need homes for purchasing that can not be bought up by Investment Owners, or Hedge funds. We are being bought and extorted by property managers with little to no regulation on the quality of said housing and people are forced to pay for lower quality housing at inflated rates due to housing shortages. I propose the consideration of houses being built and sold to DevNW enrollee's and Section 8 Case Managed individuals in order to free up low-income housing and allow for those who worked hard to leave low-income, but can't quite make it in the standard market to have the opportunity to be home owners. I also propose any landlord renting properties be subjected to annual quality inspections and be fined for not maintaining their properties."
"Each unit needs one parking space *on* the property. This minimally impacts the surrounding neighborhoods and it is safer for drivers and pedestrians."
"Maximizing flexibility is definitely needed. Thank you"
"I appreciate the considerations of changes to the development code but I don't want to see it become a free-for-all. If we remove too many guidelines someone is bound to take advantage of it."

## "What about Tiny Homes and Grandma Cottages"

"I just visited the Midwest where there are many smaller homes \& trailers. It became apparent to me that Oregon demands too much equality. Let people live in small crappy houses. It is better than being homeless"
"Where it's a choice between being aesthetic vs packing in the most people and saving the most money, I prefer that we are attractive with a "calming" feel so Springfield can have a classy reputation and residents develop pride for how attractive and calming our city is to look and and walk around in."
"Ths new cottages for $\$ 300 \mathrm{~K}$ on 19 th aren't even selling. Too crowded in an already crowded area. Housing advantages should help people not landlords who don't live here. Space is very important and homeowners invested in a single family home shouldn't be crowded out by plexes being put up. Please develop new sites for new plexes, don't add to the stress of Springfield's other unappealing qualities. Let's make it a place that feels good, not crowded."
"I may have to move myself and family from Oregon as the price of buying a house and/or renting is astronomical. I was told by a realtor I could sell my house here in Oregon and buy two really nice houses in other states. Considering it as I could help my sons with getting a decent place to live, and they both work from home so moving is not a problem for them. The prices now are unsustainable IMO. Thank you for the survey"
"Springfield should remain a small town, that's the reason people live here. Getting too many out of state investors that could care less about our quality of life."
"Some areas of Springfield are better suited to middle housing infill as they are near parks/open space, public transportation, shopping, etc. Other areas are not due to hills and the associated challenges of parking, land stability, etc. I don't think there's a one-size-fits-all solution for our community. I am very much in favor of increasing our stock of affordable housing, including encouraging infill. But I think expanding the UGB and decreasing development costs needs to be a primary part of the solution. Infill in the form of quadplexes and townhouses on top of longstanding single family homes will only serve to destabilize neighborhoods as owner-occupied residences disappear. Those who value the elbow room, quiet, and privacy they've had will be driven out to subdivisions with CCRs prohibiting this type of housing. That will further the gap between those with means and those without."
"I'm a homeowner in the washburne and have been for 7 years. I've lived in Springfield for 15 years. I have a wife and 2 young kids. We love Springfield and we think that the
improvements made to the washburne and downtown area are phenomenal. We truly love Springfield and the direction it's heading. Please do not lower standards to add lowincome housing or allow people to build ADU's and sublet their property. The direction Springfield and downtown are heading are wonderful and I hope that the people who lead the downtown revitalization continue to push forward with their plans. Prioritize tax paying citizens and people who contribute to the economy of Springfield. Don't lower standards to meet quotas or minimums. The quickest way to destroy downtown Springfield is to add low-income housing."

## Demographic Survey

The optional demographic section asked the survey respondents questions regarding their residency status, living situation, age, race, and ethnicity. This information will help the staff, Planning Commission, and the City Council to understand who was able to engage and provide input to the project and whose opinion wasn't heard in the survey. The additional comment section gave the opportunity to the community members to provide their valuable opinion for the code update project.

## Residency Status

Out of the 66 people who answered their residency status, $83 \%$ or 55 people live in Springfield, 23 community members or $35 \%$ of the respondents work in Springfield. Forty-five survey respondents, about $68 \%$ of the total respondents own a property in Springfield. Overall, most people who took the survey were a Springfield resident.

Fig 8: Residency Status survey result


## Homeowners or Renters

Out of the 68 people who responded to this survey question; $81 \%$ of them, 55 people, own the residence that they live in. Thirteen community members (19\%) rent their residence. None of the community members was either sheltered or unsheltered at the time of taking this survey. Overall, most people who took the survey were homeowners in the community.

Fig 9: Living Situation survey result


## Age Range

Out of 68 members who responded to this question, 17 people were $35-44$ years old, 12 people were $25-34$-years old and 12 people were $45-54$ years old. Only 2 people in the age range of 18-24 years responded to the survey. There were no participants in the 1217 years age group.

Fig 10: Age Range survey result


## Gender Identity

Of the 68 total respondents to this question, 28 were female and 30 were male respondents. Ten people declined to reveal their gender identity. Overall, both male and female community members participated equally in the survey.

Fig 11: Gender identity survey result


## Race and Ethnicity

Of the total 68 people who responded to this question, 52 people identified themselves as White/Caucasia, 2 people identified as Black or African American and 7 people identified themselves as Hispanic or Latino.

Fig 12: Race and Ethnicity survey result


## Additional Thoughts from the Public

At the end of the demographic survey, community members had the option to provide additional thoughts and comments. The survey received 17 additional comments that suggest community member's opinion about middle housing implementation in the city. Some community members are grateful and believe middle housing will improve housing affordability in the city while few members think that middle housing will overpopulate Springfield and bring more crime into the community.

Following are the public comments that were received in the survey.
"Regarding why he voted against SB 3322 Sen. Beyer said "People make choices about where they live. Some people want to live in a planned community that's very dense... ...And I think that's a reasonable choice."
"I would like to see communities built. Units with 1, 2, 3, and 4 bedrooms all built on the same lot."
"I am concerned about crime associated with high density dwellings. I understand the need to implement the new state law. Education regarding the positive and negative aspects of this type of housing will do a lot to enhance acceptance."
"I am a business owner, homeowner, and rental owner all in the city of Springfield."
"I also work with unhoused families in Lane County on a daily basis and see the struggles we face due to housing shortages, and slumlords in Springfield. I am so grateful Springfield is taking a serious approach to reducing housing barriers and ensuring that we can reduce the unhoused population by creating housing."
"Really think about what you might create in Glenwood. Do not destroy the river front nor the low housing availability in this area. Be thoughtful. Accent to beauty of our waterway. Do not hide it behind imposing structures. Think about wind flow and spaciousness as you look at high density and in fill. Really make the goals to be about the people/community not the developers and the profit enhancement cloaked in the idea of cost containment. Don't be cheap be mindful of efficiency and creativity."
"I've seen what is happening at Marcola Meadows and those are not well-built houses. Anything that encourages that type of development is bad news for the quality of our city."
"I have lived here all of my life and invest in Springfield. I own several properties in Springfield and keep them clean and updated as well as try to make them as affordable for families as possible. Thank you."
"Stop overpopulating Springfield! Out of state transplants do not respect our values and lifestyle."
"I own my home here in North Springfield. Obviously, we're not incorporated yet, but I consider myself a Springfield resident."
"Are there minimum lot dimensions in feet-inches? I don't see min street frontage. Is an ADU able to be added to all 'plexes', as well as single unit? It is unclear what primary dwelling means - it's not defined."
"Dwellings should enhance the look of the neighborhood."
"Thank you"
"Irritated that new liquor or pot businesses seem to be added weekly. Need more family friendly eating establishments."
"Please leave some yards and greenspace. Once someone builds an ADU there's no going back."
"To encourage affordable housing, more houses utilizing building permits, and citizens treating their properties better, you should reconsider your pricing structure for "upgrades" to houses or appliances. Many people in my neighborhood are forgoing proper permitting due to the cost of a permit."
"I live in a condominium. Creating more affordable, non-traditional housing is a must."


## BEFORE THE PLANNING COMMISSION OF SPRINGFIELD, OREGON FINAL ORDER FOR:

## DISCRETIONARY USE APPLICATION FOR MULTI-UNIT RESIDENTIAL DEVELOPMENTS LOCATED ON TWO ADJACENT SITES ON HORACE STREET IDENTIFIED AS ASSESSOR'S MAP 18-02-05-23, TAX LOTS 202 AND 204. <br> 811-21-000196-TYP3

## NATURE OF THE APPLICATION

Discretionary Use and Multi-unit Design Standards - Alternative Design Discretionary Criteria Approval for the use of the shed roof form on the three buildings for multi-unit residential developments located on two sites on Horace Street, across from Mt. Vernon Elementary School. The two adjacent lots are identified as Assessor's Map 18-02-05-23, Tax Lot 202 and Tax Lot 204. The subject properties are shown in the Vicinity Map for the subject sites, which is Exhibit A to this Order.

Timely and sufficient notice of the public hearing has been provided, pursuant to SDC 5.2-115.

On October 5, 2021, the Springfield Planning Commission held a public hearing and conducted deliberations on the Discretionary Use application. The staff report, written comments, and any testimony of those who spoke at the public hearing were entered into the record.

## CONCLUSION

On the basis of this record, the Discretionary Use is consistent with the the Multi-Unit Design Standards - Alternative Design Discretionary Criteria of SDC 3.2-245. This general finding is supported by the specific findings of fact and conclusion in the Staff Report and Findings, attached hereto as Exhibit B.

## ORDER/RECOMMENDATION

It is ORDERED by the Springfield Planning Commission that Case Number 811-21-000196-TYP3, Discretionary Use Application, be approved as conditioned in Exhibit B. This ORDER was presented to and approved by the Planning Commission on October 5, 2021.

Planning Commission Chairperson
Date

## ATTEST

AYES:
NOES:
ABSENT:
ABSTAIN:


## VICINITY MAP

811-21-000196-TYP3 Discretionary Use
Site 1: 18-02-05-23, TL 202
Site 2: 18-02-05-23, TL 204
Bruce Wiechert Custom Homes, Inc.

Staff Report and Findings
Planning Commission
Discretionary Review Request:

# Multi-unit Design Standards - Alternative Design Discretionary Criteria Horace Street Apartments 

Hearing Date: $\quad$ October 5, 2021<br>Case Number: 811-21-000196-TYP3<br>Applicant: Bruce Wiechert Custom Homes, Inc.<br>Property Owner: Bruce Wiechert Custom Homes, Inc.

Sites: Two adjacent properties located on the south side of Horace Street, east of Filbert Lane, and across from Mt. Vernon Elementary School. The two sites are both zoned Medium Density Residential and are identified as Assessor's Map 18-02-05-23, Tax Lot 202 (Site 1: 0.31-acre western site) and Tax Lot 204 (Site 2: 0.74-acre eastern site). Both sites are currently vacant.

## REQUEST

The Planning Commission is asked to conduct a public hearing and deliberations, and approve, approve with conditions, or deny a request for Discretionary Use Approval of a proposed alternative roof form under the Multiunit Design Standards - Alternative Design Discretionary Criteria listed in SDC 3.2-245.

## SITE INFORMATION/BACKGROUND

The applicant plans to develop two multi-unit residential developments located next to each other on separate Horace Street sites, across from Mt. Vernon Elementary School. Both projects are currently in the Site Plan Review process. Because one of the proposed roof forms on the buildings does not meet the Multi-unit Design Standards (SDC 3.2-240), specifically the Building Form design standard, the applicant submitted a Discretionary Use application to utilize an alternative shed roof form on the residential buildings.

The applicant proposes to develop an 8-unit residential building on Site 1 (Tax Lot 202) and 20 units in two residential buildings on Site 2 (Tax Lot 204). On Site 2, there will be a 12 -unit residential building along with another 8 -unit residential building for a total of 20 dwelling units. Site 1 has received Tentative Site Plan approval (811-21-000141-TYP2). A Tentative Site Plan review application has been received for Site 2 (811-21-000226TYP2), but no decision has yet been issued. The Tentative Site Plan approval for Site 1 includes a condition of approval requiring the applicant to change the proposed roofs of the residential buildings to one that meets the Multi-unit Design Standards in accordance with SDC 3.2-240 or to obtain Discretionary Use approval for the proposed shed roof form as shown in the submitted building elevations. The Tentative Site Plan decision for Site 2 will reflect the outcome of the Planning Commission's decision on this Discretionary Use application.

The Planning Commission can approve, modify findings/conditions, or deny the application. The Planning Commission's decision is final unless appealed to the Springfield City Council as provided in SDC 5.3-120.

## Notification and Written Comments

Notification of the October 5, 2021 Planning Commission public hearing was sent to all property owners and residents within 300 feet of the outer boundary of the subject site on September 3, 2021. Notification was also published in the September 26, 2021 edition of The Register Guard. Staff posted notices on the subject sites, the City's website, and the Digital Displays located in City Hall. Staff did not receive any comments regarding this application as of the date of this report.

On April 16, 2020, the Governor issued Executive Order 20-16, which requires governing bodies to hold public meetings and hearings by telephone, video, or through other electronic or virtual means whenever possible. On June 30, 2020, Oregon Legislature enacted House Bill 4212 (HB 4212), which waives requirements under the Oregon Public Meetings Law and other statutes to facilitate public meetings online or by phone. Under HB 4212, the governing body must make available a method by which the public can listen to or virtually attend the public meeting or hearing at the time it occurs. House Bill 4212 allows governing bodies to accept public testimony by telephone or video conferencing technology, or to provide a means to submit written testimony (including email or other electronic methods) that the governing body can consider in a timely manner. House Bill 4212 overrides conflicting requirements for quasi-judicial public hearings in state law or in the Springfield Development Code or Metro Plan.

The October $5^{\text {th }}$ public hearing is being conducted via online meeting platform that allows members of the public to listen to the meeting online or by calling a toll-free number. Members of the public may provide testimony to the Planning Commission by joining the online meeting remotely. Details regarding how to join the online meeting were provided in the Planning Commission meeting agenda and posted on the SpringfieldOregonSpeaks online platform ${ }^{1}$.

## Criteria of Approval

Per SDC 5.9-120D.2, the Planning Commission may approve a discretionary use for alternative design standards for multi-unit development if the proposal conforms the Multi-unit Design Standards - Alternative Design Discretionary Criteria in SDC 3.2-245.

## CRITERIA OF DISCRETIONARY USE APPROVAL

SDC 3.2-245 contains the Multi-unit Design Standards - Alternative Design Discretionary Criteria that are applicable to this application.

Finding 1: SDC 3.2-240 contains the Multi-unit Design Standards and SDC 3.2-245 contains the Alternative Design Discretionary Criteria. The applicant is requesting discretionary use approval only for a "shed" roof form. The "shed" roof form does not meet the standard in SDC 3.2-240.D.2.b that requires that "roofs shall have gable, hip, or gambrel forms, (minimum pitch 3 to 12) with at least a 6 -inch overhang". The applicable discretionary criterion to allow an alternative roof form is provided in SDC 3.2-245.C.
> C. Building Form. The Planning Commission shall find that the proposed design promotes building forms that contribute positively to a sense of neighborhood and to the overall streetscape. This criterion may be met by complying with the Section 3.2-240D.2., Section 3.2-250 or by considering the following guidelines:

## 1. Design exterior building elevations to avoid large expanses of uninterrupted buildings.

Finding 2: The proposed exterior two-story building elevations show that the height of each building is $\sim 27$ ' high. The 8 -unit buildings have the approximate dimensions of 38 ' wide by $100^{\prime}$ long with a total square footage of 7,600 sq. ft. of living space. The 12 -unit building have the approximate dimensions of being $38^{\prime}$ wide by 150 ' long with an area of $11,400 \mathrm{sq}$. ft. of living space. All three buildings do not exceed the maximum 160' long building design standard in SDC 3.2-240D.2.a.

Finding 3: All three proposed buildings do not have any large expanses of uninterrupted building surfaces as required in the Multi-unit Design Standards (SDC 3.2-240.D) with human-scaled architectural elements including window and door, roof offsets, approximately 8 -foot-high walls, porches, balconies, and projections. The largest uninterrupted building surface is approximately $20^{\prime}$ and can be seen on the left elevation for the 8 -unit buildings and the right elevation for the 12 -unit building. This does not exceed the requirement in SDC 3.2-240D.2.e where architectural features shall occur at a minimum of every 30 '.

[^7]
## 2. Depict building scale consistent with nearby buildings; "scale" relates to the size of various features (including, but not limited to entries, roof surfaces, façades, windows and materials) as compared to those features on nearby buildings.

Finding 4: The proposed multi-unit residential building scale is consistent with nearby single-family residential buildings to the south and west with similar human scale-sized wall heights and entries at 7 ' $9^{\prime \prime}$ high, $\sim 4$ ' $\times 2$ ' vertical windows, and $\sim 4^{\prime} \times 3^{\prime}$ horizontal windows. While there are no shed roof forms used on nearby buildings, most of the buildings in the vicinity have either a gable or hip roof form. The proposed multi-unit residential buildings have both gable and shed roof forms; therefore, the gable roofs are consistent with buildings in the neighborhood.

## 3. Provide transitions to nearby buildings by massing; "mass" relates to the overall size or bulk of a building or its principal parts.

Finding 5: The proposed site plans for both subject properties provide transition/buffer areas and required setbacks to nearby buildings. For instance, there is a $20^{\prime}$ setback between the 8 -unit building on Tax Lot 202 and the 12 -unit building on Tax Lot 204. The two buildings proposed for Tax Lot 204 have the parking area between them, providing considerable space (more than $40^{\prime}$ ) between the buildings.

Finding 6: The applicant also provides buffer and transition areas between the proposed buildings and other existing buildings abutting the subject sites. For instance, the proposal provides for more than 40 ' between the 8 -unit building on Tax Lot 204 and the property line for the parcel to the east. Likewise, there is $\sim 40^{\prime}$ (parking lot) between the 8 unit building on Tax Lot 202 and the property line for the parcel to the west. On Tax Lot 202, the site plan provides more than $40^{\prime}$ of landscaping and stormwater management facilities between the residential building and the property line of the parcel to the south. On Tax Lot 204, the site plan provides more than 45 ' of landscaping and stormwater management from both buildings to the property lines of the parcels to the south of the site. Lastly, the large buildings located at Mt. Vernon Elementary school are located on the other side of the Horace Street public right-of-way.

## 4. Provide porches, bays, and balconies that compliment nearby buildings.

Finding 7: While nearby buildings do not provide the same land use (single-family residential, public school) as the multi-unit residential proposal, all three residential buildings for the subject sites provide porches and balconies for each dwelling unit that complement each other.

## 5. Provide roof variations through offsets, breaks and/or extensions.

Finding 8: The proposed 2-story buildings have both gable and shed roofs that have a 4 to 12 pitch, which meets the minimum 3 to 12 pitch in SDC 4.2-240D.2.b. keeping the design at a residential scale, which is consistent with other nearby residential buildings to the west and south of the subject sites.

Finding 7: While the building design is residential in character, the adjustment to roof design standards also provides a dynamic, modern appearance than strict conformance to gable, gambrel, and hip roofs. Again, the shed roof is the only Building Form design standard the applicant is request an adjustment for in this application.

## 6. Provide transition between the multi-unit site and LDR areas.

Finding 8: There are no Low Density Residential (LDR) zoned areas adjacent to the subject properties; however most, if not all, of the surrounding residential properties consist of a single-family home which mimics LDR zoned areas. The applicant provides the required buffer and transition areas between the proposed buildings and the other adjacent residential properties.

## 7. Enhance solar access protection and/or energy conservation.

Finding 9: While the applicant does not provide any specific details on energy conservation or enhancement of solar access protection with the proposed shed roof form, the pitch of the proposed shed roofs is the same as the proposed gable roof (4 to 12). Based on the roof pitch and building layout shown on the site plans, the applicant's proposal does not negatively impact solar access to surrounding properties or change the level of the building's energy efficiency with their proposal to use the shed roof form.

## 8. Protect on-site and off-site natural and designated historic features.

Finding 10: The subject sites do not have any on-site or off-site natural or designated historic features, so this guideline is not applicable to this application.

## 9. Provide human-scaled architectural detail.

Finding 11: The wall height for both the $1^{\text {st }}$ and $2^{\text {nd }}$ floors of the proposed buildings is $\sim 8^{\prime}$. The doors are $\sim 7$ ' high and 3 ' wide. The windows dimensions are provided in Finding 4 and are located at the heights that allow the residents to look outside. The architectural details provided in the submitted building elevations are human-scaled.
10. Provide visual variety in elevations, architectural details, colors, and materials, compatible with existing development;

Finding 12: The submitted building elevations provide a variety in elevations and architectural details with the following: two different roof forms used; breaks and offsets of doors, windows, and roofs; and stone pillars where stairways are located. While there is no existing development on the subject sites, the proposed building elevations are compatible with existing development in the vicinity through roof types and pitch, building materials used, and building scale.

Conclusion: The proposed designs promote a building form that contributes positively to the sense of neighborhood and to the overall streetscape as can be seen in the submitted Building Elevations. The proposal meets all of the Building Form guidelines in SDC 3.2-245.C. The above findings demonstrate that the proposed building form design meets these Alternative Design Discretionary Criterion guidelines.

## CONDITIONS OF APPROVAL

SDC Section 5.9-125 allows for the Approval Authority to attach conditions of approval to a Discretionary Use review request to ensure the application fully meets the applicable criteria of approval:

## NO CONDITIONS OF APPROVAL RECOMMENDED

CONCLUSION: Based on the above-listed criteria, City staff recommends that the Planning Commission provide approval of the proposal because they believe it meets the applicable Discretionary criteria as listed in both SDC 5.9-120 and SDC 3.2-245.

City of Springfield
Development \& Public Works
225 Fifth Street
Springfield, OR 97477

## Discretionary Use

Required Project Information (Applicant: complete this section)


## Owner Signatures

This application form is used for both the required pre-submittal meeting and subsequent complete application submittal. Owner signal tres are required at both stages in the application process.

## An application without the Owner's original signature will not be accepted.

## Pre-Submittal

The undersigned acknowledges that the information in this application is correct and accurate for scheduling of the Pre- Submittal Meeting. If the applicant is not the owner, the owner hereby grants permission for the applicant to act in his/her behalf. I/we do hereby acknowledge that I/we are legally responsible for all statutory timelines, information, requests and requirements conveyed to my representative.
Owner:
Date:
Signature

## Print

## Submittal

I represent this application to be complete for submittal to the City. Consistent with the completeness check performed on this application at the Pre-Submittal Meeting, I affirm the information identified by the City as necessary for processing the application is provided herein or the information will not be provided if not otherwise contained within the submittal, and the City may begin processing the application with the information as submitted. This statement serves as written notice pursuant to the requirements of ORS 227.178 pertaining to a complete application
Owner:


# HORACE APARTMENTS DISCRETIONARY USE NARRATIVE 

July 17, 2021
Assessor's Map: 18-02-05-23 Tax Lot 0202
Applicants: Bruce Wiechert Custom Homes, Inc.
3073 Skyview Lane
Eugene, OR 97405
(541) 686-9458

Applicant's
Representative: The Favreau Group 3750 Norwich Ave. Eugene, OR 97408
541-683-7048
Attn: Tony Favreau

## DISCRETIONARY USE REQUEST

The applicant proposes to construct an 8-unit apartment building on the subject site. A shed roof is proposed instead the roof design as stated in Springfield Code 3.2-240.D.2.b. "Roofs shall have gable, hip, or gambrel forms (minimum pitch 3 to 12) with at least a 6-inch overhang". The Planning Commission may approve adjustments to the multifamily design per the City code below. Please see the responses below to the applicable code sections.

## 3.2-245 Multi-unit Design Standards—Alternative Design Discretionary Criteria

A. Description. The Planning Commission may approve adjustments to the multifamily design standards listed in Section 3.2-240 that preclude compliance under Section 3.2-250. In addition, the applicant may chose this Type III Discretionary Use procedure when proposing an innovative design that may preclude compliance with one or more of the design standards under Section 3.2-240. The multifamily design standards are: Building Orientation; Building Form; Storage; Transition and Compatibility Between Multi-unit and LDR Development; Open Space; Landscaping; Pedestrian Circulation; Parking; and Vehicular Circulation. The Planning Commission shall find that the application complies with or exceeds the criteria for each applicable design standard. Criteria for design standards not relevant to the application shall not require a finding by the Planning Commission, unless the guidelines in Subsections B. through I. are implemented. B. Building Orientation. The Planning Commission shall find that the proposed design contributes positively to the neighborhood and overall streetscape by carefully relating building mass, frontages, entries, and yards to streets and to adjacent properties. This criterion may be met by complying with the Section 3.2-240D.1., Section 3.2-250 or by considering the following guidelines:

1. Orient buildings to an internal circulation system that mimics a public street in appearance (including, but not limited to sidewalks, landscaping, cross-walks, lighting, parallel parking), and does not diminish the appearance and safety of abutting primary
public streets. Examples of "diminished appearance" include a fence along the sidewalk that isolates pedestrians between it and the street; the location of trash receptacles, utility vaults, etc. in the "rear" yard (abutting a public street); and similar impacts on the streetscape.

## Response: The site plan complies with this section.

2. Other design elements that provide exceptional design, and on balance, justify approval of the development with less than full compliance with the building orientation standard. Examples of such design elements include protection of natural and cultural resources; minimization of slope and tree cutting impacts; provision of pedestrian amenities along the public street; and similar public benefits that effectively accomplish the intent of the standard.
Response: The site plan complies with this section.
C. Building Form. The Planning Commission shall find that the proposed design promotes building forms that contribute positively to a sense of neighborhood and to the overall streetscape. This criterion may be met by complying with the Section 3.2-240D.2., Section 3.2250 or by considering the following guidelines:
3. Design exterior building elevations to avoid large expanses of uninterrupted building surfaces.
Response: The site plan complies with this section.
4. Depict building scale consistent with nearby buildings; "scale" relates to the size of various features (including, but not limited to entries, roof surfaces, façades, windows and materials) as compared to those features on nearby buildings.

## Response: The site plan complies with this section.

3. Provide transitions to nearby buildings by massing; "mass" relates to the overall size or bulk of a building or its principal parts.

## Response: The site plan complies with this section.

4. Provide porches, bays, and balconies that compliment nearby buildings.

Response: The building plan complies with this section.
5. Provide roof variations through offsets, breaks and/or extensions.

Response: The shed roof design provides roof variations through offsets and breaks. See attached elevation views of the proposed building.
6. Provide transition between the multi-unit site and $L D R$ areas.

Response: The site plan complies with this section.
7. Enhance solar access protection and/or energy conservation.

Response: The site plan complies with this section.
8. Protect on-site and off-site natural and designated historic features.

Response: The site plan complies with this section.
9. Provide human-scaled architectural detail.

Response: The site plan complies with this section.
10. Provide visual variety in elevations, architectural details, colors, and materials, compatible with existing development.
Response: The site plan complies with this section.


|  |
| :---: |
| subus di dumpling |


|  | (ex |  |
| :---: | :---: | :---: |

$\underset{\sim}{2}$
$\underset{~}{<}$


[^8]
## 

$\qquad$




SPRINGFIELD PLANNING COMMISSION

| Meeting Date: | 10/5/2021 |
| :--- | :--- |
| Meeting Type: | Regular Meeting |
| Staff Contact/Dept.: | Andy Limbird, DPW |
| Staff Phone No: | $541-726-3784$ |
| Estimated Time: | 30 Minutes |
| Council Goals: | Maintain and Improve Infrastructure <br> and Facilities |


| ACTION | Open a public hearing on a proposal to convert an existing middle school baseball field to a sports <br> stadium and make a determination based on application consistency with the Discretionary Use <br> criteria of the Springfield Development Code (SDC) Section 5.9-120, and the Site Plan Review <br> criteria of SDC 5.17-125. |
| :--- | :--- |

## ISSUE <br> STATEMENT:

The applicant has submitted a Discretionary Use permit for proposed changes to an existing baseball field at Hamlin Middle School. The proposal requires Site Plan Modification approval and elevates the baseball field to a sports stadium based on changes to the facilities and nature of use on the site. In accordance with Section 3.2-710 of the Springfield Development Code (SDC), sports stadiums are listed as a Discretionary Use in the Public Land and Open Space (PLO) District requiring Type III review.

ATTACHMENTS: 1. Staff Report for Discretionary Use Permit, Case 811-21-000169-TYP3<br>2. Staff Report for Site Plan Modification, Case 811-21-000168-TYP2<br>3. Site Map<br>4. Application and Exhibits for Discretionary Use Permit<br>5. Application and Exhibits for Site Plan Modification

## DISCUSSION:

The subject site is addressed as 326 Centennial Boulevard (Map 17-03-26-31, Portion of Tax Lot 2200 \& Map 17-03-26-34, Tax Lot 6200), and it contains an existing public middle school building with adjoining parking lots, driveways and driving aisles, school bus loop, perimeter landscaping, vegetated stormwater facilities, and outdoor sports fields including a football field/soccer pitch with running track and two baseball fields. The site formerly contained two smaller schools and was redeveloped as the Hamlin Middle School in 2016 pursuant to Case TYP216-00005.

The applicant is proposing to modify the existing baseball field in the southwest quadrant of the site to add bleacher seating for spectators along with a press box and announcer's booth, a building containing team changing rooms and public restrooms, pedestrian-scale lighting for spectator areas, and food and beverage concessions. Additionally, the applicant is proposing to expand the use of the baseball field to include local high school, collegiate, and semi-professional teams. The proposed change of use to a public sports stadium with new and expanded seating areas and facilities for spectators and teams triggers the requirement for a Discretionary Use permit for the project.

The Planning Commission is requested to open the public hearing and receive testimony on the proposal for Discretionary Use permit and accompanying Site Plan Modification. Staff recommends continuing the public hearing to the October 19, 2021 regular meeting. Depending upon the outcome of the public hearing, staff will return with a final staff report and recommended conditions of approval for both the Discretionary Use Permit and the Site Plan Modification at the October 19, 2021 meeting. The final staff reports will address any testimony received during the public hearing and implement any new or revised conditions arising from the Planning Commission review of the applications.

# Staff Report and Findings <br> Springfield Planning Commission Discretionary Use Request (Springfield School District) 

## Hearing Opened Date: October 5, 2021

## Report Date: September 28, 2021

## Case Number: 811-21-000169-TYP3

Applicant: Brett Yancey, Springfield School District

Site: 326 Centennial Boulevard (Map 17-03-26-31, Portion of Tax Lot 2200 \& Map 17-03-2634, Tax Lot 6200)

## Request

The application was submitted on August 17, 2021 and the initial public hearing on the matter of the Discretionary Use request is scheduled to be opened on October 5, 2021. The City conducted a Development Review Committee meeting on the Discretionary Use request on August 31, 2021.

## Site Information/Background

The property that is the subject of the Discretionary Use request is located on the north side of Centennial Boulevard between Pioneer Parkway East and $5^{\text {th }}$ Street. The site is developed with a public school building for Hamlin Middle School; driveways, driving aisles and parking lots; school bus loop; outdoor athletic fields for baseball, football/soccer and track; perimeter landscaping; and vegetated stormwater management facilities. The site is zoned for Public Land and Open Space (PLO) use and is addressed as 326 Centennial Boulevard. The applicant is proposing a change of use from school-based recreational uses (including after-school activities) to a sports stadium use for the existing baseball field in the southwest quadrant of the site. This change of use will allow for expanded spectator seating, a team changing room and public restroom building, food and beverage concessions, press box, and announcer's booth. The proposed changes to the baseball field will accommodate use by local high school, collegiate, and semi-professional teams. In accordance with Section 3.2-710 of the Springfield Development Code (SDC), sports stadiums are listed as a Discretionary Use in the PLO District requiring Planning Commission approval.

The property has frontage on Pioneer Parkway East along the western boundary and Centennial Boulevard along the southern boundary. Two driveways along the eastern edge of the site provide access to $5^{\text {th }}$ Street via L Street and Moffitt Lane. The applicant has submitted a Major Site Plan Modification application under separate cover (Case 811-21-000168-TYP2) for the proposed modifications on the site, including the bleacher seating areas, team changing room and public restroom building, press box, and perimeter landscaping areas. The applicant also previously obtained approval for a Minimum Development Standards (MDS) permit pursuant to Case 811-21-000176-TYP1 for modifications to the on-site stormwater management facilities and team dugouts to allow for replacement of the existing natural turf field with artificial turf and an underdrain system.

## Notification and Written Comments

Notification of the October 5, 2021 public hearing was sent to all property owners and residents within 300 feet of the site on September 15 and 24, 2021. Notification was also published in the legal notices section of The Register Guard on September 21, 2021. Public hearing notices were posted in the following public
locations: at three locations along the subject property frontages (the intersection of Pioneer Parkway East and Centennial Boulevard; the southern driveway on Centennial Boulevard; and the eastern driveway at L Street), on the City's webpage, and on the digital display in the Development \& Public Works office. Public notification was also sent to all property owners and tenants/residents within 300 feet of the site on August 24, September 15 and September 24, 2021 for the Major Site Plan Review application submitted under separate cover (Case 811-21-000168-TYP2). Staff responded to several telephone calls and emails regarding the project, including written requests for additional information about the project from the following respondents: Dr. Maria Elena Sampson-McCoy, $12565^{\text {th }}$ Street, Springfield; and Kurt Krause, $114233^{\text {rd }}$ Place, Springfield.

Response to Public Comments: Staff provided additional information to both Dr. Sampson-McCoy and Mr. Krause, including links to the applicant's submittal materials and the updated traffic and parking analysis prepared by the applicant's traffic engineer. Staff also forwarded information on the public hearing proceedings to both respondents to encourage submittal of any additional questions and participation in the public hearing meeting on October 5, 2021.

Photo 1 - Site Air Photo



Figure 1 - Zoning Map Extract


## Zoning Map Legend

| $\square$ | Low Density Residential (LDR) | $\square$ |
| :--- | :--- | :--- |
| $\square$ | Public Land and Open Space (PLO) |  |
| $\square$ Medium Density Residential (MDR) | $\square$ | Neighborhood Commercial (NC) |

[^9]
## Criteria of Approval

Section 5.9-100 of the SDC contains the criteria of approval for the decision maker to utilize during review of Discretionary Use requests; those criteria are:

SDC 5.9-120 CRITERIA
A. The proposed use conforms with applicable:

1. Provisions of the Metro Plan;
2. Refinement plans;
3. Plan District standards;
4. Conceptual Development Plans or
5. Specific Development Standards in this Code;
B. The site under consideration is suitable for the proposed use, considering:
6. The location, size, design and operating characteristics of the use (operating characteristics include but are not limited to parking, traffic, noise, vibration, emissions, light, glare, odor, dust, visibility, safety, and aesthetic considerations, where applicable);
7. Adequate and safe circulation exists for vehicular access to and from the proposed site, and on-site circulation and emergency response as well as pedestrian, bicycle and transit circulation;
8. The natural and physical features of the site, including but not limited to, riparian areas, regulated wetlands, natural stormwater management/drainage areas and wooded areas shall be adequately considered in the project design; and
9. Adequate public facilities and services are available, including but not limited to, utilities, streets, storm drainage facilities, sanitary sewer and other public infrastructure.
C. Any adverse effects of the proposed use on adjacent properties and on the public can be mitigated through the:
10. Application of other Code standards (including, but not limited to: buffering from less intensive uses and increased setbacks);
11. Site Plan Review approval conditions, where applicable;
12. Other approval conditions that may be required by the Approval Authority; and/or
13. A proposal by the applicant that meets or exceeds the cited Code standards and/or approval conditions.
D. Applicable Discretionary Use criteria in other Sections of this Code:
14. Wireless telecommunications systems facilities requiring Discretionary Use approval are exempt from Subsections A-C above, but shall comply with the approval criteria specified in Section 4.3-145.
15. Alternative design standards for multifamily development are exempt from Subsections $A-C$ above, but shall comply with the approval criteria specified in Section 3.2-245
16. Fences requiring Discretionary Use approval are exempt from Subsections A-C above, but shall comply with the approval criteria specified in Section 4.4-115.C.
17. The siting of public elementary, middle and high schools requiring Discretionary Use approval is exempt from Subsections A - C above, but shall comply with the approval criteria specified in Section 4.7-195.

## Proposed Findings In Support of Discretionary Use Approval

## Criterion: Discretionary Use criteria of approval:

## A. The proposed use conforms with applicable;

## 1. Provisions of the Metro Plan;

Finding: The property is currently zoned Public Land and Open Space (PLO) in accordance with the Springfield Zoning Map and is designated Low Density Residential (LDR) in the adopted Metro Plan diagram. The applicant is not proposing to change the current zoning or designation for the subject site.

Finding: Provisions of the Metro Plan contemplate non-residential uses such as schools, streets, parks and government facilities in land designated for residential use. Approximately $32 \%$ of residentially-designated land is typically developed with non-residential uses (Metro Plan Residential Land Supply and Demand Finding \#8).

Finding: The adopted comprehensive plan applicable to the site is the Springfield 2030 Refinement Plan. There are no specific elements or policies of the adopted Comprehensive Plan that apply to the proposed development.

Conclusion: The request meets this criterion.

## 2. Refinement plans;

Finding: The subject site is not within an adopted neighborhood refinement plan area.
Conclusion: This criterion is not applicable to this request.

## 3. Plan District standards;

Finding: The subject site is not within an adopted Plan District.
Conclusion: This criterion is not applicable to this request.

## 4. Conceptual Development Plans or

Finding: There are no Conceptual Development Plans currently applicable to the subject site.
Conclusion: This criterion is not applicable to this request.

## 5. Specific Development Standards in this Code;

Finding: To address the land use approval requirements for a sports stadium in the PLO District, the applicant has submitted for Discretionary Use approval (811-21-000169-TYP3). A Major Site Plan Modification application also has been submitted under separate cover (811-21-000168-TYP2). Major Site Plan Modifications are typically Type II decisions under SDC 5.17-145.C.2. However, under SDC 5.1-130, the Director may elevate review of a Type II decision to Type III review "due to the complexity of the application or the need for discretionary review." The Director has determined that the Major Site Plan Modification application is appropriate for discretionary review as a Type III decision given the concurrent application for Discretionary Use approval.

Finding: Sports stadiums are listed in the Public Land and Open Space district as a Discretionary Use but there are no specific development standards aside from the standards generally applicable to development of school, park or recreational facilities listed in SDC 3.2-720 (Base Zone Development Standards) and SDC 5.17-100 et seq (Site Plan Review).

Finding: A site plan was previously approved for the Hamlin Middle School site in 2016 when the previous schools were demolished and the site was reconfigured to accommodate only the expanded middle school building, ancillary buildings, parking lots, and outdoor sports fields. The applicant is now proposing to modify the site plan to add sports stadium uses, which includes adding new and expanded bleacher seating, a press box and announcer's booth behind home plate, a new building for team changing rooms and public restrooms, food and beverage concessions, and pedestrian-scale lighting for spectator areas. The nature and extent of the proposed changes have triggered the requirement for a Major Site Plan Modification.

Finding: With approval of the Discretionary Use request, the applicant will need to obtain approval for the Major Site Plan Modification submitted under separate cover (Case 811-21-000168-TYP2). The detailed site development plans, including on-site and off-site vehicle access and parking, underground utilities, restroom building, and expanded bleacher seating needs to be addressed through the Site Plan Modification approval.

## Condition of Approval:

## 1. Subsequent to or concurrent with approval of the Discretionary Use Permit, the applicant must obtain Planning Commission approval for the Site Plan Modification initiated by Case 811-21-000168-TYP2.

Conclusion: As conditioned herein, the proposal meets this criterion.

## B. The site under consideration is suitable for the proposed use, considering:

1. The location, size, design and operating characteristics of the use (operating characteristics include but are not limited to parking, traffic, noise, vibration, emissions, light, glare, odor, dust, visibility, safety, and aesthetic considerations, where applicable);

Finding: The property requested for Discretionary Use approval is an existing public middle school site comprising approximately 32.9 acres, although the project area in the southwest quadrant of the site is limited to approximately 5.5 acres. The applicant is proposing to make site modifications to the area immediately adjacent to and including the existing baseball field in the southwest corner of the school site. The size of the property along with the existing driveways onto major streets, parking lots with 236 spaces, regulation size baseball field with light towers, available area for installing expanded bleacher seating, press box, and restroom building, and its location adjacent to a developed urban transportation network will adequately accommodate the proposed use.

Finding: The property requested for Discretionary Use approval is zoned PLO and it borders the Q Street Channel and Highway 126 to the north; Pioneer Parkway to the west; and Centennial Boulevard to the south. With this configuration, the property is bordered on three sides by major transportation corridors including the bus rapid transit line along Pioneer Parkway. There is an existing transit platform and pedestrian gate near the southwest corner of the site. The subject site is already developed with outdoor sports fields that accommodate year-round activities by local schools and community users. Currently, the site is used for daytime and nighttime sports activities including football, soccer, track and baseball. The site is also used for team practices and community recreational activities such as ultimate frisbee and flag football.

Finding: According to the applicant's project narrative (Attachment 3), the facility is proposed to be expanded to accommodate local middle school, high school, collegiate, and semi-professional baseball teams. The bleacher seating area is to be expanded to accommodate up to 1,900 spectators. Each team will have a game schedule and playing season that does not conflict with the other users of the facility. With existing light towers for nighttime illumination of the playing field, both daytime and evening game times are proposed for the facility. The existing field lighting is downcast and directed to illuminate the playing surfaces and the lights are used only during live sporting activities on the site. During non-playing times the stadium lighting is not illuminated. Continued use of the existing light towers for the baseball stadium will not result in offsite glare or light trespass, or direct light onto nearby residences or public rights-of-way.

Finding: There will be daytime noise and activity during construction of the new and modified site improvements. However, short duration noise spikes are not regulated through
the Springfield Development Code and are mitigated by daytime and nighttime background noise from traffic and public transit operations already occurring on the site periphery. Additionally, the proposed site modifications should not require extensive excavation or prolonged use of heavy equipment or machinery that would introduce new or excessive noise to the site. Upon completion of the sports stadium, it is anticipated that a public address system may be used for playing a national anthem to start games, announcing player lineups and other game time information, and providing occasional commentary and updates to spectators. The use of music and vocal encouragement to rally teams and spectators is also commonly done with the public address system. Amplified noise is regulated by provisions of the City's Municipal Code (SMC 5.220) and is not a part of this decision.

Finding: The proposed sports stadium is already developed with dedicated driveway accesses off Centennial Boulevard and L Street, and existing parking spaces for 236 vehicles on the adjoining school site. The site operates as a public middle school and has substantial builtin capacity for accommodating school bus, vehicle, and pedestrian traffic to and from the site during peak periods (typically mornings and afternoons) as a part of normal school operations. Additional discussion about the vehicular access and circulation is found below.

Finding: The applicant has submitted a parking and traffic analysis for the project (Attachment 4, Pages 8-15) prepared by a professional Traffic Engineer. The applicant's study identifies multiple levels of expected parking demand based on the nature and classification of the various teams using the sports stadium. The highest level of parking demand is associated with the semi-professional baseball team that will be using the facility. Mechanisms for addressing vehicle, bus, pedestrian and bicycle traffic to and from the site are identified in the applicant's parking study. Overall, a key recommendation of the applicant's Traffic Engineer is for a Parking Demand Management Plan to be implemented for the sports stadium. The Parking Demand Management Plan requirements and considerations address the adequacy of the site to accommodate the proposed use, especially in relation to parking and on-site vehicle circulation.

Finding: The applicant's parking analysis indicates that the baseball stadium will be used by Bushnell University during Hamlin school hours, and that charter buses will be used to drop off teams and staff to the field. The joint use of the sports stadium and its potential impact to Hamlin Middle School operations are considered in the parking demand management plan. The parking analysis considers the operational needs of the middle school site for school bus, passenger vehicle, pedestrian, and bicycle traffic as set forth in SDC 4.7-195. Importantly, the applicant's parking demand management plan provides for separation of baseball stadium traffic and vehicle circulation from that of the middle school during times when sporting events are scheduled during school hours. With the implementation of a Parking Demand Management Plan, the proposal satisfies SDC 4.7-195 and thereby meets this criterion.

Finding: The applicant has proposed using on- and off-site joint use parking areas to meet parking space requirements as described in the parking analysis prepared by Sandow Engineering. The use and availability of parking is a key consideration for the proposed sports stadium. SDC 4.2-110.F allows the Director to authorize joint use of parking facilities provided the applicant demonstrates there is no substantial conflict with principal operating hours of the buildings or uses for which the joint use parking is proposed, the parties concerned provide evidence of agreement for the joint use by a legal instrument approved by the City Attorney, and the agreement is recorded at Lane County Deeds \& Records.

Finding: The Parking Demand Management Plan will need to ensure there is complete separation of traffic between school-related activities such as school bus circulation, parent pick-up and drop-off, and non-school activities in the baseball stadium. Based on the applicant's parking analysis, most but not all sporting events to be held on the site will be scheduled during non-school hours (i.e. evenings and weekends). However, certain events may overlap or potentially conflict with normal school operations. To prevent conflicts between school and baseball stadium events on the site the applicant must implement the provisions of a Parking Demand Management Plan to ensure that proper signage, personnel, and traffic control mechanisms are in place prior to, during, and after all stadium events that meet or exceed the threshold parking demands described in the parking analysis.

Finding: The accompanying Site Plan Modification provides additional discussion and analysis of the parking configuration, site access and egress, bicycle parking, and other operational considerations for the sports stadium activities (Case 811-21-000168-TYP2).

## Conditions of Approval:

2. As an ongoing condition of approval, the applicant must implement a Parking Demand Management Plan for the site as outlined in the parking analysis prepared by Sandow Engineering, with revisions as required by this decision. The Parking Demand Management Plan must be recorded at Lane County Deeds \& Records to commemorate its use and applicability to the site.
3. Prior to issuance of Final Occupancy and commencement of operations for the stadium facility the applicant must execute and record a shared parking agreement with the Community of Faith Church at $13055^{\text {th }}$ Street and provide evidence thereof to the City.

Conclusion: As conditioned herein, the proposal meets this criterion.
2. Adequate and safe circulation exists for vehicular access to and from the proposed site, and on-site circulation and emergency response as well as pedestrian, bicycle and transit circulation;

Finding: The site has frontage on Pioneer Parkway along the western boundary; however, there are no developed driveways or public pedestrian facilities along this edge of the site. Rosa Parks Pathway is located between Pioneer Parkway East and West and it serves as the primary north-south bicycle and pedestrian corridor between G Street and Q Street. For this reason, there is no public sidewalk along the western street frontage of the project area.

Finding: The site frontage on Centennial Boulevard along the southern boundary is fully developed with a public sidewalk, bicycle lane, and a gated driveway access for vehicles and buses. There is also a gated pedestrian and bicycle access from the southwest corner of the site to the pedestrian crosswalk at the intersection of Centennial Boulevard and Pioneer Parkway. An existing bus rapid transit platform is located at this pedestrian crossing.

Finding: The site has a gated driveway access onto $5^{\text {th }}$ Street via L Street. The driveway at L Street allows for access and egress for vehicles, pedestrians and bicycles. A school bus loop in
the northeast corner of the site is accessed from $5^{\text {th }}$ Street via Moffitt Lane, but this does not allow for direct vehicle access to the project area.

Finding: Currently, vehicular, pedestrian and bicycle access to and from the site is provided by the existing public street system including Pioneer Parkway, Centennial Boulevard, $5^{\text {th }}$ Street and L Street. The site is also developed with internal walkways, driveways and driving aisles for pedestrian, bicycle and vehicle circulation. The site experiences fluctuations of vehicle, bicycle and pedestrian traffic conditions associated with the start of school, recess periods, end of school, and special school events during evenings and weekends. These peak activity periods are similar to scheduled starting and ending times for planned sporting events on the site. However, for baseball stadium events with more than 885 spectators, the capacity of the on-site driveways and parking lot areas will be exceeded and the event will be reliant upon off-site parking areas as described in the applicant's traffic and parking analysis prepared by Sandow Engineering. The applicant will need to implement the provisions of the Parking Demand Management Plan recorded for the property to ensure the baseball stadium events do not cause congestion on-site, nor have traffic impacts that extend to nearby public streets.

Finding: The siting of a stadium on Hamlin Middle School grounds and the potential mix of stadium bus and passenger vehicle traffic with school activities requires clear responsibilities by all parties involved with the stadium use to ensure the stadium maintains adequate and safe circulation for all modes of travel to access the site.

Finding: SDC 4.7-195.A. 8 requires that for elementary and middle schools all parking lots and driveways must be designated to separate bus and passenger vehicle traffic. The applicant must ensure that sports stadium busing activities are separated from middle school vehicle traffic to address this criterion for safe traffic operations on a joint use site.

Finding: The applicant has provided a bus turning analysis and proposed busing and spectator activities for the low to moderate usage associated with the Bushnell University games to be held during Hamlin school operations. The submitted parking analysis requires utilization of the southern parking lot for Bushnell team and spectator busing during Hamlin school hours. The applicant's parking and traffic analysis partially addresses SDC 4.7-195 and this criterion of approval by providing for site circulation while separating sports stadium and school busing and passenger vehicle activities. The applicant's parking and traffic analysis is intended to avoid conflicts with parent pickup and drop-off activities during and immediately following school hours (within 30 minutes of the start and end of the school day) when Bushnell baseball activities are also occurring on the site. With the recording of a parking demand management plan, and recommended measures such as wayfinding signage and maps, the proposal will meet this criterion.

Finding: Wayfinding and site maps guiding traffic and clearly showing parking locations for spectators will allow the stadium to operate consistent with ensuring safe and efficient traffic flow to and from the site. Directional signage for the Bushnell University games or any other collegiate, semi-professional, or professional athletic events during middle school operating hours is outlined in the parking demand management plan. However, additional signage and maps needed for suitable operations is not provided for the other spectator level events in the applicant's parking demand management plan. The parking demand management plan will need to be updated and expanded to provide for wayfinding signage and maps for all spectator events that exceed 885 people because these require the use of off-site parking areas.

Finding: The site's location at the intersection of two major streets and the nearby Fire Station located at 1475 Fifth Street facilitates rapid emergency response to the site. Lane Transit District (LTD) operates the bus rapid transit route along Pioneer Parkway that includes a transit platform outside the southwest corner of the site. Transit buses also operate along $5^{\text {th }}$ Street and Centennial Boulevard (Centennial Route \#13 \& Fifth Street/Hayden Bridge Route \#17) which pass along or near the site boundaries, so the availability and proximity of transit service is an important consideration that applies to this site.

Finding: There are public sidewalks along the southern boundary of the site where it abuts Centennial Boulevard, and on L Street and Moffitt Lane where these streets provide access to the gated site driveways. Pedestrian walkways are located within the site and provide connections to the perimeter public street system along with interior parking lots and drop-off lanes. The existing facilities are designed and intended to provide safe and efficient pedestrian access to and within the site. The applicant's parking demand management plan identifies the use of public sidewalks and internal walkways to provide access to and from off-site parking areas to the baseball stadium.

## Condition of Approval:

## 4. Prior to recording the document at Lane County, the applicant's Parking Demand Management Plan must be revised to include the provision of wayfinding signage and maps for all spectator events with more than 885 people.

Conclusion: As conditioned herein, the proposal meets this criterion.
3. The natural and physical features of the site, including but not limited to, riparian areas, regulated wetlands, natural stormwater management/drainage areas and wooded areas shall be adequately considered in the project design; and

Finding: There are no regulated wetlands or riparian areas within the project area that warrant protection. The Q Street Channel - a delineated wetland channel, riparian area, and public stormwater facility - runs along the northern boundary of the site. However, the project area is not adjacent to the Q Street Channel and there are no proposed changes that would otherwise affect the existing wetland channel.

Finding: The Q Street Channel is a floodway that has an associated floodplain, but the subject site is not located within a mapped flood hazard area.

Finding: The project area has been developed with an outdoor sports field and there are no trees or other natural features on the site that warrant protection.

Conclusion: The proposal meets this criterion.
4. Adequate public facilities and services are available, including but not limited to, utilities, streets, storm drainage facilities, sanitary sewer and other public infrastructure.

Finding: The site is inside the Springfield City limits and is already developed with a middle school building, ancillary buildings, parking lots and driving aisles, outdoor sports fields and stormwater management facilities. The site is currently served with a full suite of public
utilities including sanitary sewer, water, stormwater, electricity and telecommunication services.

Finding: The applicant previously obtained approval for modifications to the site drainage to accommodate turf replacement for the field and changes to the team dugouts (Case 811-21-000176-TYP1).

Finding: The applicant is proposing to connect to existing utilities on the site for the team changing room and restroom building, for the press box and pedestrian-scale lighting for spectator areas. Details of the planned utility connections are found in the Site Plan Modification submitted under separate cover (Case 811-21-000168-TYP2).

Conclusion: As described herein and with the recommended Condition 1 requiring approval of the Major Site Plan Modification submitted under separate cover (Case 811-21-000168TYP2), the proposal meets this criterion.

## C. Any adverse effects of the proposed use on adjacent properties and on the public can be mitigated through the:

## 1. Application of other Code standards (including, but not limited to: buffering from less intensive uses and increased setbacks);

Finding: In accordance with the requirements of SDC 4.7-195.A.8, the applicant's proposed Parking Demand Management Plan addresses traffic access, circulation and parking for the site to ensure that the baseball stadium use does not conflict with normal school use and operation on the balance of the site.

Finding: As discussed and conditioned herein (Condition 3), the proposed baseball stadium and parking demand management plan provide for separation of baseball stadium activities from normal school activities on the site. This is accomplished primarily through scheduling of game times, but also relies on supplemental measures such as wayfinding signage, maps, and (for larger events) use of personnel to provide shuttle services, directional guidance, and active monitoring of available parking areas.

Finding: The site abuts major transportation corridors along three sides. The proposed sports stadium is an existing baseball field located at the southwest corner of the school site, which is the furthest point away from abutting residential properties to the east. Residential properties to the south across Centennial Boulevard have been improved with screening fencing and buffering along the busy collector street.

Finding: The proposed expansion of an existing baseball field to allow for sports stadium use by local high school, collegiate, and semi-pro teams constitutes an intensification of use on the site but does not represent an adverse impact to properties in the vicinity or the general public. Nearby residential properties have been buffered with increased landscaped setbacks constructed with the recent Hamlin Middle School redevelopment, or vegetative and structural screening installed along nearby transportation corridors. Parking and traffic circulation for the proposed stadium is addressed through the applicant's parking analysis and a Parking Demand Management Plan to be recorded for the site.

Finding: It is not expected that the proposed use will generate unusual noise or odors, aside from occasional crowd noise associated with actions during game play or team encouragement. The stadium is geographically separated from nearby residential properties and intervening transportation corridors have a high ambient noise level that will usually exceed normal stadium noise levels. The stadium is also oriented such that noise projecting from the spectator seating areas and press box will be directed to the southwest, which is toward the intersection of Centennial Boulevard and Pioneer Parkway. This will minimize noise projection to nearby residential areas.

Finding: The existing site, including the baseball field proposed for modification, meets applicable setbacks from perimeter property lines and abutting land uses.

Finding: The applicant is proposing to use the existing light towers and light fixtures for nighttime illumination of the baseball field. The other baseball field to the east and the football/soccer field to the north are also developed with lighting fixtures. In calls to staff, adjacent residents had previously expressed interest in whether new lighting fixtures would be used for the stadium facilities. It was not clear from the inquiries whether there were concerns about taller and/or brighter lights used for the proposed stadium. Based on the applicant's submittal, no changes to the field lighting will be made although pedestrian-scale lighting of spectator areas and emergency egress lighting for the bleachers are proposed to be installed. These internal site lighting fixtures are not designed or intended for coverage of large surface areas and therefore will not be detectable off-site. In terms of playing field illumination, the operational characteristics of the proposed sports stadium should not be significantly different from the current and site lighting levels during evening hours. Therefore, it is not expected there will be any adverse effects from lighting of the baseball stadium.

Conclusion: As described herein and in the Major Site Plan Modification submitted under separate cover (Case 811-19-000037-TYP2) the proposal meets this criterion.

## 2. Site Plan Review approval conditions, where applicable;

Finding: The applicant will be required to satisfy the conditions of approval for this Discretionary Use Permit, if any, and the Major Site Plan Modification submitted under separate cover (Case 811-21-000168-TYP2) prior to or concurrently obtaining Site Plan Modification approval and building permits for this project.

Conclusion: As described herein and with the recommended Condition 1 requiring approval of the Major Site Plan Modification submitted under separate cover (Case 811-11-000037TYP2), the proposal meets this criterion.

## 3. Other approval conditions that may be required by the Approval Authority; and/or

Finding: As discussed previously herein, a monitoring system be implemented for the applicant's Parking Demand Management Plan. The self-reporting monitoring program will be used to ensure compliance with the adopted parking plan, particularly with respect to separating Bushnell University baseball spectators and traffic from Hamlin school traffic; and ensuring the off-site parking spaces are used as designed and intended.

Finding: Aside from the conditions listed above, staff is not recommending any other conditions of Discretionary Use approval. Recommended conditions required to address specific site development and operational issues are described in the accompanying Major Site Plan Modification approval (Case 811-21-000168-TYP2).

Conclusion: As described herein and with the recommended Conditions listed above, the proposal meets this criterion.

Condition of Approval:
5. Prior to recording the document at Lane County, the applicant's Parking Demand Management Plan must be revised to include the following requirements:
a. The property owner or designee must monitor compliance with requirements of the Parking Demand Management Plan to ensure separation of uses and traffic between the baseball stadium and normal school activities;
b. The property owner or its designee must monitor the number of spectators that attend each spectator event at the site for the property owner or designee to determine the approximate attendance levels specified in the Parking Demand Management Plan (0-884 attendees; 885-1,124 attendees; and 1,125 or more attendees); and
c. The monitoring program must provide for annual reporting to the City not more than 60 days following the final regular season baseball game or November 1 of each calendar year, whichever is later. This report must include the date, start time and end time of each spectator event and the approximate attendance, as well as the elements of the Parking Demand Management Plan that were implemented.
5. A proposal by the applicant that meets or exceeds the cited Code standards and/or approval conditions.

Finding: The applicant is requesting concurrent approval of the Major Site Plan Modification submitted for the sports stadium (Case 811-21-000168-TYP2). However, the applicant is not requesting alternate design criteria or proposing to depart from the cited Code standards for this facility.

Conclusion: As described herein and with the recommended Condition 1 requiring approval of the Major Site Plan Modification submitted under separate cover (Case 811-21-000168TYP2), the proposal meets this criterion.
D. Applicable Discretionary Use criteria in other Sections of this Code:

1. Wireless telecommunications systems facilities requiring Discretionary Use approval are exempt from Subsections A-C above, but shall comply with the approval criteria specified in Section 4.3-145.
2. Alternative design standards for multifamily development are exempt from Subsections A-C above, but shall comply with the approval criteria specified in Section 3.2-245.
3. Fences requiring Discretionary Use approval are exempt from Subsections A-C above, but shall comply with the approval criteria specified in Section 4.4-115.C.
4. The siting of public elementary, middle and high schools requiring Discretionary Use approval is exempt from Subsections $A-C$ above, but shall comply with the approval criteria specified in Section 4.7-195.

Finding: The proposed sports stadium is not a wireless telecommunications facility. Therefore, Criterion D. 1 is not applicable.

Finding: The site is zoned for Public Land and Open Space use and there is no multi-family residential development proposed on the site. Therefore, Criterion D. 2 is not applicable.

Finding: The applicant is not proposing a new or modified fence that exceeds the standard provisions of SDC 4.4-115. Therefore, Criterion D. 3 is not applicable.

Finding: The proposed facility is already part of an approved school site and does not require discretionary siting approval within the PLO zoning district. Therefore, Criterion D. 4 is not applicable.

Conclusion: This criterion is not applicable.
Conclusion: Staff has reviewed the application and supporting evidence submitted by the applicant for the Discretionary Use request. Based on the above-listed criteria, staff recommends support for the request as the proposal meets the stated criteria for Discretionary Use approval. Additionally, approval of the Discretionary Use would facilitate the approval of the Major Site Plan Modification application for the proposed changes to the baseball field and site submitted under separate cover (Case 811-21-000168-TYP2).

## Conditions of Approval

SDC Section 5.9-125 allows for the Approval Authority to attach conditions of approval to a Discretionary Use request to ensure the application fully meets the criteria of approval. The specific language from the code section is cited below:

## 5.9-125 CONDITIONS

The Approval Authority may attach conditions as may be reasonably necessary in order to allow the Discretionary Use approval to be granted.

The proposed sports stadium has been reviewed and additional recommended conditions of approval are described in the companion Major Site Plan Modification application for this development submitted under separate cover (Case 811-21-000168-TYP2). This Discretionary Use Permit will need to be approved before approval can be issued for the accompanying Site Plan Modification.

## SUMMARY OF CONDITIONS OF APPROVAL:

1. Subsequent to or concurrent with approval of the Discretionary Use Permit, the applicant must obtain Planning Commission approval for the Site Plan Modification initiated by Case 811-21-000168-TYP2.
2. As an ongoing condition of approval, the applicant must implement a Parking Demand Management Plan for the site as outlined in the parking analysis prepared by Sandow Engineering, with revisions as required by this decision. The Parking Demand Management Plan must be recorded at Lane County Deeds \& Records to commemorate its use and applicability to the site.
3. Prior to issuance of Final Occupancy and commencement of operations for the stadium facility the applicant must execute and record a shared parking agreement with the Community of Faith Church at $13055^{\text {th }}$ Street and provide evidence thereof to the City.
4. Prior to recording the document at Lane County, the applicant's Parking Demand Management Plan must be revised to include the provision of wayfinding signage and maps for all spectator events with more than 885 people.
5. Prior to recording the document at Lane County, the applicant's Parking Demand Management Plan must be revised to include the following requirements:
a. The property owner or designee must monitor compliance with requirements of the Parking Demand Management Plan to ensure separation of uses and traffic between the baseball stadium and normal school activities;
b. The property owner or its designee must monitor the number of spectators that attend each spectator event at the site for the property owner or designee to determine the approximate attendance levels specified in the Parking Demand Management Plan (0884 attendees; 885-1,124 attendees; and 1,125 or more attendees); and
c. The monitoring program must provide for annual reporting to the City not more than 60 days following the final regular season baseball game or November 1 of each calendar year, whichever is later. This report must include the date, start time and end time of each spectator event and the approximate attendance, as well as the elements of the Parking Demand Management Plan that were implemented.

## TYPE III MAJOR SITE PLAN MODIFICATION STAFF REPORT \& FINDINGS

Project Name: Hamlin Middle School Major Site Plan Modification
Project Proposal: Construct bleacher seating for 1,900 spectators, team changing room and restroom building, press box, food and beverage concessions, and pedestrian-scale lighting for an existing baseball field at Hamlin Middle School.

Case Number: 811-21-000168-TYP2

Project Location: 326 Centennial Blvd. (Map 17-03-26-31, Ptn. of TL 2200 \& Map 17-03-26-34, TL 6200)

Zoning: Public Land and Open Space (PLO)
Comprehensive Plan Designation:
Low Density Residential (Metro Plan)
Overlay Districts: Drinking Water Protection (DWP)

Pre-Submittal Meeting Date: 6/22/2021

Application Submitted Date: 8/13/2021

Hearing Opened Date: October 5, 2021


Report Date: September 28, 2021

Associated Applications: 811-21-000150-PRE (Pre-submittal for Site Plan Modification); 811-21-000176-TYP1 (Minimum Development Standards-Minor); 811-21-000169-TYP3 (Discretionary Use Permit)

## APPLICANT'S DEVELOPMENT REVIEW TEAM

| Applicant: | Applicant's Representative: | Project Engineer: |
| :--- | :--- | :--- |
| Brett Yancey | Tony Favreau, PE | Tony Favreau, PE |
| Springfield School District | Favreau Group Engineering | Favreau Group Engineering |
| 640 A Street | 3750 Norwich Avenue | 3750 Norwich Avenue |
| Springfield OR 97477 | Eugene OR 97408 | Eugene OR 97408 |

## CITY OF SPRINGFIELD'S DEVELOPMENT REVIEW TEAM

| POSITION | REVIEW OF | NAME | PHONE |
| :--- | :--- | :--- | :--- |
| Project Manager | Planning | Andy Limbird | $541-726-3784$ |
| Transportation Planning Engineer | Transportation | Michael Liebler | $541-736-1034$ |
| Public Works Engineer | Utilities | Clayton McEachern | $541-736-1036$ |
| Public Works Engineer | Sanitary \& Storm Sewer | Clayton McEachern | $541-736-1036$ |
| Deputy Fire Marshal | Fire and Life Safety | Eric Phillips-Meadow | $541-726-2293$ |
| Building Official | Building | Chris Carpenter | $541-744-4153$ |

Site Information: The subject development site consists of the southwest corner of the existing Hamlin Middle School campus at 326 Centennial Boulevard. The overall site is developed with the school building and ancillary buildings; driveways, driving aisles and parking lots; outdoor sports fields for football/soccer, track, and baseball; perimeter landscaping, and vegetated stormwater management facilities. The specific project area is within the southwest quadrant of the site and the proposed development adds bleacher seating for up to 1,900 spectators; a team changing room and public restroom building; press box and announcer's booth; food and beverage concessions; and pedestrian-scale lighting for spectators. The applicant is proposing to convert the baseball field into a sports stadium for use by local high school, collegiate, and semi-professional baseball teams.

The subject site is zoned Public Land and Open Space (PLO) in accordance with the Springfield Zoning Map and is designated Low Density Residential (LDR) according to the adopted Metro Plan diagram. Other properties to the east, south, and across Pioneer Parkway to the west are zoned LDR, Medium Density Residential (MDR), High Density Residential (HDR) and Neighborhood Commercial (NC). Properties to the north comprise the Q Street Channel and the Highway 126 corridor.

The project area is within the mapped 10-20 and 20+ Year Time of Travel Zones (TOTZs) for the Q Street drinking water wellhead and, therefore, is subject to the provisions of the Drinking Water Protection Overlay District, Section 3.3-200 of the Springfield Development Code (SDC). Recreational facilities such as sports fields (especially with artificial turf), bleacher seating and restroom/changing room buildings are not typically associated with the production, storage, or use of materials that are hazardous to surface and groundwater resources. However, because the site directly abuts and drains into the Q Street Channel, provisions for water quality protection during site construction and operation have been included herein as a recommended Best Practice in order to protect local surface waters and groundwater resources. The applicant also addressed stormwater drainage modifications on the site through the Minimum Development Standards approval issued for the project (Case 811-21-000176-TYP1).

DECISION: This decision has been elevated to a Type III land use decision by the Planning Director because of the associated Discretionary Use Permit required for the sports stadium use and submitted under separate cover as Case 811-21-000169-TYP3. This Type III decision requires action by the Springfield Planning Commission and grants Tentative Site Plan Modification Approval. The standards of the Springfield Development Code (SDC) applicable to each criterion of Site Plan Approval are listed herein and are satisfied by the submitted plans unless specifically noted with conditions necessary for compliance. Final Site Plans must conform to the submitted plans as conditioned herein. This is a limited land use decision made according to City code and state statutes. Unless appealed, the decision is final.
(See Page 14 for a summary of the conditions of approval.)
OTHER USES AUTHORIZED BY THE DECISION: No additional uses are authorized by this decision beyond what is approved in this decision. Future development must be in accordance with the provisions of the Springfield Development Code, filed easements and agreements, and all applicable local, state and federal regulations.

REVIEW PROCESS: This application is being reviewed as a Major Site Plan Modification elevated to a Type III decision in accordance with SDC 5.1-130 and the site plan review criteria of approval in SDC 5.17-125. The subject application was submitted and considered complete on August 13, 2021. Per ORS 227.178, the City must take final action on this application, including resolution of any local appeal to the City Council, on or before December 11, 2021.

Procedural Finding: Applications for Type III Quasi-Judicial Decisions require the notification of property owners/occupants within 300 feet of the subject property at least 10 days prior to the initial public hearing on the matter when more than one hearing is to be conducted (SDC 5.2-115.A). The applicant and parties submitting written comments during the notice period or at the public hearings have appeal rights and are mailed a copy of this decision for consideration (See Written Comments below and Appeals at the end of this decision).

Procedural Finding: On August 31, 2021, the City's Development Review Committee reviewed the proposed plans (8 Sheets - Favreau Group Engineering Sheets 1-3 for Hamlin Baseball Field; Favreau Group Engineering Sheets 1-

3 for Restroom Building; and BBT Architects Sheets A-1 and A-3 for restroom building elevations), plan details for the bleacher seating and lighting, applicant's project narrative, and other supporting information. City staff's review comments have been reduced to findings and recommended conditions only as necessary for compliance with the Site Plan Review criteria of SDC 5.17-125.

Procedural Finding: In accordance with SDC 5.17-125 to 5.17-135, the Final Site Plan must comply with the requirements of the SDC and the conditions imposed by the Director in this decision. The Final Site Plan otherwise must be in substantial conformity with the tentative site modification plan reviewed. Portions of the proposal approved as submitted during tentative review cannot be substantively changed during Final Site Plan approval. Approved Final Site Plans (including Landscape Plans) must not be substantively changed during Building Permit Review without an approved Site Plan Modification.

## WRITTEN COMMENTS:

Procedural Finding: In accordance with SDC 5.1-130 and 5.2-115, notice was sent to adjacent property owners/occupants within 300 feet of the subject site on August 24, September 15 and September 24, 2021. Staff responded to several telephone inquiries and emails, and written comments were received from the following respondents: Dr. Maria Elena Sampson-McCoy, $12565^{\text {th }}$ Street, Springfield and Kurt Krause, $114233^{\text {rd }}$ Place, Springfield. Staff provided additional information to both Dr. Sampson-McCoy and Mr. Krause, including links to the applicant's submittal materials and the updated traffic and parking analysis prepared by the applicant's traffic engineer. Staff also forwarded information on the public hearing proceedings to both respondents to encourage submittal of any additional questions and participation in the public hearing meetings on October 5 \& 19, 2021.

## CRITERIA OF SITE PLAN APPROVAL:

SDC 5.17-125, Site Plan Review Standards, Criteria of Site Plan Approval states, "the Director shall approve, or approve with conditions, a Type II Site Plan Review Application upon determining that criteria A through E of this Section have been satisfied. If conditions cannot be attached to satisfy the criteria, the Director shall deny the application."

## A. The zoning is consistent with the Metro Plan diagram, and/or the applicable Refinement Plan diagram, Plan District map, and Conceptual Development Plan.

Finding 1: The subject property is zoned Public Land and Open Space (PLO) in accordance with the Springfield Zoning Map. The zoning of the property is compatible with provisions of the adopted Metro Plan whereby up to $32 \%$ of residentially designated land is planned for non-residential uses such as parks, streets, schools and government facilities.

Finding 2: In accordance with SDC 3.2-710, sports stadiums are allowable in the PLO District subject to a Discretionary Use Permit and the provisions of Site Plan Review (SDC 5.17-100).

Finding 3: The applicant has submitted for Discretionary Use Permit approval under separate cover (Case 811-21-000169-TYP3). Approval of the Discretionary Use Permit is a prerequisite for issuance of the subject Site Plan Modification.

Conclusion: This proposal satisfies Criterion A.
B. Capacity requirements of public improvements, including but not limited to, water and electricity; sanitary sewer and stormwater management facilities; and streets and traffic safety controls shall not be exceeded and the public improvements shall be available to serve the site at the time of development, unless otherwise provided for by this Code and other applicable regulations. The Development \& Public Works Director or a utility provider shall determine capacity issues.

Finding 4: Approval of this proposal would allow for construction of 1,900 spectator seats, a public restroom and team changing room building, food and beverage concessions, and pedestrian-scale lighting for spectators on an existing public school site.

## Water and Electricity Improvements

Finding 5: SDC 4.3-130 requires each development area to be provided with a water system having sufficiently sized mains and lesser lines to furnish adequate supply to the development and sufficient access for maintenance. Springfield Utility Board (SUB) coordinates the design of the water system within Springfield city limits. At the Development Review Committee meeting for this application, Eugene-Springfield Fire confirmed that adequate fire flows and fire protection coverage exists for the proposed stadium based on existing fire hydrants serving the Hamlin Middle School site.

Finding 6: In accordance with SDC 4.3-125, wherever possible all utility lines must be placed underground. Additionally, new vaults and transformers for utility connections should be screened from view or placed out of sight at the side or rear of the building. The applicant is proposing to install new underground utility lines for the team changing room and restroom building which meet these requirements.

Finding 7: The applicant is proposing to use the existing private water services to the site. Expected water usage would be limited to irrigation of landscaping areas, and potable water for the team changing room and restroom building. The proposed baseball field utilizes artificial turf which does not require irrigation. The existing private water lines serving the school site have sufficient capacity to serve the proposed development.

Finding 8: The applicant is proposing to use the existing electrical service for the site. Electricity usage will be incrementally higher for the project area, primarily for the restroom and changing room building, concessions, and pedestrian-scale lighting for spectator areas. Provision of electrical service for media and an announcer's booth also will be required for the press box area. The existing light towers and lighting fixtures are to be retained for the baseball field. At the Development Review Committee meeting for the proposal, SUB advised that the existing electrical service is sufficient for the proposed changes on the site.

Conclusion: The proposal satisfies this sub-element of the criterion.

## Sanitary Sewer and Stormwater Management Facilities

## Sanitary Sewer

Finding 9: Section 4.3-105.A of the SDC requires that sanitary sewers must be installed to serve each new development and to connect developments to existing mains. Additionally, installation of sanitary sewers must provide sufficient access for maintenance activities.

Finding 10: There is an existing public sanitary sewer line stubbed into the school site near the project area. Additionally, there is an existing network of private sanitary sewer lines within the Hamlin Middle School site. The applicant is proposing to extend private sewer laterals to serve the restroom and team changing room building, food and beverage concessions, and floor drains for the team dugouts. The proposed private sanitary sewer lines are adequate to serve the proposed development on the site.

Finding 11: The applicant is proposing a small lift/pump station for the proposed team changing room and public restroom building. The proposed private sewer pump station is acceptable for serving the development, but no engineering details have been provided with the applicant's submittal. Prior to approval of the site plan, the applicant will need to provide details on the private sewer pump station to be installed on the site and confirm that it meets applicable Plumbing Codes. It is expected that the sewer pump will be placed in an underground vault. However, if the pump is located above-ground, the pump will need to be placed in an enclosure that is fully screened in accordance with SDC 4.3-125.D. Staff will review the sewer pump station details and confirm
acceptability for the final staff report to be submitted to the Planning Commission for the October 19, 2021 regular meeting.

Finding 12: Staff has determined that the existing public sanitary sewer system in Centennial Boulevard has sufficient size and capacity to accommodate the incremental increase in sewer flows from the site.

## Condition of Approval:

1. The Final Site Plan must provide details on the private sewer pump station to be installed on the site including the size, type and manufacturer's specifications for the pump system; location and depth of installation; and the plumbing connections to be installed between the drain and sewer lateral in accordance with Plumbing Code requirements. If the pump is located above ground, it must be fully screen according to the requirements of SDC 4.3-125.D.

Conclusion: As conditioned herein, the proposal satisfies this sub-element of the criterion.

## Stormwater Management

Finding 13: The applicant previously modified the underdrain system for the baseball field to accommodate a change from natural to artificial turf, and modified the adjacent vegetated stormwater management facilities to accommodate and treat drainage from the project area pursuant to a Minimum Development Standards (MDS) approval issued on July 22, 2021 as Case 811-21-000176-TYP1. The majority of the proposed modifications to the site, which include expanded bleacher seating, team dugouts, press box and pedestrian scale lighting, are being installed on existing impervious surfaces so there will be no appreciable change to runoff from these areas. The proposed restroom and team changing room building is being constructed in an area that is partially impervious walking surfaces and partially landscaped. The building footprint area and the incremental increase in impervious surface has been considered in the applicant's revised stormwater management system and constructed facilities that were approved with the MDS.

Conclusion: The proposal satisfies this sub-element of the criterion.

## Streets and Traffic Safety Controls

Finding 14: In accordance with SDC 4.2-145.A, street lighting must be included with all new developments or redevelopment. Existing street lights must be upgraded to current lighting standards with all new developments or redevelopment as determined by the Director. The developer is responsible for street lighting installation costs.

Finding 15: The public street frontages of the subject site are already fully developed with paving, curb and gutter, lane striping, bicycle lanes, and street lighting. There are three existing street lights along the Centennial Boulevard frontage that do not meet current City standards for LED fixtures. Because this will be the primary access and egress route for vehicles, buses, pedestrians and bicyclists accessing the sports stadium, street light upgrades are warranted. The applicant will need to upgrade the lighting fixtures along the Centennial Boulevard frontage of the site to LED fixtures meeting City standards.

Finding 16: A public sidewalk runs along the southern boundary of the site where it abuts Centennial Boulevard. Therefore, the requirements of SDC 4.2-135 have been met for public sidewalks along the street frontage.

Finding 17: Along the western boundary of the site, Pioneer Parkway is classified as an arterial street and is developed with two vehicle travel lanes in each direction separated by a wide, landscaped central median and multipurpose pathway (Rosa Parks Pathway). The Gateway bus rapid transit line runs along the Pioneer Parkway corridor and a transit platform is located near the southwest corner of the project site at the intersection with Centennial Boulevard.

Finding 18: Along the southern boundary of the site, Centennial Boulevard is classified as an arterial street and developed with one vehicle travel lane in each direction and dedicated left turn lanes for southbound Pioneer Parkway West, the driveway entrance to the Hamlin Middle School Site, and northbound $5{ }^{\text {th }}$ Street. The existing transportation facilities are designed and intended to handle large volumes of vehicle traffic, including transit and school buses, and also accommodate bicycles and pedestrians. Therefore, the anticipated vehicular, bicycle and pedestrian traffic patterns generated by the development can be accommodated in a safe and efficient manner.

Finding 19: The applicant has submitted a traffic and parking analysis for the subject project prepared by a professional Traffic Engineer. The parking analysis describes the various team schedules and anticipated parking demand generated by use of the sports stadium. The existing driveways and connector streets (e.g. L Street) serving the site already have traffic control signage and/or lane striping that is proposed to remain. The existing traffic control mechanisms will continue to operate as designed and intended for the sports stadium use. In certain circumstances, however, anticipated traffic volumes may exceed the thresholds for normal operational use of the traffic control devices. The applicant's parking analysis describes these scenarios and the necessary measures that will be needed to manage traffic flow and parking on the site so as not to cause safety and traffic conflicts, or impede the operation of perimeter public streets and intersections. The applicant will be required to provide supplemental traffic control measures (such as signage and personnel) to ensure the capacities of the on-site and adjacent public street traffic control mechanisms are not exceeded. Further discussion of the proposed parking management plan for the site is found in Sections C. 2 \& D below.

Finding 20: The applicant has prepared a parking and traffic analysis for the project as outlined in the Discretionary Use permit report (Attachment 1). Upon recording of a Parking Demand Management Plan for the site as recommended in the conditions of approval for the Discretionary Use permit the application meets this criterion.

## Condition of Approval:

## 2. The Final Site Plan must provide for replacement of the three street light fixtures along the Centennial Boulevard frontage of the site with LED fixtures meeting current City standards.

Conclusion: As conditioned herein, the proposal satisfies this sub-element of the criterion.

## C. The proposed development shall comply with all applicable public and private design and construction standards contained in this Code and other applicable regulations.

Finding 21: Criterion C contains three different elements with sub-elements and applicable code standards. The site plan application as submitted complies with the code standards listed under each sub-element unless otherwise noted with specific conditions. The elements, sub-elements and code standards of Criterion C include but are not limited to:

1. Infrastructure Standards in accordance with SDC 4.1-100, 4.2-100 \& 4.3-100

- Water Service and Fire Protection (4.3-130)
- Public and Private Easements (4.3-120-4.3-140)

2. Conformance with standards of SDC 5.17-100, Site Plan Review, and SDC 3.2-700 Public Land and Open Space Zoning District

- Public Land and Open Space Zoning District - Primary and Secondary Uses (3.2-710)
- Base Zone Development Standards (3.2-715)
- Landscaping, Screening and Fence Standards (4.4-100)
- On-Site Lighting Standards (4.5-100)
- Vehicle Parking, Loading and Bicycle Parking Standards (4.6-100)
- Siting Standards for Public Schools (4.7-195)

3. Overlay Districts and Applicable Refinement Plan Requirements

- Drinking Water Protection Overlay District


## C. 1 Public and Private Improvements in accordance with SDC 4.1-100, 4.2-100 \& 4.3-100

## Fire Protection/Emergency Access and Water Service (4.3-130)

## Emergency Access

Finding 22: All fire apparatus access routes are to be paved all-weather surfaces able to support an $80,000 \mathrm{lb}$. imposed load in accordance with the Springfield Fire Code (SFC) 503.2.3 and SFC Appendix D102.1. Access to the project area is afforded from Moffitt Lane, L Street, and the existing driveway approach onto Centennial Boulevard.

Finding 23: The closest fire station to the project area is virtually across the street at $14365^{\text {th }}$ Street. Therefore, rapid emergency response is afforded to the subject site.

Finding 24: Adequate emergency access to the development site is provided by way of the existing and proposed driveways and driving aisles serving the property.

## Water Supply

Finding 25: SDC 4.3-130.A requires each development area to be provided with a water system having sufficiently sized mains and lesser lines to furnish adequate supply to the development and provide sufficient access for maintenance. SUB coordinates the design of the water system within Springfield city limits.

Finding 26: The applicant is proposing to use the existing dedicated fire lines and nearby public fire hydrants that serve the site. The site was determined to have sufficient fire protection during the planning and construction of Hamlin Middle School in 2016. The applicant is proposing to construct metal bleacher seating that is uncovered along with a press box, and a masonry block team changing room and restroom building. The nature of the proposed uses and the physical materials used in the construction of the facilities will result in a very low fire risk for the site. Because the subject site is within the response and coverage area for fire protection, including the available fire hydrants proximate to the facility, the existing water supply is adequate for the proposed stadium.

Conclusion: The proposal satisfies this sub-element of the criterion.

## Public and Private Easements (4.3-120 - 4.3-140)

Finding 27: SDC 4.3-140.A requires applicants proposing developments to make arrangements with the City and each utility provider for the dedication of utility easements necessary to fully service the development or land beyond the development area. The minimum width for public utility easements (PUEs) adjacent to street rights-of-way and internal to private properties must be 7 feet, unless the Development \& Public Works Director requires a larger easement to allow for adequate maintenance access.

Finding 28: The proposed development is internal to the existing school site and it will require the extension of private utility services to the new and expanded facilities on the site. No public easements are required or warranted for the proposed sports stadium project to meet this criterion. Therefore, SDC 4.3-140.A is not applicable to this proposal.

Conclusion: The proposal satisfies this sub-element of the criterion.

## C. 2 Conformance with Standards of SDC 5.17-100, Site Plan Review, and SDC 3.2-700, Public Land and Open Space Zoning District

## Primary and Secondary Uses (3.2-710)

Finding 29: In accordance with SDC 3.2-710, sports stadiums are listed as a permitted primary use in the PLO District.

Finding 30: In accordance with SDC 3.2-710, on-site parking lots are allowable in the PLO District as a secondary or subordinate use to meet the vehicle parking requirements of the primary use. The applicant has provided a parking analysis for the project that is discussed below.

Conclusion: The proposal satisfies this sub-element of the criterion.

## Base Zone Development Standards (3.2-715)

Finding 31: The proposed development is an expansion of seating capacity and related improvements for an existing baseball field. The proposed bleacher seating and press box is to occupy areas that are currently concrete (i.e. impervious) walking surfaces.

Finding 32: The applicant is not proposing to install or construct any site improvements within required perimeter setbacks, reduce landscaping coverage below the required threshold, or exceed the maximum building or parking area coverage for the property. The maximum amount of parking, driveway and building coverage on the site is $65 \%$ and even with the proposed development of the stadium this limit is not reached.

Finding 33: The proposed team changing room and restroom building will displace existing sidewalk and landscaping area north of the baseball field. However, the proposed building footprint does not reduce the overall site landscaping below the minimum $25 \%$ requirement of SDC 3.2-715.

Conclusion: The proposal satisfies this sub-element of the criterion.

## Landscaping, Screening and Fence Standards (4.4-100)

Finding 34: In accordance with SDC 4.4-100, all required setbacks are to be landscaped. Acceptable forms of landscaping include trees, shrubs, turf grass, ground cover plants, or a combination thereof. Gravel and bark mulch can be used as planting media, but are not acceptable as a standalone ground cover material.

Finding 35: The existing landscaping on the site meets the requirements for planted setbacks as established by the approved Final Site Plan for Hamlin Middle School (Case TYP216-00005). A small area of landscaping to the north of the baseball field is proposed to be removed for construction of the team changing room and restroom building. The building footprint for the changing room and restroom building does not reduce the interior site landscaping below the $25 \%$ requirement described in SDC 3.2-715.

Finding 36: The applicant has removed the end cap of a parking lot landscaping area in the southeast corner of the project area to facilitate truck and equipment circulation through the southern parking lot that adjoins the baseball field. Construction vehicles associated with turf replacement for the field, installation of an underdrain system, and other preliminary site work necessitated removal of the end cap to complete turning movements through the parking lot. Initial site work was approved through the MDS Minor issued for the site as Case 811-21-000176-TYP1. The parking lot island end cap will need to be reconstructed and replanted at the conclusion of the project and prior to initiation of any sports activities on the site.

Finding 37: The applicant prepared and submitted a landscaping and planting plan for the stormwater facilities affected by the site development. The stormwater facility plantings were reviewed and approved through the MDS Minor for the project (Case 811-21-000176-TYP1). Because the applicant is proposing a very small
amount of new impervious surface relative to the overall size of the site (i.e. team changing room building rooftop) and the stormwater facilities installed through the MDS project anticipated this incremental increase to impervious surface, the planting plan for the site and the stormwater facilities meets the requirements of SDC 4.4-105.B.1.

Finding 38: In accordance with SDC 4.4-115, there is no specific requirement for fencing of the subject development area except where it abuts residential properties. According to the applicant's site plan, the existing perimeter site fencing is to be retained. The applicant will be installing new fencing around the baseball field and as a backstop area behind the home plate in association with the site improvements. These interior fences do not represent boundary fences and are not subject to the provisions of SDC 4.4-115.

## Condition of Approval:

## 3. The Final Site Plan must provide for full reconstruction and replanting of all parking lot islands and landscaping areas that have been removed or damaged by construction vehicle movements in the southern parking lot.

Conclusion: As conditioned herein, the proposal satisfies this sub-element of the criterion.

## On-Site Lighting Standards (4.5-100)

Finding 39: In accordance with SDC 4.5-100, public and private street and pedestrian-scale lighting must be provided with all new developments. The lighting must be shielded and recessed such that direct glare is contained within the boundaries of the property.

Finding 40: The applicant is proposing to retain the existing light towers and light fixtures that illuminate the baseball, football, soccer and track fields on the site. New pedestrian-scale lighting is to be installed for spectator areas. The new lighting fixtures include building-mounted wall pack fixtures and pole-mounted LED fixtures that are fully downcast and directed to internal walking and seating areas. The applicant has submitted lighting plans and manufacturer's cut sheets for the spectator area lighting that meets the requirements of SDC 4.5-100.

Conclusion: The proposal satisfies this sub-element of the criterion.

## Vehicle Parking, Loading and Bicycle Parking Standards (4.6-100)

Finding 41: The prior Site Plan Review approval for redevelopment of the Hamlin Middle School site in 2016 allocated the vehicle and bicycle parking requirements for the site based on the requirements of SDC 4.6-100. Since that time, the Development Code provisions of SDC 4.6-100 have changed but so have the planned activities on the site. The applicant has submitted a parking and traffic analysis prepared by Sandow Engineering for the baseball stadium project. The analysis demonstrates that adequate parking exists on the site for nearly all planned sporting events in the expanded facility. Scheduled games for high school and collegiate-level teams can be accommodated predominantly with the existing parking on the site. For any baseball games with more than 885 spectators, off-site parking is required as described in the applicant's parking and traffic analysis. The requirement for an updated and recorded Parking Demand Management Plan is discussed in the accompanying Discretionary Use staff report and is a condition of approval for Case 811-21-000169-TYP3.

Finding 42: SDC 4.6-110.I states that where a proposed development abuts an existing or proposed Frequent Transit Corridor that the applicant may request a reduction in parking of up to 15 percent from the minimum offstreet parking spaces required in Table 4.6-2. The site abuts a Frequent Transit Corridor, which is the Gateway bus rapid transit system operating along Pioneer Parkway. Therefore, the site meets this requirement and qualifies for a $15 \%$ reduction in parking

Finding 43: SDC 4.6-110.H allows for a reduction of one motor vehicle parking space for every 2 non-required bicycle parking spaces on the site. Existing bicycle parking facilities installed as part of the Hamlin Middle

School construction can be used to accommodate the additional 5 percent parking reduction for the stadium use. In combination with the Frequent Transit Corridor provision, the total allowed reduction for developed parking spaces is 20 percent which is the maximum allowable by SDC 4.6-110.L.

Finding 44: The applicant's parking analysis assumes an average of three (3) spectators per vehicle. With the $20 \%$ parking reduction allowance and in combination with other modes of spectator access to the site (e.g. bike, walk or transit), the existing 236 parking spaces on the site can accommodate up to 885 spectators. Additional parking provisions will be required for any events that exceed 885 spectators.

Finding 45: SDC 4.6-110.F allows the Director to authorize joint use of parking facilities provided the applicant demonstrates there is no conflict with principal operating hours of the buildings or uses that are subject to the parking agreement. The parties concerned must provide evidence of a recorded agreement for the shared use of adjacent parking facilities. The applicant's parking analysis prepared by Sandow Engineering identifies a potential shared parking facility at the Community of Faith church which is located directly across $5^{\text {th }}$ Street from the subject site. The applicant must provide evidence of a shared parking agreement with the Community of Faith church for this parking pool to be counted as part of the stadium's Parking Demand Management Plan. The requirement for a shared parking agreement is thereby implemented as a condition of approval for the Discretionary Use Permit (Case 811-21-000169-TYP3).

Finding 46: SDC 4.6-120 requires that all parking lots, bays, and spaces must have a durable, dust free surfacing of asphaltic concrete, Portland cement concrete or other materials as approved by the City Engineer. Parking on undeveloped portions of the site, such as landscaping areas, is therefore disallowed. The applicant is proposing the use of a grass field in the southeast corner of the site for overflow parking associated with the 1,125-1,900 spectator level threshold. However, adequate parking exists on the site and in the shared parking facilities described in the applicant's parking analysis (including the Community of Faith Church and Springfield High School) to accommodate peak spectator numbers. Therefore, use of the lawn area for parking is not necessary and is not authorized by this decision.

Finding 47: SDC 4.7-195.A. 8 requires that all parking lots and driveways for elementary and middle schools must be designated to separate bus and passenger vehicle traffic. The existing bus loop for Hamlin Middle School is located at the far northeast corner of the site off Moffitt Lane and it is separated from the normal vehicle traffic and parking areas of the site. However, the applicant is proposing to use the southern driveway entrance and parking lot driving aisle for bus access and drop off for collegiate baseball teams using the stadium. Additionally, the applicant's parking analysis indicates that the bus access to the southern parking lot may occur during normal school hours which will lead to mixing of bus and vehicle traffic (along with pedestrians and bicyclists). The applicant will need to abide by the provisions of the parking analysis and recorded Parking Demand Management Plan to ensure that baseball team bus and vehicle traffic is separated from normal school traffic (buses and passenger vehicles) when games are scheduled during school operating hours.

Conclusion: The proposal satisfies this sub-element of the criterion.

## Siting Standards for Public Schools (4.7-195)

Finding 48: In accordance with SDC 4.7-195.A, Hamlin Middle School is identified as a school site in Appendix D of the adopted Metro Plan. The zoning for the site is Public Land and Open Space, which allows for the use of public middle schools subject to Site Plan Review (SDC 3.2-710). A Site Plan Review for the construction of Hamlin Middle School was approved in 2016 as Case TYP216-00005.

Finding 49: In accordance with SDC 4.7-195.A.1, all new facilities or building additions exceeding $10,000 \mathrm{ft}^{2}$ or comprising more than $50 \%$ of the existing building area must be elevated to a Type III review. An exception to this requirement allows for new middle schools to be reviewed as a Type II application. The proposed development is not for a new middle school. The proposed development is a modification to an existing facility (baseball field) that comprises more than $10,000 \mathrm{ft}^{2}$ of project area when including the playing surface of the
field. The land use review for the proposed facility has been elevated to a Type III review before the City's Planning Commission which meets this requirement.

Finding 50: In accordance with SDC 4.7-195.A.2, a maximum of $65 \%$ of the site can be impervious surface with the rest planted as described in SDC 4.4-100. The proposed development is almost entirely existing impervious surface with the exception of new building rooftop for the team changing room and restroom building. The proposed new impervious surface does not cause the site to exceed the $65 \%$ impervious surface maximum, nor does the proposal affect the required $25 \%$ landscaping of the site to meet SDC 3.2-715 \& 4.4-100.

Finding 51: In accordance with SDC 4.7-195.A.3, schools must have a landscaped front yard of 20 feet and landscaped side and rear yards of 30 feet. Spectator seating structures adjoining residential uses must be set back at least 75 feet, unless adequate buffering can be provided with a reduced setback. However, in no instance shall the setback from spectator facilities be less than 30 feet. Parking areas must maintain a landscaped buffer of 15 feet when adjoining a residential use. The proposed new and expanded spectator seating areas are internal to the site and are more than 75 feet from the nearest property line. The spectator seating areas are approximately 500 feet from the nearest residential property (to the south across Centennial Boulevard) and more than 550 feet from the nearest abutting residential property. There are no proposed parking areas that abut residential uses. Therefore, the proposal meets this requirement.

Finding 52: In accordance with SDC 4.7-195.A.4, light is to be directed away from less intensive adjacent land uses. The existing lighting for the baseball field is to be used for the proposed baseball stadium. The tower lighting is directed downward onto the playing surface and will remain similarly directed in the baseball stadium. New pedestrian-scale lighting for spectator seating areas (including emergency egress lighting) is to be shielded and downcast and the light throw limited to the project area. The proposed lighting plan meets this requirement.

Finding 53: In accordance with SDC 4.7-195.A.5, other related uses may be allowable within school facilities at the discretion of the School District. The applicant is not proposing a day care, social program office, or after school programs. Therefore, this requirement is not applicable.

Finding 54: In accordance with SDC 4.7-195.A.6, all plants used for "landscaped buffering" must be a minimum of 5-gallons in size and shall reach a height of at least 36 inches within 1 year of planting. The applicant is not proposing to install landscaped buffering, nor is this a condition of approval for the project. Therefore, this requirement is not applicable.

Finding 55: In accordance with SDC 4.7-195.A.7, paved playground areas may be used as overflow parking for special events. The applicant is not proposing to use any playground areas for overflow parking. A proposal to use an unpaved area in the southeast corner of the site has been denied as stated herein and in the Discretionary Use Permit (Case 811-21-000169-TYP3). Therefore, this requirement is not applicable.

Finding 56: In accordance with SDC 4.7-195.A.8, all parking lots and driveways must be designated to separate bus and passenger vehicle traffic. All parking lots must have sidewalks raised a minimum of 6 inches above grade where pedestrians have to cross parking lots to enter or leave the school grounds. All parking lots must be designed so that a person walking between the bicycle parking facilities and the main building entrance or primary point of entry to the school is not required to cross a driveway, loading space, or other area intended for motor vehicle circulation. The Director may require wider sidewalks at major approaches to schools as deemed necessary for pedestrian safety and capacity. The applicant is proposing to separate school and baseball stadium as stated in the submitted parking and traffic analysis, and discussed in more detail in the staff report for the Discretionary Use Permit (Case 811-21-000169-TYP3). Conditions of approval requiring the applicant to implement the Parking Demand Management Plan and use measures for wayfinding and signage have been added to the Discretionary Use Permit to meet this requirement. As conditioned in the Discretionary Use Permit, this requirement has been met.

Finding 57: In accordance with SDC 4.7-195.A.9, any jointly shared recreational facilities, playgrounds or athletic field require a joint use agreement that will provide for public use and continued maintenance. The
proposed baseball stadium is to be used by local high school, collegiate, and semi-professional baseball teams. The applicant is not proposing to convert the baseball stadium to a public, shared-use facility and is not proposing to have Willamalane (as the local park and recreation provider) or the City of Springfield operate or maintain the facility. Therefore, this requirement is not applicable.

Finding 58: In accordance with SDC 4.7-195.A.10, elementary schools shall have a maximum building height of 35 feet, middle schools shall have a maximum building height of 45 feet. The applicant is not proposing to build a middle school building or modify the existing building. Therefore, this requirement is not applicable.

Finding 59: In accordance with SDC 4.7-195.A.11, a Traffic Impact Study and Parking Study, prepared by a Transportation Engineer, shall be approved by the City Engineer. The applicant is not proposing to construct new school building on the site. However, the applicant has submitted a traffic and parking analysis that will form the basis for a Parking Demand Management Plan for the proposed baseball stadium. The traffic and parking analysis has been prepared by a professional Transportation Engineer and has been reviewed by the City's Transportation Planning Engineer. This requirement has been met.

Finding 60: In accordance with SDC 4.7-195.B, in the PLO District public middle schools must be adjacent to residentially-zoned property. The subject site is surrounded on three sides by residentially zoned land (east, south and west). Residential properties directly abut the Hamlin Middle School site along the eastern boundary, and are separated from the southern boundary by Centennial Boulevard. This requirement has been met.

## C. 3 Overlay Districts and Applicable Refinement Plan Requirements

Finding 61: The subject site is not within an adopted neighborhood refinement plan area. There are no specific Refinement Plan policies that apply to this proposed sports stadium development.

Finding 62: The subject site is within the mapped $10-20$ and $20+$ Year Time of Travel Zones (TOTZs) for the Q Street drinking water wellhead. New development that may introduce or increase the amount of hazardous materials that pose a risk to groundwater resources require a Drinking Water Protection Permit or Exemption in accordance with SDC 3.3-225.A. The applicant is proposing to modify the existing baseball field for increased spectator seating and also constructing a team changing room and public restroom building. Based on the applicant's submittal and the characteristics of the proposed sports stadium development, the applicant could be eligible for a Drinking Water Protection (DWP) Exemption from SUB Drinking Water Source Protection. However, regardless of the DWP status, the site directly abuts and drains into a delineated wetland channel commonly referred to as the Q Street Channel. As a "Best Practices" recommendation for this site, care should be taken during site construction and operation to prevent contamination from chemicals that may spill or leak onto the ground surface, including fuel and automotive fluids (such as lubricants and antifreeze, etc.). Fluidcontaining equipment, including trucks using the loading dock area and other vehicles parked on the site, must be monitored for leaks and spills. Any chemical spills or leaks must be cleaned up immediately and cleanup materials disposed off-site in accordance with Lane County and State DEQ requirements.

## Condition of Approval:

## 4. Prior to issuance of Final Occupancy and commencement of operations for the stadium facility the applicant must obtain a DWP Permit or Exemption.

Conclusion: As conditioned herein, the proposal satisfies this sub-element of the criterion.
D. Parking areas and ingress-egress points have been designed to: facilitate vehicular traffic, bicycle and pedestrian safety to avoid congestion; provide connectivity within the development area and to adjacent residential areas, transit stops, neighborhood activity centers, and commercial, industrial and public areas; minimize curb cuts on arterial and collector streets as specified in this Code or other applicable regulations and comply with the ODOT access management standards for State highways.

Finding 63: Installation of driveways on a street increases the number of traffic conflict points. The greater number of conflict points increases the probability of traffic crashes. Effective ways to reduce the probability of traffic crashes include: reducing the number of driveways; increasing distances between intersections and driveways; and establishing adequate vision clearance areas where driveways intersect streets. Each of these techniques permits a longer, less cluttered sight distance for the motorist, reduces the number and difficulty of decisions that drivers must make, and contributes to increased traffic safety.

Finding 64: In accordance with SDC 4.2-120.C, site driveways must be designed to allow for safe and efficient vehicular ingress and egress as specified in Tables 4.2-2 through 4.2-5, the City's EDSPM, and the City's Standard Construction Specifications. Ingress-egress points must be planned to facilitate traffic and pedestrian safety, avoid congestion, and minimize curb cuts on public streets.

Finding 65: In accordance with SDC 4.6-120.A, all parking lots, bays, and spaces must have a durable, dust free surfacing of asphaltic concrete, Portland cement concrete or other materials as approved by the City Engineer.

Finding 66: The applicant is proposing to use the existing paved parking areas on the site to accommodate up to 885 spectators for the stadium events. Off-site shared parking areas also are proposed in the parking analysis. For spectator numbers exceeding 1,125 people, the applicant is proposing to use an existing turf grass area in the southeast corner of the site for overflow parking. Based on the applicant's parking and traffic analysis, the overflow parking area shouldn't be required with the available off-site parking at Springfield High School and Community of Faith Church and when the $20 \%$ reduction for the site's location on a Frequent Transit Network and extra bicycle parking are factored in. Therefore, no parking on unpaved surfaces is authorized by this decision.

Finding 67: The applicant's Parking Demand Management Plan discussed in the Discretionary Use Permit and conditioned through that approval (Case 811-21-000169-TYP3) addresses the site access, circulation and parking issues for the baseball stadium. As conditioned in the Discretionary Use Permit, the proposed Site Plan Modification meets the criterion.

Conclusion: As conditioned herein, the proposal satisfies this criterion.
E. Physical features, including, but not limited to: steep slopes with unstable soil or geologic conditions; areas with susceptibility of flooding; significant clusters of trees and shrubs; watercourses shown on the Water Quality Limited Watercourse Map and their associated riparian areas; wetlands; rock outcroppings; open spaces; and areas of historic and/or archaeological significance, as may be specified in Section 3.3-900 or ORS 97.740-760, 358.905-955 and 390.235-240, shall be protected as specified in this Code or in State or Federal law.

Finding 68: The Natural Resources Study, the National Wetlands Inventory, the Springfield Wetland Inventory Map, Wellhead Protection Overlay and the list of Historic Landmark Sites have been consulted and there are wetland resources ((the Q Street Channel) along the northern edge of the subject site that warrants protection. The Q Street Channel is not classified as a locally significant wetland but is depicted on the local wetland inventory. However, the channel is classified as a riparian resource area and is tributary to a Water Quality Limited Watercourse. There are no other physical features on the site that fall within these classifications or warrant special protection measures.

Finding 69: The applicant is not proposing to construct or install any improvements within the northern half of the site, and all project work is geographically separated from the existing wetland channel. Vegetated stormwater facility improvements and modifications for the project have been reviewed and approved through a supplemental MDS for the site (Case 811-21-000176-TYP1). The approved stormwater facility modifications address the water quality protection requirements for the site, including the addition of a small amount of new impervious surface associated with the rooftop of the team changing room and restroom building.

Finding 70: Stormwater runoff from the subject site flows to surface drainage channels, including the Q Street Channel, and eventually passes beneath I-5 to discharge into the Willamette River system. The Willamette River is a mapped Water Quality Limited Watercourse on the City's inventory and is listed with the State of Oregon as a "water quality limited" stream for numerous chemical and physical constituents, including temperature. Provisions have been made in this decision and in prior land use approvals directly associated with this project for protection of stormwater quality. The on-site stormwater treatment system consists of two vegetated infiltration basins that were recently reconfigured through an approved MDS for the site (Case 811-21-000176TYP1). The modified stormwater infiltration basins have been designed, reviewed and approved to meet the requirements of the Eugene Stormwater Management Plan, the EDSPM, and SDC 4.3-110.E and 4.3-115.C.

Finding 71: As previously stated herein, groundwater protection is to be observed during construction on the site. The applicant must maintain the private stormwater facilities on the site to ensure the continued protection of surface water and groundwater resources.

Conclusion: As conditioned by Condition 5 requiring the applicant to obtain a DWP permit or exemption for the project, the proposed development provides storm and ground water quality protection in accordance with SDC 3.3-200 and receiving streams have been protected in accordance with SDC 4.3-110 and 4.3-115.

CONCLUSION: The Tentative Site Plan Modification, as submitted and subject to the conditions listed herein, complies with Criteria A-E of SDC 5.17-125.

## SUMMARY OF CONDITIONS OF APPROVAL:

1. The Final Site Plan must provide details on the private sewer pump station to be installed on the site including the size, type and manufacturer's specifications for the pump system; location and depth of installation; and the plumbing connections to be installed between the drain and sewer lateral in accordance with Plumbing Code requirements. If the pump is located above ground, it must be fully screen according to the requirements of SDC 4.3-125.D.
2. The Final Site Plan must provide for replacement of the three street light fixtures along the Centennial Boulevard frontage of the site with LED fixtures meeting current City standards.
3. The Final Site Plan must provide for full reconstruction and replanting of all parking lot islands and landscaping areas that have been removed or damaged by construction vehicle movements in the southern parking lot.
4. Prior to issuance of Final Occupancy and commencement of operations for the stadium facility the applicant must obtain a DWP Permit or Exemption.


City of Springfield
Development \& Public Works
225 Fifth Street
Springfield, OR 97477

## Discretionary Use



## Signatures



If the applicant is not the owner, the owner hereby grants permission for the applicant to act in his/her behalf.
Owner:


## Discretionary Use Application Process

## 1. Applicant Submits a Discretionary Use Application to the Development \& Public Works Department

- The application must conform to the Discretionary Use Submittal Requirements Checklist on page 4 of this application packet.
- Planning Division staff screen the submittal at the front counter to determine whether all required items listed in the Discretionary Use Submittal Requirements Checklist have been submitted.
- Applications missing required items will not be accepted for submittal.


## 2. City Staff Conduct Detailed Completeness Check

- Planning Division staff conducts a detailed completeness check within 30 days of submittal.
- The assigned Planner notifies the applicant in writing regarding the completeness of the application.
- An application is not be deemed technically complete until all information necessary to evaluate the proposed development, its impacts, and its compliance with the provisions of the Springfield Development Code and other applicable codes and statutes have been provided.
- Incomplete applications, as well as insufficient or unclear data, will delay the application review process and may result in denial.


## 3. Planning Commission or Hearings Official Review the Application, Hold a Public Hearing, and Issue a Decision

- This is a Type III decision and thus is made after a public hearing.
- A notice is posted in the newspaper, and notice is mailed to property owners and occupants within 300 feet of the property being reviewed and to any applicable neighborhood association. In addition, the applicant must post one sign, provided by the City, on the subject property.
- Written comments may be submitted to the Development \& Public Works Department through the day of the public hearing or comments may be provided in person during the public hearing.
- Applications are distributed to the Development Review Committee.
- After a public hearing, the Planning Commission or Hearings Official issues a decision that addresses all applicable approval criteria and/or development standards, as well as any written or oral testimony.
- Applications may be approved, approved with conditions, or denied.
- The City mails the applicant and any party of standing a copy of the decision, which is effective on the day it is mailed.
- The decision issued is the final decision of the City but the Planning Commission's decision may be appealed within 15 calendar days to the City Council, and the Hearings Official's decision may be appealed within 21 calendar days to the Land Use Board of Appeals.


## Discretionary Use Submittal Requirements Checklist

NOTE: If you feel an item does not apply, please state the reason why and attach the explanation to this form.Submitted Concurrently with Site Plan Review application, where applicableApplication Fee - refer to the Development Code Fee Schedule for the appropriate fee calculation formula. A copy of the fee schedule is available at the Development \& Public Works Department. The applicable application, technology, and postage fees are collected at the time of complete application submittal.

Discretionary Use Application Form

## Copy of the Deed

Copy of a Preliminary Title Report issued within the past 30 days documenting ownership and listing all encumbrances.Copy of the Associated Site Plan Reduced to $\mathbf{8 1}^{1 / 2^{\prime \prime}}$ by $11^{\prime \prime}$, which will be mailed as part of the required neighboring property notification packet.Narrative - explaining the proposal and any additional information that may have a bearing in determining the action to be taken, including findings demonstrating compliance with the Discretionary Use Criteria described in SDC 5.9-120.

NOTE: Before the Planning Commission or Hearings Official can approve a Discretionary Use request, information submitted by the applicant must adequately support the request. All of the Discretionary Use Criteria must be addressed by the applicant. Incomplete applications, as well as insufficient or unclear data, will delay the application review process and may result in denial.

## NARRATIVE- DISCRETIONARY USE- HAMLIN BASEBALL FIELD

August 9, 2021
Assessor's Map: 17-03-26-34 Tax Lot 6200
Applicant: Springfield School District
640 A Street
Springfield, OR
Brett Yancey
Applicant's
Representative: The Favreau Group
3750 Norwich Ave.
Eugene, OR 97408
541-683-7048
Attn: Anthony Favreau

## DISCRETIONARY USE REQUEST

The applicant proposes to renovate and expand one of the existing Hamlin Middle School baseball fields for use by the newly formed Bushnell University and Springfield Drifters baseball teams. As part of the renovation, there will be an expansion of the seating capacity to 1,900 spectators. Please see the responses below to the applicable code sections.

A Discretionary Use may be approved only if the Planning Commission or Hearings Official finds that the proposal conforms with the Site Plan Review approval criteria specified in Section 5.17-125, where applicable, and the following approval criteria:
A. The proposed use conforms with applicable:

1. Provisions of the Metro Plan;
2. Refinement plans;
3. Plan District standards;
4. Conceptual Development Plans or
5. Specific Development Standards in this Code;

RESPONSE: The proposal is expanding the current use which is consistent with the Metro Plan and current zoning.
B. The site under consideration is suitable for the proposed use, considering:

1. The location, size, design and operating characteristics of the use (operating characteristics include but are not limited to parking, traffic, noise, vibration, emissions, light, glare, odor, dust, visibility, safety, and aesthetic considerations, where applicable);

## RESPONSE: Please see the Technical Memo by Kelly Sandow addressing these items.

2. Adequate and safe circulation exists for vehicular access to and from the proposed site, and on-site circulation and emergency response as well as pedestrian, bicycle and transit circulation;

## RESPONSE: Please see the Technical Memo by Kelly Sandow addressing these items.

3. The natural and physical features of the site, including but not limited to, riparian areas, regulated wetlands, natural stormwater management/drainage areas and wooded areas shall be adequately considered in the project design; and

## RESPONSE: This section does not apply.

4. Adequate public facilities and services are available, including but not limited to, utilities, streets, storm drainage facilities, sanitary sewer and other public infrastructure.

## RESPONSE: All necessary public facilities are available to the site as shown on the attached

 plans.C. Any adverse effects of the proposed use on adjacent properties and on the public can be mitigated through the:

1. Application of other Code standards (including, but not limited to: buffering from less intensive uses and increased setbacks);
2. Site Plan Review approval conditions, where applicable;
3. Other approval conditions that may be required by the Approval Authority; and/or
4. A proposal by the applicant that meets or exceeds the cited Code standards and/or approval conditions.

## RESPONSE: Please see the Technical Memo by Kelly Sandow addressing these items.

D. Applicable Discretionary Use criteria in other Sections of this Code:

1. Wireless telecommunications systems facilities requiring Discretionary Use approval are exempt from Subsections A. -C., above but shall comply with the approval criteria specified in Section 4.3-145.
RESPONSE: This section does not apply.
2. Alternative design standards for multifamily development are exempt from Subsections A.-C., above but shall comply with the approval criteria specified in Section 3.2-245.

RESPONSE: This section does not apply.
3. Fences requiring Discretionary Use approval are exempt from Subsections A.-C., above but shall comply with the approval criteria specified in Section 4.4-115C.
RESPONSE: This section does not apply.
4. The siting of public elementary, middle and high schools requiring Discretionary Use approval is exempt from Subsections A.-C., above but shall comply with the approval criteria specified in Section 4.7-195.
RESPONSE: This section does not apply.

## TECH MEMO

DATE: September 17, 2021
TO: Michael Liebler PE
City of Springfield

FROM: Kelly Sandow P.E.
Sandow Engineering


RE: Springfield Baseball Project at Hamlin Middle School Parking Plan
The existing west baseball field at Hamlin Middle School is undergoing a renovation to upgrade the facilities for use by the newly formed Bushnell University and Springfield Drifters baseball teams. As part of the stadium upgrade, there will be an expansion of the seating capacity to 1,900 spectators. In general, the regular season athletic events will operate at significantly lower spectator levels than the fixed seating capacity, events with higher attendance levels will occur infrequently, and at-capacity attendance events will seldomly occur. The following provides a parking demand management plan for regular-season games and higher attendance games at the new stadium.

## Use Characteristics

The stadium will be the home field for the Bushnell University baseball team, the Springfield Drifters, the Springfield Timbers, Springfield High School baseball team and will be used by other community baseball teams.

Bushnell University's regular season will be played from February to May. Games are played on both weekdays and weekends, with start times typically in the afternoon on the weekdays and mornings on the weekends. These games could have overlap with parking demand from other school events. However, the attendance at these events is anticipated to be low and will not have a significant level of parking demand.

The Springfield Drifters regular season will be played from June through August. Games are played on both weekdays and weekends, with start times typically at 7:00 PM. The Springfield Drifters has an agreement with the Springfield School district that during game days, there will be no other events on-site, and the parking lots, both baseball fields, and the track will be exclusively used by the Drifters. There will be no other events on-site that will compete with the available on-site parking.

The Springfield Timbers regular season is played in June and July. Games are played on weekends and weekdays, with typical games times at 5:00 PM and 7:00 PM.

## Attendance Levels

The Springfield Drifters, in general, have the highest attendance levels for regular-season games than the other users. As there is no historical attendance data for the Springfield Drifters and Bushnell University, the attendance to the regular season games is estimated using average attendance levels for nearby baseball teams with similar attendance areas and league characteristics. Springfield Timbers are currently using the adjacent facility and have a history of use at the site. Therefore, the attendance levels for Timbers games have been provided via actual attendance data. Table 1 illustrates the average attendance levels for the teams of the Eugene Challengers, Springfield Timbers, and West Coast League teams similar to the Springfield Drifters.

## TABLE 1: SIMILAR TEAM ATHLETIC EVENTS ATTENDANCE

| Team | Location | Average <br> Attendance |
| :--- | :---: | :---: |
| Eugene Challengers | Eugene, Or | $100-300$ |
| Springfield Timbers | Springfield, Or | $50-200$ |
| West Coast League | Similar Size Cities | $200-700$ |

The estimated attendance levels for regular-season games for the Drifters, Bushnell University, and the Timbers are shown in Table 2.

TABLE 2: HAMLIN BASEBALL STADIUM REGULAR-SEASON GAME ATTENDANCE

| Team | Average <br> Attendance |
| :--- | :---: |
| Springfield Timbers | $50-200$ |
| Bushnell University | $100-200$ |
| Springfield Drifters | $200-600$ |

## Parking Demand

Hamlin Middle School has 236 parking spaces available on-site for games (see Figure 1). It is estimated that, on average, there will be 3 spectators per vehicle for games at this site. The City of Springfield Development Code allows for a reduction in require parking spaces of $15 \%$ (4.6-110 I) for being on a transit corridor and a $5 \%$ reduction in required parking (4.6-110 H) for additional bike parking. With the $20 \%$ reduction the 236 parking spaces can accommodate 885 spectators. Spectator levels above 885 will need additional accommodations to facilitate the
parking demand. Table 3 provides the estimated parking demand for each of the typical uses for the site.

TABLE 3: HAMLIN BASEBALL STADIUM REGULAR-SEASON PARKING DEMAND

| Average <br> Team | Parking <br> Demand <br> Spectators** | Parking <br> Demand <br> Staff/Players | Total <br> Demand |  |
| :--- | :---: | :---: | :---: | :---: |
| Springfield Timbers | $50-200$ | $15-55$ | 25 | $40-80$ |
| Bushnell University | $100-200$ | $30-55$ | $10^{*}$ | $40-65$ |
| Springfield Drifters |  |  |  |  |
| *players are typically bussed in for these teams <br> ** utilizing the parking reduction for multi-modal options | $55-215$ | $10^{*}$ | $65-225$ |  |

The parking demand will typically be the highest for the Springfield Drifters.

## Parking Management Plan

The following parking plan has been developed to facilitate the parking demand during events at the stadium based on estimated spectator levels.

## 0-885 Spectators

Regular season games will generally have spectator levels below 885. This level of spectators is estimated to need parking of up to 236 vehicles. The parking demand can be fully accommodated within the Hamlin site. There are no special accommodations needed. It is recommended, however, that the stadium manager encourage the use of the adjacent LTD/EMX transit routes.

As stated previously, the Springfield Drifters will have exclusive use of the parking lots during games and will have the highest parking demand. Typical games will have a parking demand up to 225 vehicles. At this spectator level there is no additional parking demand management actions needed for the Springfield Drifters.

The Springfield Timbers typically have a parking demand up to 80 vehicles. All parking can be accommodated on site. There are generally no parking demand conflicts on-site during the Timbers games as the games are held outside of the school year/school day.

Bushnell University is anticipated to have a parking demand up to 65 vehicles. It is recommended that when game days that occur during weekdays during the school year, the parking lot directly to the south of the stadium be reserved for use by Bushnell to ensure available parking for spectators. There is sufficient parking in this lot to facilitate the typical game during the weekday. It is also recommended that temporary movable signage (sandwich boards) is placed at the entrance to the south lot, on the west side of the main driveway across

From: Kelly Sandow PE
RE: TDM-Hamlin Baseball
Date: 9.17.21
Page 4
from the south lot, and placed at the entrance from L Street that direct incoming vehicles to the south parking lot.
Team buses to the site that occur on weekdays during the school year will drop off/pick up in the south parking lot, and store off site until the game(s) are over.

## 885-1,125 Spectators

Events at this spectator level will occur infrequently. Events at this level will occur for the Drifters only. The estimated parking demand at this spectator level is 236-300 vehicles. There will be the need to find parking for approximately 64 additional vehicles at this spectator level. There is parking at an adjacent lot that could be leased and used for parking that exceeds the on-site capacity. Across the street on $N 5^{\text {th }}$ St, there are 67 spaces ( 201 spectators) at the Community of Faith Church. There is relatively direct walking access from the church to the ballpark. The walking distance from this lot to the field is approximately 975 feet, with a high visibility crossing across $5^{\text {th }}$ St and sidewalks the entire walkway (Figure 2). A second option is to have the additional parking provided at the Springfield High School parking lots.

Games for this spectator level will occur outside of school hours. Therefore, there are no special provision needed to separate school parking and trips for the baseball use.

## 1,125-1,900 Spectators

At levels over 1,125 spectators, there is the need to park 300-510 vehicles. Options for additional parking are the grass lot at the SE corner of the site and Springfield High School (SHS). Springfield High School is located within a half-mile walking distance. There are sidewalks and signalized street crossings between the ballpark and the parking lots at SHS (Figure 3). SHS has 356 non handicapped parking spaces available. The 356 parking spaces are sufficient parking to facilitate the parking needed at this spectator level. Games at this spectator level will occur outside of school hours. Therefore, there are no special provision needed to separate school parking and trips with the baseball use.

The following provides TDM measures for events with more than 1,125 spectators.

- Use Community of Faith Church or other lots (67 spaces)
- Open up overflow parking at the grass lot on the southeast corner of the site (180 estimated spaces) when needed
- Use parking at Springfield High School (356 spaces)
- Promote the use of EMX and the station located adjacent to the site
- Promote bicycling and walking

At capacity events will occur very infrequently and have the possibility of unique characteristics (i.e., lots of out-of-town guests staying at hotels) that should be managed specifically for the event type. Possible suggestions for parking management for at-capacity events are:

From: Kelly Sandow PE
RE: TDM-Hamlin Baseball
Date: 9.17.21
Page 5

- Group/discount rate at specific hotels with shuttle from the hotel
- Discounts for using EmX
- Off-site parking and shuttles



City of Springfield
Development \& Public Works
225 Fifth Street
Springfield, OR 97477

## Site Plan Review



## Owner Signatures

This application form is used for both the required pre-submittal meeting and subsequent complete application submittal. Owner signatures are required at both stages in the application process.

## An application without the Owner's original signature will not be accepted.

## Pre-Submittal

The undersigned acknowledges that the information in this application is correct and accurate for scheduling of the Pre- Submittal Meeting. If the applicant is not the owner, the owner hereby grants permission for the applicant to act in his/her behalf. I/we do hereby acknowledge that I/we are legally responsible for all statutory timelines, information, requests and requirements conveyed to my representative.
Owner:


## Submittal

I represent this application to be complete for submittal to the City. Consistent with the completeness check performed on this application at the Pre-Submittal Meeting, I affirm the information identified by the City as necessary for processing the application is provided herein or the information will not be provided if not otherwise contained within the submittal, and the City may begin processing the application with the information as submitted. This statement serves as written notice pursuant to the requirements of ORS 227.178 pertaining to a complete application.
Owner:


Assessor's Map: 17-03-26-34 Tax Lot 6200 NARRATIVE

Applicant: Springfield School District<br>640 A Street<br>Springfield, OR<br>Brett Yancey

Applicant's
Representative: The Favreau Group
3750 Norwich Ave.
Eugene, OR 97408
541-683-7048
Attn: Anthony Favreau

## LAND USE REQUEST

The applicant is seeking approval of the reconstruction of the existing baseball field and adjacent walks on the subject site.

## SITE AND SURROUNDING CHARACTERISTICS

The subject site currently is a natural turf baseball field with dugouts and concrete walks. This proposal is to replace the existing natural turf on the baseball field with artificial turf, along with adding bleachers, new dugouts and concrete picnic areas adjacent to the baseball field.

No increase in stormwater runoff is anticipated. In fact, the open rock under the artificial turf will add about 46,000 cubic feet of additional stormwater storage in the event the current drainage system backs up.

## SITE PLAN APPROVAL

The applicant is seeking an approval of this baseball field and adjacent walks reconstruction. The total area of disturbance is about 140,000 square feet.

The site will be landscaped with natural lawn in the disturbed areas outside of the baseball field.
The proposed development is compatible with the surrounding developments because the site will remain a baseball field.

There will be no hazardous materials stored on site as a part of this reconstruction.


$\frac{\text { GROUNDCOVER SPACING DIAGRAM }}{\text { No SCale }}$ and
$\mathrm{BH}-\mathrm{Cl}$
gTVos गHdY\&
 - g量






$\frac{\text { NORTH DETENTION POND DETAIL }}{\text { No SCaLE }}$






|  |  |  |  | APPROVED: |  |  | SITE PLAN AND GRADING PLAN FOR |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | date |  | HAMLIN SCHOOL BASEBALL FIELD |  |
|  |  |  |  |  |  |  |  |  |
| DATE | BY | description | $\widehat{\text { APP. }}$ | DESISNED | DRAWN | TAX MAP 17-03-26-34 | CITY OF SPRINGFIELD |  |
| REVISIONS |  |  |  | CHECKED | DATE $08-04-21$ | TAX LOT 6200 | PUBLIC Works departuent |  |

Attachment 5, Page 6 of 236









( 2 2 $\sin$ EAST ELEVATION


WEST ELEVATION


$\qquad$
Ataccmment 5 , Page 11 of 236

## Larson

# Hamlin Middle School 9/17 Row Mitered Grandstand Springfield, OR 

## Structural Calculations

Book 1 of 1<br>Calculation Release \#1

Prepared for
Bleachers International
Denver, CO


EXPIRATION DATE:12/31/2021

Larson Engineering, Inc.
Illinois Office
Project Number 21210330.000

Larson Engineering, Inc. 1488 Bond Street, Suite 100 Naperville, IL 60563-6503
630.357.0540 Fax: 630.357.0164
www.larsonengr.com

## Table of Contents

Load Determination. ..... 101-106
Angle Frame Analysis ..... 201-291
Anchor Bolts Analysis ..... 301-318

Larson

Larson Engineering, Inc.
1488 Bond Street, Suite 100
Naperville, Illinois 60563
630.357.0540 Fax: 630.357.0164
www.larsonengr.com

Job Name: Hamlin Middle School
Job Number: 21210330.000

$$
\begin{array}{cc}
\text { Date: } & 4 / 30 / 2021 \\
\text { Eng: } & \text { MK }
\end{array}
$$

Bleacher: Hamlin Middle School Baseball
Design Loads:

$$
\begin{aligned}
\mathrm{DL} & =10 \mathrm{psf} \\
\mathrm{LL} & =100 \mathrm{psf} \\
\text { Sway } \perp & =10 \mathrm{\#} / \mathrm{ft} / \mathrm{row} \\
\text { Sway } \| & =24 \mathrm{\#} / \mathrm{ft} / \mathrm{row}
\end{aligned}
$$

Wind (ASCE 7-16):

| $V$ | $=102 \mathrm{mph}$ |  | $($ Fig. 26.5-1C) |  |
| ---: | :--- | ---: | :--- | :--- |
| Exposure | $=\mathrm{C}$ |  | $(\S 26.7 .3)$ |  |
| $\mathrm{C}_{\mathrm{f}}$ | $=1.47$ |  | $($ Fig. 29.3-1 $)$ | $\mathrm{z}_{\mathrm{g}}=$ |
| $\mathrm{G}^{2}$ | $=0.85$ | $(\S 26.11 .1)$ | $\mathrm{a}=$ | 9.5 |
| of Bleacher | $=2.5$ | ft |  |  |


|  | @ Press Box | @ Bleacher |
| ---: | :---: | :---: |
| $\mathrm{H}=$ | 21.8 ft | 12.9 ft |
| Length= | 33 ft | 110 ft |
| $\mathrm{K}_{\mathrm{z}}=$ | 0.92 | 0.85 |
| $\mathrm{~K}_{\mathrm{zt}}=$ | 1.00 | 1.00 |
| $\mathrm{~K}_{\mathrm{d}}=$ | 0.85 | 0.85 |
| $\mathrm{~K}_{\mathrm{e}}=$ | 1.00 | 1.00 | (Tigl. 26.10-1)


|  | $@$ Press Box | @ Balance |
| :--- | :---: | :---: |
| $\mathrm{q}=0.00256 \mathrm{~K}_{\mathrm{z}} \mathrm{K}_{\mathrm{zt}} \mathrm{K}_{\mathrm{d}} \mathrm{K}_{\mathrm{e}} \mathrm{V}^{2}$ | 20.8 psf | 19.2 psf |
| $\mathrm{F}=\mathrm{q}_{\mathrm{z}} \mathrm{GC}_{\mathrm{f}} \mathrm{A}_{\mathrm{f}}$ | 26.0 psf | 24.0 psf | (Eq. 26.10-1)

Larson Engineering, Inc.
118 S. Clinton Street, Suite 250
Chicago, IL 60661
312.345.0540

## ELarson

## PRESSBOX:

Pressbox Geometry

| Height of Pressbox | $\mathrm{H}:=8.0 \mathrm{ft}$ |
| :---: | :---: |
| Width of Pressbox | $\mathrm{W}:=9.25 \mathrm{ft}$ |
| Width of Pressbox Roof | $\mathrm{w}_{\text {roof }}:=8.0 \mathrm{ft}$ |
| Length of Pressbox | $1:=24 \mathrm{ft}$ |
| Support Frame Spacing Loads | spa : $=6 \mathrm{ft}$ |
| Dead Load |  |
| Roof \&Floor | DL floor: $=6$ psf |
| Wall | $\mathrm{DL}_{\text {wall }}:=8 \mathrm{psf}$ |
| Live Load |  |
| Roof | $L_{\text {roof }}:=50 \mathrm{psf}$ |
| Floor | $L L L_{\text {floor }}:=50 \mathrm{psf}$ |

Wind Load : Conservatively use Sign Loading

Hamlin MS
Springfield, OR
Pressbox

| Design Wind |
| :--- |
| Pressure |$\quad \mathrm{WL}:=26.0 \mathrm{psf}$

## Uniform Loads

| Dead Load | $\mathrm{wDL}^{\prime}:=\mathrm{DL}_{\text {floor }} \cdot \mathrm{spa}=36 \cdot$ plf |
| :--- | :--- |
| Live Load | $\mathrm{w}_{\mathrm{LL}}:=\mathrm{LL}_{\text {floor }} \cdot \mathrm{spa}=300 \cdot \mathrm{plf}$ |

## Point Loads

Dead Load $\quad \mathrm{P}_{\mathrm{DL}}:=\left[\left(\operatorname{DL}_{\text {floor }} \cdot \frac{\mathrm{w}_{\text {roof }}}{2}\right)+\left(\mathrm{DL}_{\text {wall }} \cdot \mathrm{H}\right)\right] \cdot$ spa $=528 \cdot 1 \mathrm{lbf} \quad$ Applied at front and back of pressbox

Live Load
$P_{\text {DL }}:=\left(L_{\text {roof }} \cdot \frac{w_{\text {roof }}}{2}\right) \cdot$ spa $=1200 \cdot \mathrm{lbf}$
Wind Load
$\mathrm{V}_{\mathrm{WL}}:=(\mathrm{WL} \cdot \mathrm{H}) \cdot \mathrm{spa}=1248 \cdot \mathrm{lbf}$
Shear load due to wind


Point load due to overturning of pressbox

Lateral Wind Load
VWLlat $:=\mathrm{WL} \cdot \mathrm{H} \cdot \mathrm{W}=1924 \cdot \mathrm{lbf}$

$$
P_{\text {WLlat }}:=\frac{\frac{\mathrm{V}_{\mathrm{WLlat}}}{2} \cdot \mathrm{H}}{1}=321 \cdot \mathrm{lbf}
$$

Larson Engineering, Inc.
118 S. Clinton Street, Suite 250
Chicago, IL 60661
312.345.0540

## SLarson

Seismic Response
Coefficient

Effective Seismic Weigh

Height from Ground to Bottom of Pressbox:

Pressbox Base Shea

Seismic Load
mic Load Parallel to Seats
$\mathrm{C}_{\mathrm{s}}:=0.566$ See "Seismic Load" sheet
$\mathrm{W}_{\text {seis }}:=11 \mathrm{psf}$
See "Seismic Load" sheet
$H_{b o t}:=13.83 \mathrm{f}$
$\mathrm{V}_{\text {seis }}:=\mathrm{C}_{\mathrm{S}} \cdot \mathrm{W}_{\text {seis }} \cdot$ spa $\cdot\left(\mathrm{H}+\mathrm{H}_{\text {bot }}\right)=815.481 \cdot \mathrm{lbf}$
$\mathrm{V}_{\mathrm{E}}:=\frac{\mathrm{V}_{\text {seis }}}{1} \cdot$ spa $=203.87 \cdot \mathrm{lbf} \quad$ Load per stringer
$P_{E}:=\frac{\mathrm{V}_{\mathrm{E}} \cdot \frac{\mathrm{H}}{2}}{\mathrm{~W}}=88 \cdot \mathrm{lbf}$
$V_{\text {Elat }}:=\frac{V_{\text {seis }}}{2}=408 \cdot 1 \mathrm{lff}$
$P_{\text {Elat }}:=\frac{\text { V Elat }^{\frac{H}{2}}}{1}=67.957 \cdot \mathrm{lbf} \quad \begin{aligned} & \text { Pressbox load is applied at } 1 / 2 \text { height of } \\ & \text { pressbox }\end{aligned}$

## SEISMIC LOAD

| Risk Category |  |
| ---: | :---: |
| $I_{\mathrm{e}}=$ |  |
| Non-Building Structure |  |
| Seismic Coefficients: T |  |
| $\mathrm{R}=$ | 1.25 |
| $\Omega_{0}=$ | 2 |
| $\mathrm{C}_{\mathrm{d}}=$ | 2.5 |

Site Coefficients
Site Class: D-Default

| $\mathrm{S}_{\mathrm{S}}$ | 0.673 | $\mathrm{~S}_{\mathrm{MS}}$ | 0.849 | $\mathrm{~S}_{\mathrm{DS}}$ | 0.566 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~S}_{1}$ | 0.386 | $\mathrm{~S}_{\mathrm{M} 1}$ | 0.772 | $\mathrm{~S}_{\mathrm{D} 1}$ | 0.515 |

Seismic Design Category
D

Approximate Fundamental Period
All other structural systems: Table 12.8-2

| $\mathrm{C}_{\mathrm{t}}=$ | 0.02 |  |  |  |
| ---: | :--- | :--- | :--- | :--- |
| $\mathrm{x}=$ | 0.75 |  |  |  |
|  |  |  |  |  |
|  | 0.14 | $\mathrm{~T}_{\mathrm{L}}=$ | $16 \quad$ Figure 22-12 |  |

$\underline{\text { Seismic Response Coefficient }}$
$0.01 \leq C_{\text {smin }}=0.044 S_{D S} I_{e}=0.031<C_{S}=\frac{S_{D S}}{\frac{R}{I_{e}}}=0.566<C_{S m a x}=\frac{S_{D 1}}{T \frac{R}{I_{e}}}=3.787$
If $S_{1}>0.6$ then,

$$
0.01 \leq C_{\text {smin }}=\frac{0.5 S_{1}}{\frac{R}{I_{e}}}=
$$

## Weight per Row

$\mathrm{W}=11.0 \mathrm{psf}$ includes footboard, framing, and hardware
$\mathrm{V}=\mathrm{C}_{\mathrm{s}} \mathrm{W}=6.2 \mathrm{psf}$

Equivalent Service Level Loads:

| 0.7E $\quad 4.4 \mathrm{psf}$ | $1.0 \mathrm{SW}=$ | 12.0 psf | $0.6 \mathrm{~W}=$ | 14.4 psf |
| :--- | :--- | :--- | :--- | :--- |
| Sway Load $/ /$ to seats $=$ | 12.0 psf | $>$ | 4.4 psf |  |
| Wind Load perpendicular to seats $=$ | 14.4 psf | $>$ | 4.4 psf | Sway load will control in parallel direction <br> Wind will control in <br> perpendiular direction |

Search Information

| Address: | 326 Centennial Blvd, Springfield, OR 97477 |
| :--- | :--- |
| Coordinates: | $44.0578541,-123.0213256$ |
| Elevation: | 452 ft |
| Timestamp: | $2021-04-29 \mathrm{~T} 15: 11: 09.755 \mathrm{Z}$ |
| Hazard Type: | Seismic |
| Reference <br> Document: | ASCE7-16 |
| Risk Category: | III |
| Site Class: | D-default |



## Basic Parameters

| Name | Value | Description |
| :--- | :--- | :--- |
| $\mathrm{S}_{\mathrm{S}}$ | 0.673 | MCE $_{\mathrm{R}}$ ground motion (period=0.2s) |
| $\mathrm{S}_{1}$ | 0.386 | MCE $_{\mathrm{R}}$ ground motion (period=1.0s) |
| $\mathrm{S}_{\mathrm{MS}}$ | 0.849 | Site-modified spectral acceleration value |
| $\mathrm{S}_{\mathrm{M} 1}$ | * null | Site-modified spectral acceleration value |
| $\mathrm{S}_{\mathrm{DS}}$ | 0.566 | Numeric seismic design value at 0.2 s SA |
| $\mathrm{S}_{\mathrm{D} 1}$ | * null | Numeric seismic design value at 1.0 s SA |

* See Section 11.4.8
-Additional Information

| Name | Value | Description |
| :---: | :---: | :---: |
| SDC | * null | Seismic design category |
| $\mathrm{F}_{\mathrm{a}}$ | 1.262 | Site amplification factor at 0.2 s |
| $\mathrm{F}_{\mathrm{v}}$ | * null | Site amplification factor at 1.0s |
| $\mathrm{CR}_{\text {S }}$ | 0.869 | Coefficient of risk (0.2s) |
| $\mathrm{CR}_{1}$ | 0.858 | Coefficient of risk (1.0s) |
| PGA | 0.319 | $\mathrm{MCE}_{\mathrm{G}}$ peak ground acceleration |
| $\mathrm{F}_{\mathrm{PGA}}$ | 1.281 | Site amplification factor at PGA |
| $\mathrm{PGA}_{M}$ | 0.409 | Site modified peak ground acceleration |


| $\mathrm{T}_{\mathrm{L}}$ | 16 | Long-period transition period (s) | 106 |
| :--- | :--- | :--- | :--- | :--- |
| SsRT | 0.673 | Probabilistic risk-targeted ground motion (0.2s) |  |
| SsUH | 0.774 | Factored uniform-hazard spectral acceleration (2\% probability of <br> exceedance in 50 years) |  |
| SsD | 1.5 | Factored deterministic acceleration value (0.2s) |  |
| S1RT | 0.386 | Probabilistic risk-targeted ground motion (1.0s) |  |
| S1UH | 0.45 | Factored uniform-hazard spectral acceleration (2\% probability of <br> exceedance in 50 years) |  |
| S1D | 0.629 | Factored deterministic acceleration value (1.0s) |  |
| PGAd | 0.513 | Factored deterministic acceleration value (PGA) |  |

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

## Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.


| Larson Engineering Inc |  | SK - 1 |
| :--- | :---: | :--- | :--- |
| MK |  | May 6, 2021 at 7:42 AM Middle School |
| 21210330.000 | Hember \& Node Labels | Home Plate Frame.r2d |

Attachment 5, Page 20 of 236


| Larson Engineering Inc |  | SK - 2 |
| :--- | :---: | :--- |
| MK |  | May 6, 2021 at 7:42 AM |
| 21210330.000 | Hamlin Middle School | Member Shapes |

Attachment 5, Page 21 of 236

Loads: BLC 1, DL

| Larson Engineering Inc | Hamlin Middle School Dead Loads | SK - 3 |
| :---: | :---: | :---: |
| MK |  | May 6, 2021 at 7:43 AM |
| 21210330.000 |  | Home Plate Frame.r2d |

Attachment 5, Page 22 of 236

Loads: BLC 2, LL

| Larson Engineering Inc | Hamlin Middle School Live Loads | SK - 4 |
| :---: | :---: | :---: |
| MK |  | May 6, 2021 at 7:43 AM |
| 21210330.000 |  | Home Plate Frame.r2d |

Attachment 5, Page 23 of 236


Loads: BLC 3, WL

| Larson Engineering Inc | Hamlin Middle School Wind Load (Strength) | SK - 5 |
| :---: | :---: | :---: |
| MK |  | May 6, 2021 at 7:43 AM |
| 21210330.000 |  | Home Plate Frame.r2d |

Attachment 5, Page 24 of 236


Loads: BLC 5, EL

| Larson Engineering Inc | Hamlin Middle School Seismic Loads (Strength) | SK - 6 |
| :---: | :---: | :---: |
| MK |  | May 6, 2021 at 7:43 AM |
| 21210330.000 |  | Home Plate Frame.r2d |

Attachment 5, Page 25 of 236

Loads: BLC 4, GUARD

| Larson Engineering Inc | Hamlin Middle School Guard Load | SK - 7 |
| :---: | :---: | :---: |
| MK |  | May 6, 2021 at 7:44 AM |
| 21210330.000 |  | Home Plate Frame.r2d |

Attachment 5, Page 26 of 236

| MK |
| :--- |
| 21210330.000 |

Hamlin Middle School
Member Envelope Unity
SK-8
May 6, 2021 at 7:44 AM
Home Plate Frame.r2d

| TiNe | Company Designer Job Number Model Name | Larson Engineering Inc MK <br> 21210330.000 <br> Hamlin Middle Schoo | May 6, 2021 7:45 AM Checked By: |
| :---: | :---: | :---: | :---: |

## Aluminum Properties



## Aluminum Section Sets

| Label |  | ${ }_{\text {Shape }}^{\text {5x1.5x.188 }}$ | Type | Design List | ${ }_{\text {Material }}$ | Design Rules <br> Typical | ${ }_{\text {A }}$ [in2] | ${ }_{(900.270)[. . .10,180)[\ldots}^{.11}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | L1.5×1.5×0.19 |  |  |  |  |  |  |  |  |
| 2 | 1.5x1.5x0.187 |  | Bea |  |  |  |  |  |  |
| 3 |  | $\frac{12 \times 2 \times 0.188}{13 \times 2 \times 0 .}$ | Beam | AA C Channel | 0061-T | Typic | 723 |  |  |
|  | L3 | L3x220.188 | Beam | A A Channel | 061- | Typic | . 91 |  |  |
| 5 | - | 188 | Beam | AA Channel | 6061 | Typical | . 91 |  |  |
|  | 2x0.25 | L3X2X0.25 |  | A Channel | 061-T6 W |  |  | 77 |  |
| 7 | -3x2x0.25 UW |  | Beam | AA Channel | 1-1 | Typical | 1.19 | 77 |  |
|  | 4x1.5 | USC4X1.85 | Beam | A A Channel | 6061-T6 W | Typic | 1.57 |  |  |
|  |  |  |  |  |  |  |  |  |  |

## Joint Coordinates and Temperatures




## Joint Coordinates and Temperatures (Continued)



## |lıRISA <br> Company Designer Nos <br> $\begin{array}{ll}\text { Company } & \vdots \text { Larson Engineering Inc } \\ \text { Designer } & \text { MK }\end{array}$ <br> MK 21210330.000 : Hamlin Middle School

May 6, 2021
7:45 AM
7:45 AM

Joint Coordinates and Temperatures (Continued)

|  | Label | X [ft] | $\mathrm{Y}[\mathrm{ft}]$ | Temp [F] |
| :---: | :---: | :---: | :---: | :---: |
| 90 | N109 | 37.2 | 0 | 0 |
| 91 | N110 | 29.4 | 12.39 | 0 |
| 92 | N111 | 32.19 | 12.39 | 0 |
| 93 | N112A | 34.44 | 12.39 | 0 |
| 94 | N113A | 37.2 | 12.39 | 0 |
| 95 | N114A | 29.4 | 4.19 | 0 |
| 96 | N115A | 32.19 | 4.19 | 0 |
| 97 | N116A | 34.44 | 4.19 | 0 |
| 98 | N117 | 37.2 | 4.19 | 0 |
| 99 | N118 | 29.4 | 8.29 | 0 |
| 100 | N119 | 32.19 | 8.29 | 0 |
| 101 | N120 | 34.44 | 8.29 | 0 |
| 102 | N121 | 37.2 | 8.29 | 0 |
| 103 | N122 | 29.9 | 0 | 0 |
| 104 | N123 | 36.7 | 0 | 0 |
| 105 | N124 | 32.69 | 0 | 0 |
| 106 | N125 | 29.65 | 12.39 | 0 |
| 107 | N126 | 31.94 | 12.39 | 0 |
| 108 | N127 | 32.44 | 12.39 | 0 |
| 109 | N128 | 34.19 | 12.39 | 0 |
| 110 | N129 | 34.69 | 12.39 | 0 |
| 111 | N130 | 36.98 | 12.39 | 0 |
| 112 | N131 | 29.65 | 0 | 0 |
| 113 | N132 | 31.94 | 0 | 0 |
| 114 | N133 | 32.44 | 0 | 0 |
| 115 | N134 | 34.19 | 0 | 0 |
| 116 | N135 | 34.69 | 0 | 0 |
| 117 | N136 | 36.98 | 0 | 0 |
| 118 | N137 | 33.94 | 0 | 0 |
| 119 | N138 | 27.94 | 10.285 | 0 |
| 120 | N139 | 28.77 | 12.545 | 0 |
| 121 | N140 | 27.94 | 10.535 | 0 |
| 122 | N141 | 27.94 | 10.035 | 0 |
| 123 | N142 | 27.94 | 6.83 | 0 |
| 124 | N143 | 25.500549 | 11.358318 | 0 |
| 125 | N144 | 27.704478 | 10.383767 | 0 |

Joint Boundary Conditions

|  | Joint Label | X [kin] | Y [kin] | Rotation[k-ft/rad] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | N149 | Reaction | Reaction |  |
| 2 | N153 | Reaction | Reaction |  |
| 3 | N150 | Reaction | Reaction |  |
| 4 | N151 | Reaction | Reaction |  |
| 5 | N155 | Reaction | Reaction |  |
| 6 | N1 |  | CS10000 |  |
| 7 | N2 |  | CS10000 |  |
| 8 | N3 |  | CS10000 |  |
| 9 | N4 |  | CS10000 |  |
| 10 | N5 |  | CS10000 |  |
| 11 | N6 |  | CS10000 |  |
| 12 | N7 |  | CS10000 |  |
| 13 | N8 |  | CS10000 |  |
| 14 | N9 |  | CS10000 |  |
| 15 | N10 |  | CS10000 |  |
| 16 | N11 |  | CS10000 |  |

RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcs|Home Plate Frame.r2d]
Page 3
 $\begin{array}{lll}\text { Company } & \vdots \text { Larson Engineering Inc } \\ \text { Designer } & \vdots \text { MK } \\ \text { Job Number } & \text { 2120 }\end{array}$

7:45 AM

Checked By: | Job Number | $\vdots 21210330.000$ |
| :--- | :--- |
| Model Name | : Hamlin Middle School |

Checked By:___

Joint Boundary Conditions (Continued)

|  | Joint Label | X [kin] | Y [kin] | Rotation[k-ft/rad] |
| :---: | :---: | :---: | :---: | :---: |
| 17 | N12 |  | CS10000 |  |
| 18 | N246 | Reaction | Reaction |  |
| 19 | N73 | Reaction | Reaction |  |
| 20 | N74 | Reaction | Reaction |  |
| 21 | N105 | Reaction | Reaction |  |
| 22 | N106 |  | CS10000 |  |
| 23 | N107 |  | CS10000 |  |
| 24 | N108 |  | CS10000 |  |
| 25 | N109 |  | CS10000 |  |
| 26 | N122 | Reaction | Reaction |  |
| 27 | N123 | Reaction | Reaction |  |
| 28 | N124 | Reaction | Reaction |  |
| 29 | N137 | Reaction | Reaction |  |

## Member Primary Data

|  | Label | 1 Joint | $J$ Joint | Rotate(deg) | Section/Shape | Type | Design List | Material | Design Rules |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | N1 | N3 |  | L3×2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 2 | M2 | N4 | N6 |  | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 3 | M3 | N7 | N97 |  | L3×2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 4 | M4 | N69 | N43 |  | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 5 | M5 | N17 | N75 | 180 | L3×2×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 6 | M6 | N21 | N81 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 7 | M7 | N23 | N83 | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 8 | M8 | N25 | N85 | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 9 | M9 | N27 | N87 | 180 | L3×2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 10 | M10 | N29 | N89 | 180 | L3×2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 11 | M11 | N31 | N91 | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 12 | M12 | N33 | N93 | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 13 | M13 | N35 | N95 | 180 | L3×2×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 14 | M14 | N17 | N1 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 15 | M15 | N18 | N2 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 16 | M16 | N19 | N3 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 17 | M17 | N21 | N4 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 18 | M18 | N23 | N5 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 19 | M19 | N25 | N6 | 180 | L3×2×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 20 | M20 | N27 | N69 |  | L2 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 21 | M21 | N29 | N42 |  | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 22 | M22 | N31 | N43 | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 23 | M23 | N33 | N70 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 24 | M24 | N35 | N71 |  | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 25 | M25 | N37 | N140 | 180 | L3x2x0.25 UW | Beam | AA Channel | 6061-T6 | Typical |
| 26 | M26 | N42 | N8 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 27 | M27 | N43 | N9 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 28 | M28 | N44 | N10 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 29 | M29 | N45 | N11 |  | L2 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 30 | M30 | N46 | N12 | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 31 | M31 | N24 | N5 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 32 | M32 | N43 | N8 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 33 | M34 | N46 | N11 |  | L1.5×1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 34 | M35 | N72 | N45 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 35 | M36 | N138 | N71 |  | L1.5×1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 36 | M37 | N115 | N113 |  | C $4 \times 1.5$ | Beam | AA Channel | 6061-T6 W | Typical |
| 37 | M38 | N114 | N112 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 38 | M39 | N116 | N139 |  | C4x1.85 UW | Beam | AA Channel | 6061-T6 | Typical |
| 39 | M244 | N19 | N2 |  | L1.5×1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |

RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcsIHome Plate Frame.r2d]
Page 4

## lırisA <br> Company Designer Job Number <br> Larson Engineering In <br> M1210330.000 Hamlin Middle School

Member Primary Data (Continued)

|  | Label | 1 Joint | $J$ Joint | Rotate(deg) | Section/Shape | Type | Design List | Material | Design Rules |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | M63 | N69 | N7 |  | L2 2 2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 41 | M64 | N10 | N101 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 42 | M65 | N44 | N46 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 43 | M66 | N70 | N44 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 44 | M67 | N71 | N45 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 45 | M68 | N72 | N46 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 46 | M69 | N70 | N72 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 47 | M70 | N30 | N42 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 48 | M70A | N75 | N76 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 49 | M71 | N76 | N77 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 50 | M72 | N77 | N78 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 51 | M73 | N78 | N79 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 52 | M74 | N79 | N80 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 53 | M75 | N80 | N20 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 54 | M76 | N81 | N82 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 55 | M77 | N82 | N22 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 56 | M78 | N83 | N84 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 57 | M79 | N84 | N24 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 58 | M80 | N85 | N86 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 59 | M81 | N86 | N26 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 60 | M82 | N87 | N88 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 61 | M83 | N88 | N28 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 62 | M84 | N89 | N90 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 63 | M85 | N90 | N30 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 64 | M86 | N91 | N92 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 65 | M87 | N92 | N32 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 66 | M88 | N93 | N94 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 67 | M89 | N94 | N34 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 68 | M90 | N95 | N96 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 69 | M91 | N96 | N36 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 70 | M92 | N97 | N98 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 71 | M93 | N98 | N99 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 72 | M94 | N99 | N100 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 73 | M95 | N100 | N9 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 74 | M96 | N101 | N102 |  | L3x2x0. 1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 75 | M97 | N102 | N103 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 76 | M98 | N103 | N104 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 77 | M99 | N104 | N12 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 78 | M100 | N106 | N131 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 79 | M101 | N114A | N117 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 80 | M102 | N118 | N121 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 81 | M103 | N110 | N125 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 82 | M104 | N114A | N106 |  | L $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 83 | M105 | N115A | N107 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 84 | M106 | N116A | N108 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 85 | M107 | N117 | N109 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 86 | M108 | N118 | N114A |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 87 | M109 | N119 | N115A |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 88 | M110 | N120 | N116A |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 89 | M111 | N121 | N117 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 90 | M112 | N110 | N118 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 91 | M113 | N111 | N119 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 92 | M114 | N112A | N120 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 93 | M115 | N113A | N121 |  | L $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 94 | M116 | N114A | N107 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 95 | M117 | N117 | N108 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 96 | M118 | N118 | N115A |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |

RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcsIHome Plate Frame.r2d]

May 6, 2021

## Member Primary Data (Continued)

|  | Label | 1 Joint | $J$ Joint | Rotate(deg) | Section/Shape | Type | Design List | Material | Design Rules |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 97 | M119 | N121 | N116A |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 98 | M120 | N110 | N119 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 99 | M121 | N113A | N120 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 100 | M122 | N125 | N126 | 180 | L3x2×0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 101 | M123 | N126 | N127 | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 102 | M124 | N127 | N128 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 103 | M125 | N128 | N129 | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 104 | M126 | N129 | N130 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 105 | M127 | N130 | N113A | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 106 | M128 | N131 | N132 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 107 | M129 | N132 | N133 |  | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 108 | M130 | N133 | N134 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 109 | M131 | N134 | N135 |  | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 110 | M132 | N135 | N136 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 111 | M133 | N136 | N109 |  | L3 $32 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 112 | M134 | N34 | N138 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 113 | M135 | N35 | N143 |  | L1.5×1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 114 | M136 | N139 | N115 |  | C4x1.5 | Beam | AA Channel | 6061-T6 W | Typical |
| 115 | M137 | N140 | N141 | 180 | L3×2x0. 25 | Beam | AA Channel | 6061-T6 W | Typical |
| 116 | M138 | N141 | N142 | 180 | L3x2x0.25 UW | Beam | AA Channel | 6061-T6 | Typical |
| 117 | M139 | N142 | N72 | 180 | L3 $\times 2 \times 0.25$ | Beam | AA Channel | 6061-T6 W | Typical |
| 118 | M140 | N143 | N144 |  | L1.5x1.5x0.1875.. | Beam | AA Channel | 6061-T6 | Typical |

Member Advanced Data

|  | Label | I Release | J Release | 1 Offset[in] | J Offset[in] | T/C Only | Physical | том | Inactive |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 |  |  |  |  |  | Yes |  |  |
| 2 | M2 |  |  |  |  |  | Yes |  |  |
| 3 | M3 |  |  |  |  |  | Yes |  |  |
| 4 | M4 |  |  |  |  |  | Yes |  |  |
| 5 | M5 |  |  |  |  |  | Yes |  |  |
| 6 | M6 | PIN |  |  |  |  | Yes |  |  |
| 7 | M7 | PIN |  |  |  |  | Yes |  |  |
| 8 | M8 | PIN |  |  |  |  | Yes |  |  |
| 9 | M9 | PIN |  |  |  |  | Yes |  |  |
| 10 | M10 | PIN |  |  |  |  | Yes |  |  |
| 11 | M11 | PIN |  |  |  |  | Yes |  |  |
| 12 | M12 | PIN |  |  |  |  | Yes |  |  |
| 13 | M13 | PIN |  |  |  |  | Yes |  |  |
| 14 | M14 | PIN | PIN |  |  |  | Yes |  |  |
| 15 | M15 | PIN | PIN |  |  |  | Yes |  |  |
| 16 | M16 | PIN | PIN |  |  |  | Yes |  |  |
| 17 | M17 |  | PIN |  |  |  | Yes |  |  |
| 18 | M18 |  | PIN |  |  |  | Yes |  |  |
| 19 | M19 |  | PIN |  |  |  | Yes |  |  |
| 20 | M20 |  |  |  |  |  | Yes |  |  |
| 21 | M21 |  | PIN |  |  |  | Yes |  |  |
| 22 | M22 |  | PIN |  |  |  | Yes |  |  |
| 23 | M23 |  | PIN |  |  |  | Yes |  |  |
| 24 | M24 |  | PIN |  |  |  | Yes |  |  |
| 25 | M25 |  |  |  |  |  | Yes |  |  |
| 26 | M26 | PIN | PIN |  |  |  | Yes |  |  |
| 27 | M27 | PIN | PIN |  |  |  | Yes |  |  |
| 28 | M28 | PIN | PIN |  |  |  | Yes |  |  |
| 29 | M29 | PIN | PIN |  |  |  | Yes |  |  |


|  | ISA | Company Designer Job Number Model Name | Larson Engin MK 212120330.00 Hamlin Middd | chool |  |  |  | May 6, 2021 <br> 7:45 AM <br> Checked By: $\qquad$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Advanced Data (Continued) |  |  |  |  |  |  |  |  |  |
|  | Label | 1 Release | J Release | 1 Offset[in] | J Offset[in] | T/C Only | Physical | том | Inactive |
| 30 | M30 | PIN | PIN |  |  |  | Yes |  |  |
| 31 | M31 | PIN | PIN |  |  |  | Yes |  |  |
| 32 | M32 | PIN | PIN |  |  |  | Yes |  |  |
| 33 | M34 | PIN | PIN |  |  |  | Yes |  |  |
| 34 | M35 | PIN | PIN |  |  |  | Yes |  |  |
| 35 | M36 | PIN | PIN |  |  |  | Yes |  |  |
| 36 | M37 |  | PIN |  |  |  | Yes |  |  |
| 37 | M38 | PIN | PIN |  |  |  | Yes |  |  |
| 38 | M39 |  |  |  |  |  | Yes |  |  |
| 39 | M244 | PIN | PIN |  |  |  | Yes |  |  |
| 40 | M63 | PIN | PIN |  |  |  | Yes |  |  |
| 41 | M64 |  |  |  |  |  | Yes |  |  |
| 42 | M65 |  |  |  |  |  | Yes |  |  |
| 43 | M66 | PIN | PIN |  |  |  | Yes |  |  |
| 44 | M67 | PIN | PIN |  |  |  | Yes |  |  |
| 45 | M68 | PIN | PIN |  |  |  | Yes |  |  |
| 46 | M69 |  |  |  |  |  | Yes |  |  |
| 47 | M70 | PIN | PIN |  |  |  | Yes |  |  |
| 48 | M70A |  |  |  |  |  | Yes |  |  |
| 49 | M71 |  |  |  |  |  | Yes |  |  |
| 50 | M72 |  |  |  |  |  | Yes |  |  |
| 51 | M73 |  |  |  |  |  | Yes |  |  |
| 52 | M74 |  |  |  |  |  | Yes |  |  |
| 53 | M75 |  | PIN |  |  |  | Yes |  |  |
| 54 | M76 |  |  |  |  |  | Yes |  |  |
| 55 | M77 |  | PIN |  |  |  | Yes |  |  |
| 56 | M78 |  |  |  |  |  | Yes |  |  |
| 57 | M79 |  | PIN |  |  |  | Yes |  |  |
| 58 | M80 |  |  |  |  |  | Yes |  |  |
| 59 | M81 |  | PIN |  |  |  | Yes |  |  |
| 60 | M82 |  |  |  |  |  | Yes |  |  |
| 61 | M83 |  | PIN |  |  |  | Yes |  |  |
| 62 | M84 |  |  |  |  |  | Yes |  |  |
| 63 | M85 |  | PIN |  |  |  | Yes |  |  |
| 64 | M86 |  |  |  |  |  | Yes |  |  |
| 65 | M87 |  | PIN |  |  |  | Yes |  |  |
| 66 | M88 |  |  |  |  |  | Yes |  |  |
| 67 | M89 |  | PIN |  |  |  | Yes |  |  |
| 68 | M90 |  |  |  |  |  | Yes |  |  |
| 69 | M91 |  | PIN |  |  |  | Yes |  |  |
| 70 | M92 |  |  |  |  |  | Yes |  |  |
| 71 | M93 |  |  |  |  |  | Yes |  |  |
| 72 | M94 |  |  |  |  |  | Yes |  |  |
| 73 | M95 |  |  |  |  |  | Yes |  |  |
| 74 | M96 |  |  |  |  |  | Yes |  |  |
| 75 | M97 |  |  |  |  |  | Yes |  |  |
| 76 | M98 |  |  |  |  |  | Yes |  |  |
| 77 | M99 |  |  |  |  |  | Yes |  |  |
| 78 | M100 |  |  |  |  |  | Yes |  |  |
| 79 | M101 |  |  |  |  |  | Yes |  |  |
| 80 | M102 |  |  |  |  |  | Yes |  |  |
| 81 | M103 |  |  |  |  |  | Yes |  |  |
| 82 | M104 | PIN | PIN |  |  |  | Yes |  |  |
| 83 | M105 | PIN | PIN |  |  |  | Yes |  |  |
| 84 | M106 | PIN | PIN |  |  |  | Yes |  |  |
| 85 | M107 | PIN | PIN |  |  |  | Yes |  |  |
| 86 | M108 | PIN | PIN |  |  |  | Yes |  |  |


|  |  | Company Designer Job Number Model Name | Larson Engineering Inc MK <br> 21210330.000 <br> Hamlin Middle Schoo |  |  |  |  | May 6, 2021 7:45 AM Checked By: |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Advanced Data (Continued) |  |  |  |  |  |  |  |  |  |
|  | Label | I Release | J Release | 1 Offset[in] | J Offset[in] | T/C Only | Physical | том | Inactive |
| 87 | M109 | PIN | PIN |  |  |  | Yes |  |  |
| 88 | M110 | PIN | PIN |  |  |  | Yes |  |  |
| 89 | M111 | PIN | PIN |  |  |  | Yes |  |  |
| 90 | M112 | PIN | PIN |  |  |  | Yes |  |  |
| 91 | M113 | PIN | PIN |  |  |  | Yes |  |  |
| 92 | M114 | PIN | PIN |  |  |  | Yes |  |  |
| 93 | M115 | PIN | PIN |  |  |  | Yes |  |  |
| 94 | M116 | PIN | PIN |  |  |  | Yes |  |  |
| 95 | M117 | PIN | PIN |  |  |  | Yes |  |  |
| 96 | M118 | PIN | PIN |  |  |  | Yes |  |  |
| 97 | M119 | PIN | PIN |  |  |  | Yes |  |  |
| 98 | M120 | PIN | PIN |  |  |  | Yes |  |  |
| 99 | M121 | PIN | PIN |  |  |  | Yes |  |  |
| 100 | M122 |  |  |  |  |  | Yes |  |  |
| 101 | M123 |  |  |  |  |  | Yes |  |  |
| 102 | M124 |  |  |  |  |  | Yes |  |  |
| 103 | M125 |  |  |  |  |  | Yes |  |  |
| 104 | M126 |  |  |  |  |  | Yes |  |  |
| 105 | M127 |  |  |  |  |  | Yes |  |  |
| 106 | M128 |  |  |  |  |  | Yes |  |  |
| 107 | M129 |  |  |  |  |  | Yes |  |  |
| 108 | M130 |  |  |  |  |  | Yes |  |  |
| 109 | M131 |  |  |  |  |  | Yes |  |  |
| 110 | M132 |  |  |  |  |  | Yes |  |  |
| 111 | M133 |  |  |  |  |  | Yes |  |  |
| 112 | M134 | PIN | PIN |  |  |  | Yes |  |  |
| 113 | M135 | PIN |  |  |  |  | Yes |  |  |
| 114 | M136 |  |  |  |  |  | Yes |  |  |
| 115 | M137 |  |  |  |  |  | Yes |  |  |
| 116 | M138 |  |  |  |  |  | Yes |  |  |
| 117 | M139 |  | PIN |  |  |  | Yes |  |  |
| 118 | M140 |  |  |  |  |  | Yes |  |  |
| 119 | M141 |  | PIN |  |  |  | Yes |  |  |


|  | Label | Shape | Length $[$ (t) | Lb-out[ff] | Lb-inf(t) | Lcomp top [ft] | Lcomp bot (ff) L | L-torqu... | K-out | K-in | Cb | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | L3x2×0.1875 | 4.42 |  |  | Lb out |  |  |  |  |  | Lateral |
| 2 | M2 | L3×2×0.1875 | 5.35 |  |  | Lb out |  |  |  |  |  | Lateral |
| 3 | M3 | L3×2×0.1875 | 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 4 | M4 | L3x2×0.1875 | 5.34 |  |  | Lb out |  |  |  |  |  | Lateral |
| 5 | M5 | L3×2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 6 | M6 | L3×2×0.1875 | 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 7 | M7 | L3×2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 8 | M8 | L3×2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 9 | M9 | L3×2×0.1875 | 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 10 | M10 | L3×2×0.1875 | 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 11 | M11 | L3x2×0.1875 | 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 12 | M12 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 13 | M13 | L3×2×0.1875 | 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 14 | M14 | L2x2x0.1875 | 2.125 |  |  | Lb out |  |  |  |  |  | Lateral |
| 15 | M15 | L2 $2 \times 2 \times 0.1875$ | 2.125 |  |  | Lb out |  |  |  |  |  | Lateral |
| 16 | M16 | L3x2×0.1875 | 2.125 |  |  | Lb out |  |  |  |  |  | Lateral |
| 17 | M17 | L2 $2 \times 2 \times 0.1875$ | 3.285 |  |  | Lb out |  |  |  |  |  | Lateral |
| 18 | M18 | L2x2×0.1875 | 4.455 |  |  | Lb out |  |  |  |  |  | Lateral |
| 19 | M19 | L3×2×0.1875 | 5.625 | Segment |  | Lb out |  |  |  |  |  | Lateral |

RISA-2D Version 17.0.1 [Z:I........|Project DocsICalcs|Home Plate Frame.r2d]
Page 8

|  |  |  | Larson Engineering Inc MK <br> 21210330.000 <br> Hamlin Middle Schoo |  |  |  |  |  |  | May 6, 2021 7:45 AM Checked By: |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum Design Parameters (Continued) |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Label | Shape | Length $[$ (t) | Lb-outfft | Lb-in[ft] | Lcomp topfit | Lcomp botfft | L-torgu. | K-out | K-in | Cb | Function |
| 20 | M20 | L2 $\times 2 \times 0.1875$ | 3.535 |  |  | Lb out |  |  |  |  |  | Lateral |
| 21 | M21 | L3x2×0.1875 | 4.705 |  |  | Lb out |  |  |  |  |  | Lateral |
| 22 | M22 | L3x2×0.1875 | 5.875 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 23 | M23 | L2×2×0.1875 | 3.785 |  |  | Lb out |  |  |  |  |  | Lateral |
| 24 | M24 | L3x2×0.1875 | 4.955 |  |  | Lb out |  |  |  |  |  | Lateral |
| 25 | M25 | L3x2x0. $25 \ldots$ | 2.09 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 26 | M26 | L2x2×0.1875 | 3.25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 27 | M27 | L3x2×0.1875 | 3.25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 28 | M28 | L2 $\times 2 \times 0.1875$ | 3.25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 29 | M29 | L2×2×0.1875 | 3.25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 30 | M30 | L3x2×0.1875 | 3.25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 31 | M31 | L2 $\times 2 \times 0.1875$ | 5.199 |  |  | Lb out |  |  |  |  |  | Lateral |
| 32 | M32 | L1.5×1.5×0... | 4.206 |  |  | Lb out |  |  |  |  |  | Lateral |
| 33 | M34 | L1.5x1.5x0.. | 4.206 |  |  | Lb out |  |  |  |  |  | Lateral |
| 34 | M35 | L1.5x1.5x0.. | 4.206 |  |  | Lb out |  |  |  |  |  | Lateral |
| 35 | M36 | L1.5×1.5x0.. | 4.632 |  |  | Lb out |  |  |  |  |  | Lateral |
| 36 | M37 | C4x1.5 | 1.119 |  |  | Lb out |  |  |  |  |  | Lateral |
| 37 | M38 | L2 $\times 2 \times 1.1875$ | . 83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 38 | M39 | C4x1.85 UW | 4.25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 39 | M244 | L1.5x1.5x0.. | 2.981 |  |  | Lb out |  |  |  |  |  | Lateral |
| 40 | M63 | L2x2×0.1875 | 3.25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 41 | M64 | L3x2×0.1875 | 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 42 | M65 | L3x2×0.1875 | 5.34 |  |  | Lb out |  |  |  |  |  | Lateral |
| 43 | M66 | L2 $\times 2 \times 0.1875$ | 3.25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 44 | M67 | L2 $\times 2 \times 0.1875$ | 3.25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 45 | M68 | L3x2×0.1875 | 3.25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 46 | M69 | L3x2×0.1875 | 5.34 |  |  | Lb out |  |  |  |  |  | Lateral |
| 47 | M70 | L2 $\times 2 \times 0.1875$ | 5.41 |  |  | Lb out |  |  |  |  |  | Lateral |
| 48 | M70A | L3x2×0.187... | 1.83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 49 | M71 | L3x2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 50 | M72 | L3x2×0.187... | 1.59 |  |  | Lb out |  |  |  |  |  | Lateral |
| 51 | M73 | L3x2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 52 | M74 | L3x2×0.187... | 1.66 |  |  | Lb out |  |  |  |  |  | Lateral |
| 53 | M75 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 54 | M76 | L3x2×0.187... | 2.17 |  |  | Lb out |  |  |  |  |  | Lateral |
| 55 | M77 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 56 | M78 | L3x2x0.187... | 2.17 |  |  | Lb out |  |  |  |  |  | Lateral |
| 57 | M79 | L3x2×0.1875 | . 26 |  |  | Lb out |  |  |  |  |  | Lateral |
| 58 | M80 | L3x2×0.187... | 2.17 |  |  | Lb out |  |  |  |  |  | Lateral |
| 59 | M81 | L3x2×0.1875 | . 24 |  |  | Lb out |  |  |  |  |  | Lateral |
| 60 | M82 | L3x2x0.187... | 2.17 |  |  | Lb out |  |  |  |  |  | Lateral |
| 61 | M83 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 62 | M84 | L3x2x0.187... | 2.17 |  |  | Lb out |  |  |  |  |  | Lateral |
| 63 | M85 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 64 | M86 | L3x2x0.187... | 2.17 |  |  | Lb out |  |  |  |  |  | Lateral |
| 65 | M87 | L3x2×0.1875 | 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 66 | M88 | L3x2×0.187... | 2.17 |  |  | Lb out |  |  |  |  |  | Lateral |
| 67 | M89 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 68 | M90 | L3x2×0.187... | 2.17 |  |  | Lb out |  |  |  |  |  | Lateral |
| 69 | M91 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 70 | M92 | L3×2x0.187... | 2.17 |  |  | Lb out |  |  |  |  |  | Lateral |
| 71 | M93 | L3×2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 72 | M94 | L3x2×0.187... | 2.17 |  |  | Lb out |  |  |  |  |  | Lateral |
| 73 | M95 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 74 | M96 | L3x2x0.187... | 2.17 |  |  | Lb out |  |  |  |  |  | Lateral |
| 75 | M97 | L3×2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 76 | M98 | L3x2×0.187... | 2.17 |  |  | Lb out |  |  |  |  |  | Lateral |

Aluminum Design Parameters (Continued)

RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcsIHome Plate Frame.r2d]


## Aluminum Design Parameters (Continued)

|  | Label | Shape | Length $[$ (t) | Lb-out[ft] | Lb-in[ft] | Lcomp top [fit | Lcomp botffit | L-torgu. | K-out | K-in | Cb | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 77 | M99 | L3x2×0.1875 | 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 78 | M100 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 79 | M101 | L3×2×0.1875 | 7.8 |  |  | Lb out |  |  |  |  |  | Lateral |
| 80 | M102 | L3x2×0.1875 | 7.8 |  |  | Lb out |  |  |  |  |  | Lateral |
| 81 | M103 | L3×2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 82 | M104 | L3x2×0.1875 | 4.19 |  |  | Lb out |  |  |  |  |  | Lateral |
| 83 | M105 | L2 $\times 2 \times 0.1875$ | 4.19 |  |  | Lb out |  |  |  |  |  | Lateral |
| 84 | M106 | L2x2×0.1875 | 4.19 |  |  | Lb out |  |  |  |  |  | Lateral |
| 85 | M107 | L3×2×0.1875 | 4.19 |  |  | Lb out |  |  |  |  |  | Lateral |
| 86 | M108 | L3x2×0.1875 | 4.1 |  |  | Lb out |  |  |  |  |  | Lateral |
| 87 | M109 | L2x2×0.1875 | 4.1 |  |  | Lb out |  |  |  |  |  | Lateral |
| 88 | M110 | L2x2×0.1875 | 4.1 |  |  | Lb out |  |  |  |  |  | Lateral |
| 89 | M111 | L3x2×0.1875 | 4.1 |  |  | Lb out |  |  |  |  |  | Lateral |
| 90 | M112 | L3x2×0.1875 | 4.1 |  |  | Lb out |  |  |  |  |  | Lateral |
| 91 | M113 | L2x2×0.1875 | 4.1 |  |  | Lb out |  |  |  |  |  | Lateral |
| 92 | M114 | L2x2×0.1875 | 4.1 |  |  | Lb out |  |  |  |  |  | Lateral |
| 93 | M115 | L3x2×0.1875 | 4.1 |  |  | Lb out |  |  |  |  |  | Lateral |
| 94 | M116 | L2 $2 \times \times 0.1875$ | 5.034 |  |  | Lb out |  |  |  |  |  | Lateral |
| 95 | M117 | L2x2×0.1875 | 5.017 |  |  | Lb out |  |  |  |  |  | Lateral |
| 96 | M118 | L2×2×0.1875 | 4.959 |  |  | Lb out |  |  |  |  |  | Lateral |
| 97 | M119 | L2x2×0.1875 | 4.942 |  |  | Lb out |  |  |  |  |  | Lateral |
| 98 | M120 | L2 $2 \times \times 0.1875$ | 4.959 |  |  | Lb out |  |  |  |  |  | Lateral |
| 99 | M121 | L2 $2 \times 2 \times 0.1875$ | 4.942 |  |  | Lb out |  |  |  |  |  | Lateral |
| 100 | M122 | L3x2x0.187... | 2.29 |  |  | Lb out |  |  |  |  |  | Lateral |
| 101 | M123 | L3×2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 102 | M124 | L3x2×0.187... | 1.75 |  |  | Lb out |  |  |  |  |  | Lateral |
| 103 | M125 | L3×2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 104 | M126 | L3x2×0.187... | 2.29 |  |  | Lb out |  |  |  |  |  | Lateral |
| 105 | M127 | L3x2×0.1875 | . 22 |  |  | Lb out |  |  |  |  |  | Lateral |
| 106 | M128 | L3x2x0.187... | 2.29 |  |  | Lb out |  |  |  |  |  | Lateral |
| 107 | M129 | L3×2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 108 | M130 | L3x2x0.187... | 1.75 |  |  | Lb out |  |  |  |  |  | Lateral |
| 109 | M131 | L3×2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 110 | M132 | L3x2x0.187... | 2.29 |  |  | Lb out |  |  |  |  |  | Lateral |
| 111 | M133 | L3×2×0.1875 | . 22 |  |  | Lb out |  |  |  |  |  | Lateral |
| 112 | M134 | L2 $2 \times 2 \times 0.1875$ | 2.67 |  |  | Lb out |  |  |  |  |  | Lateral |
| 113 | M135 | L1.5×1.5x0.. | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 114 | M136 | C4x1.5 | 1.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 115 | M137 | L3 $3 \times 2 \times 0.25$ | . 5 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 116 | M138 | L3x2x0.25 ... | 3.205 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 117 | M139 | L3x2x0.25 | . 33 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 118 | M140 | L1.5x1.5x0.... | 2.41 |  |  | Lb out |  |  |  |  |  | Lateral |
| 119 | M141 | L1.5×1.5×0... | . 255 |  |  | Lb ou |  |  |  |  |  | Lateral |

## Joint Loads and Enforced Displacements (BLC 1 : DL)

|  | Joint Label | L, D, M | Direction | Magnitudel(k,k-ft), (in,rad), (k*s^2/ft. |
| :---: | :---: | :---: | :---: | :---: |
| 1 | N110 | , | Y | -. 528 |
| 2 | N113A | L | Y | -. 528 |


|  | Joint Label | L,D,M | Direction | Magnitude[(k,k-ft), (in,rad). (k*s $s^{\wedge} 2 / f \mathrm{t}$. |
| :---: | :---: | :---: | :---: | :---: |
| 1 | N110 | L | Y | -1.2 |
| 2 | N113A | L | Y | -1.2 |



| May 6, |
| :---: |
| $7: 45$ AM | Checked By:

Joint Loads and Enforced Displacements (BLC 3 : WL)



Joint Loads and Enforced Displacements (BLC 5 : EL)

| Joint Label |  | L,D,M | Direction | Magnitudel(k,k-kt), (in, rad), $\left(k^{\star} s^{\wedge} 2 / t \mathrm{t} .\right.$. |
| :---: | :---: | :---: | :---: | :---: |
| 1 | N110 | L | X | .204 |
| 2 | N110 | L | Y | .088 |
| 3 | N113A | L | Y | -.088 |

## Member Distributed Loads (BLC 1 : DL)

|  | Member Label | Direction | Start Magnitude[[l/ft, F, ksf] | End Magnitude[\|l/ft. | .Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M5 | Y | -60 | -60 | 0 | 0 |
| 2 | M6 | Y | -60 | -60 | 0 | 0 |
| 3 | M7 | Y | -60 | -60 | 0 | 0 |
| 4 | M8 | Y | -60 | -60 | 0 | 0 |
| 5 | M9 | Y | -60 | -60 | 0 | 0 |
| 6 | M10 | Y | -60 | -60 | 0 | 0 |
| 7 | M11 | Y | -60 | -60 | 0 | 0 |
| 8 | M12 | Y | -60 | -60 | 0 | 0 |
| 9 | M13 | Y | -60 | -60 | 0 | 0 |
| 10 | M70A | Y | -60 | -60 | 0 | 0 |
| 11 | M71 | Y | -60 | -60 | 0 | 0 |
| 12 | M72 | Y | -60 | -60 | 0 | 0 |
| 13 | M73 | Y | -60 | -60 | 0 | 0 |
| 14 | M74 | Y | -60 | -60 | 0 | 0 |
| 15 | M75 | Y | -60 | -60 | 0 | 25 |
| 16 | M76 | Y | -60 | -60 | 0 | 0 |
| 17 | M77 | Y | -60 | -60 | 0 | 25 |
| 18 | M78 | Y | -60 | -60 | 0 | 0 |
| 19 | M79 | Y | -60 | -60 | 0 | 26 |
| 20 | M80 | Y | -60 | -60 | 0 | 0 |
| 21 | M81 | Y | -60 | -60 | 0 | 24 |
| 22 | M82 | Y | -60 | -60 | 0 |  |
| 23 | M83 | Y | -60 | -60 | 0 | 25 |
| 24 | M84 | Y | -60 | -60 | 0 | 0 |
| 25 | M85 | Y | -60 | -60 | 0 | 25 |
| 26 | M86 | Y | -60 | -60 | 0 | 0 |
| 27 | M87 | Y | -60 | -60 | 0 | 25 |
| 28 | M88 | Y | -60 | -60 | 0 | 0 |
| 29 | M89 | Y | -60 | -60 | 0 | 25 |
| 30 | M90 | Y | -60 | -60 | 0 | 0 |
| 31 | M91 | Y | -60 | -60 | 0 | 25 |
| 32 | M103 | Y | -60 | -60 | 0 | 0 |
| 33 | M122 | Y | -60 | -60 | 0 | 0 |
| 34 | M123 | Y | -60 | -60 | 0 | 0 |
| 35 | M124 | Y | -60 | -60 | 0 | 0 |
| 36 | M125 | Y | -60 | -60 |  | 0 |
| 37 | M126 | Y | -60 | -60 | 0 | 0 |
| 38 | M127 | Y | -60 | -60 | 0 | 22 |



Member Distributed Loads (BLC 2: LL)

|  | Member Label | Direction | Start Magnitude[lb/t, F, ksf] | End Magnitudelib/t. | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M5 | Y | -600 | -600 | 0 | 0 |
| 2 | M6 | Y | -600 | -600 | 0 | 0 |
| 3 | M7 | Y | -600 | -600 | 0 | 0 |
| 4 | M8 | Y | -600 | -600 | 0 | 0 |
| 5 | M9 | Y | -600 | -600 | 0 | 0 |
| 6 | M10 | Y | -600 | -600 | 0 | 0 |
| 7 | M11 | Y | -600 | -600 | 0 | 0 |
| 8 | M12 | Y | -600 | -600 | 0 | 0 |
| 9 | M13 | Y | -600 | -600 | 0 | 0 |
| 10 | M70A | Y | -600 | -600 | 0 | 0 |
| 11 | M71 | Y | -600 | -600 | 0 | 0 |
| 12 | M72 | Y | -600 | -600 | 0 | 0 |
| 13 | M73 | Y | -600 | -600 | 0 | 0 |
| 14 | M74 | Y | -600 | -600 | 0 | 0 |
| 15 | M75 | Y | -600 | -600 | 0 | 25 |
| 16 | M76 | Y | -600 | -600 | 0 | 0 |
| 17 | M77 | Y | -600 | -600 | 0 | 25 |
| 18 | M78 | Y | -600 | -600 | 0 | 0 |
| 19 | M79 | Y | -600 | -600 | 0 | 26 |
| 20 | M80 | Y | -600 | -600 | 0 | 0 |
| 21 | M81 | Y | -600 | -600 | 0 | 24 |
| 22 | M82 | Y | -600 | -600 | 0 | 0 |
| 23 | M83 | Y | -600 | -600 | 0 | 25 |
| 24 | M84 | Y | -600 | -600 | 0 | 0 |
| 25 | M85 | Y | -600 | -600 | 0 | 25 |
| 26 | M86 | Y | -600 | -600 | 0 | 0 |
| 27 | M87 | Y | -600 | -600 | 0 | 25 |
| 28 | M88 | Y | -600 | -600 | 0 | 0 |
| 29 | M89 | Y | -600 | -600 | 0 | 25 |
| 30 | M90 | Y | -600 | -600 | 0 | 0 |
| 31 | M91 | Y | -600 | -600 | 0 | 25 |
| 32 | M103 | Y | -300 | -300 | 0 | 0 |
| 33 | M122 | Y | -300 | -300 | 0 | 0 |
| 34 | M123 | Y | -300 | -300 | 0 | 0 |
| 35 | M124 | Y | -300 | -300 | 0 | 0 |
| 36 | M125 | Y | -300 | -300 | 0 | 0 |
| 37 | M126 | Y | -300 | -300 | 0 | 0 |
| 38 | M127 | Y | -300 | -300 | 0 | 22 |

## Member Distributed Loads (BLC 3:WL)



Member Distributed Loads (BLC 5 : EL)


## lintisA <br> Designer Larson Engineering In <br> $\begin{array}{lll}\text { Dosigner } & \text { MK } \\ \text { Job Number } \\ & \text { M1210330.000 }\end{array}$ <br> 21210330.000 Hamlin Middle School

May 6,
7.45 AM
2021
May AM
7: hecked By

Member Distributed Loads (BLC 5 : EL) (Continued)

|  | Member Label | Direction | Start Magnitude[ll/ft,F,ksf] | End Magnitude[Ib/ft. | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | M8 | X | 37.2 | 37.2 | 0 | 0 |
| 5 | M9 | X | 37.2 | 37.2 | 0 | 0 |
| 6 | M10 | X | 37.2 | 37.2 | 0 | 0 |
| 7 | M11 | X | 37.2 | 37.2 | 0 | 0 |
| 8 | M12 | X | 37.2 | 37.2 | 0 | 0 |
| 9 | M13 | X | 37.2 | 37.2 | 0 | 0 |
| 10 | M70A | X | 37.2 | 37.2 | 0 | 0 |
| 11 | M71 | X | 37.2 | 37.2 | 0 | 0 |
| 12 | M72 | X | 37.2 | 37.2 | 0 | 0 |
| 13 | M73 | X | 37.2 | 37.2 | 0 | 0 |
| 14 | M74 | X | 37.2 | 37.2 | 0 | 0 |
| 15 | M75 | X | 37.2 | 37.2 | 0 | 25 |
| 16 | M76 | X | 37.2 | 37.2 | 0 | 0 |
| 17 | M77 | X | 37.2 | 37.2 | 0 | 25 |
| 18 | M78 | X | 37.2 | 37.2 | 0 | 0 |
| 19 | M79 | X | 37.2 | 37.2 | 0 | 26 |
| 20 | M80 | X | 37.2 | 37.2 | 0 | 0 |
| 21 | M81 | X | 37.2 | 37.2 | 0 | 24 |
| 22 | M82 | X | 37.2 | 37.2 | 0 | 0 |
| 23 | M83 | X | 37.2 | 37.2 | 0 | 25 |
| 24 | M84 | X | 37.2 | 37.2 | 0 | 0 |
| 25 | M85 | X | 37.2 | 37.2 | 0 | 25 |
| 26 | M86 | X | 37.2 | 37.2 | 0 | 0 |
| 27 | M87 | X | 37.2 | 37.2 | 0 | 25 |
| 28 | M88 | X | 37.2 | 37.2 | 0 | 0 |
| 29 | M89 | X | 37.2 | 37.2 | 0 | . 25 |
| 30 | M90 | X | 37.2 | 37.2 | 0 | 0 |
| 31 | M91 | X | 37.2 | 37.2 | 0 | 25 |
| 32 | M103 | X | 37.2 | 37.2 | 0 | 0 |
| 33 | M122 | X | 37.2 | 37.2 | 0 | 0 |
| 34 | M123 | X | 37.2 | 37.2 |  | 0 |
| 35 | M124 | X | 37.2 | 37.2 | 0 | 0 |
| 36 | M125 | X | 37.2 | 37.2 | 0 | 0 |
| 37 | M126 | X | 37.2 | 37.2 | 0 | 0 |
| 38 | M127 | X | 37.2 | 37.2 | 0 | 22 |

## Basic Load Cases

| BLC Description |  | Category | X Gravity | Y Gravity | Joint | Point | Distributed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | DL | None |  | -1 | 2 |  | 38 |
| 2 | LL | None |  |  | 2 |  | 38 |
| 3 | WL | None |  |  | 3 |  | 9 |
| 4 | GUARD | None |  |  | 1 |  |  |
| 5 | EL | None |  |  | 3 |  | 38 |

## Load Combinations




Envelope Joint Reactions


## M $\sim \begin{aligned} & \text { Company } \\ & \text { Designer } \\ & \vdots \mathrm{MK}\end{aligned}$ <br> $\begin{array}{l:l}\text { Designer } & \text { MK } \\ \text { Job Number }\end{array}: 21210330.000$ <br> 21210330.000 Hamlin Middle School

Envelope Joint Reactions (Continued)

| Joint |  |  | X [k] | LC | $\mathrm{Y}[\mathrm{k}]$ | LC | Moment [k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 |  | min |  | 3 | . 003 | 5 | 0 |  |
| 41 | N105 | max | . 227 | 11 | . 009 | 5 | 0 | 1 |
| 42 |  | min | -. 31 | 10 | -1.301 | 14 | 0 | 1 |
| 43 | N106 | max | 0 | 1 | 3.188 | 7 | 0 | 1 |
| 44 |  | min | 0 | 1 | 0 | 2 | 0 | 1 |
| 45 | N107 | max | 0 | 1 | 2.564 | 2 | 0 | 1 |
| 46 |  | min | 0 | 1 | 0 | 7 |  | 1 |
| 47 | N108 | max | 0 | 1 | 2.539 | 3 | 0 | 1 |
| 48 |  | min | 0 | 1 | 0 | 6 |  | 1 |
| 49 | N109 | max | 0 | 1 | 3.182 | 6 | 0 | 1 |
| 50 |  | min | 0 | 1 | 0 | 3 | 0 | 1 |
| 51 | N122 | max | . 103 | 11 | . 009 | 3 | 0 | 1 |
| 52 |  | min | -. 07 | 2 | -1.255 | 10 | 0 | 1 |
| 53 | N123 | max | . 071 | 3 | . 009 | 2 | 0 | 1 |
| 54 |  | min | -. 106 | 10 | -1.233 | 11 | 0 | 1 |
| 55 | N124 | max | . 507 | 11 | . 217 | 10 | 0 | 1 |
| 56 |  | min | -. 317 | 2 | -1.799 | 11 | 0 | 1 |
| 57 | N137 | max | . 322 | 3 | . 232 | 11 | 0 | 1 |
| 58 |  | min | -. 516 | 10 | -1.79 | 10 | 0 | 1 |
| 59 | Totals: | max | 1.726 | 11 | 25.001 | 1 |  |  |
| 60 |  | min | -1.726 | 10 | 1.818 | 12 |  |  |

Envelope Member Section Forces

|       <br> 1 Member     |  | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment[k-ft] LC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | max |  | 9 | . 085 | 12 | 0 | 1 |
| 2 |  |  | min | 0 | 4 | -. 003 | 1 | 0 | 1 |
| 3 |  | 2 | max | 103 | 13 | . 002 | 1 | . 001 | 13 |
| 4 |  |  | min | -. 106 | 12 | -. 054 | 12 | -. 01 | 12 |
| 5 |  | 3 | max | . 103 | 13 | 0 | 1 | . 05 | 12 |
| 6 |  |  | min | -. 106 | 12 | -. 054 | 12 | -. 001 | 1 |
| 7 |  | 4 | max | . 122 | 12 | . 065 | 12 | 0 | 1 |
| 8 |  |  | min | -. 118 | 13 | -. 003 | 1 | -. 034 | 13 |
| 9 |  | 5 | max | 0 | 4 | . 005 | 1 | 0 | 1 |
| 10 |  |  | min | 0 | 7 | -. 126 | 13 | 0 | 1 |
| 11 | M2 | 1 | max | . 035 | 11 | . 283 | 10 | 0 | 1 |
| 12 |  |  | min | -. 041 | 10 | -. 004 | 1 | 0 | 1 |
| 13 |  | 2 | max | . 147 | 7 | . 002 | 1 | . 008 | 11 |
| 14 |  |  | min | -. 126 | 6 | -. 143 | 10 | -. 021 | 10 |
| 15 |  | 3 | max | . 126 | 6 | . 143 | 10 | . 169 | 10 |
| 16 |  |  | min | -. 146 | 7 | 0 | 1 | 0 | 1 |
| 17 |  | 4 | max | . 126 | 6 | . 142 | 10 | 0 | 1 |
| 18 |  |  | min | -. 146 | 7 | -. 002 | 1 | -. 094 | 11 |
| 19 |  | 5 | max | . 024 | 6 | . 005 | 1 | 0 | 1 |
| 20 |  |  | min | -. 029 | 7 | -. 363 | 11 | 0 | 1 |
| 21 | M3 | 1 | max | 0 | 7 | . 407 | 10 | 0 | 1 |
| 22 |  |  | min | -. 001 | 2 | -. 005 | 1 |  | 1 |
| 23 |  | 2 | max | 0 | 7 | . 407 | 10 | 0 | 1 |
| 24 |  |  | min | -. 001 | 2 | -. 005 | 1 | -. 025 | 10 |
| 25 |  | 3 | max | 0 | 7 | . 407 | 10 | 0 | 1 |
| 26 |  |  | min | -. 001 | 2 | -. 005 | 1 | -. 051 | 10 |
| 27 |  | 4 | max | 0 | 7 | . 407 | 10 | 0 | 1 |
| 28 |  |  | min | -. 001 | 2 | -. 005 | 1 | -. 076 | 10 |
| 29 |  | 5 | max | 0 | 7 | . 407 | 10 | . 001 | 1 |
| 30 |  |  | min | -. 001 | 2 | -. 005 | 1 | -. 102 | 10 |
| 31 | M4 | 1 | max | . 031 | 10 | . 034 | 11 | . 036 | 11 |


Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment ${ }^{\text {k }}$ | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 |  |  | min | -. 011 | 3 | -. 074 | 10 | -. 078 | 10 |
| 33 |  | 2 | max | . 031 | 10 | . 033 | 11 | . 022 | 10 |
| 34 |  |  | min | -. 011 | 3 | -. 075 | 10 | -. 012 | 15 |
| 35 |  | 3 | max | . 255 | 6 | . 032 | 11 | . 122 | 10 |
| 36 |  |  | min | -. 341 | 7 | -. 076 | 10 | -. 053 | 11 |
| 37 |  | 4 | max | 255 | 6 | . 046 | 10 | . 061 | 10 |
| 38 |  |  | min | -. 341 | 7 | -. 02 | 11 | -. 027 | 11 |
| 39 |  | 5 | max | . 255 | 6 | . 045 | 10 | 0 | 1 |
| 40 |  |  | min | -. 341 | 7 | -. 021 | 11 | 0 | 1 |
| 41 | M5 | 1 | max | 0 | 4 | . 63 | 1 | 0 | 1 |
| 42 |  |  | min | 0 | 9 | . 019 | 12 | 0 | 1 |
| 43 |  | 2 | max | . 002 | 8 | . 588 | 1 | -. 001 | 12 |
| 44 |  |  | min | -. 002 | 9 | . 017 | 12 | -. 038 | 1 |
| 45 |  | 3 | max | . 003 | 8 | . 547 | 1 | -. 002 | 12 |
| 46 |  |  | min | -. 003 | 9 | . 015 | 12 | -. 074 | 1 |
| 47 |  | 4 | max | . 005 | 8 | . 506 | 1 | -. 003 | 12 |
| 48 |  |  | min | -. 005 | 9 | . 013 | 12 | -. 106 | 1 |
| 49 |  | 5 | max | . 007 | 8 | . 464 | 1 | -. 004 | 12 |
| 50 |  |  | min | -. 007 | 9 | . 011 | 12 | -. 137 | 1 |
| 51 | M6 | 1 | max | . 032 | 13 | . 883 | 1 | 0 | 1 |
| 52 |  |  | min | -. 037 | 12 | . 042 | 12 | 0 | 1 |
| 53 |  | 2 | max | . 031 | 13 | . 841 | 1 | -. 003 | 12 |
| 54 |  |  | min | -. 035 | 12 | . 04 | 12 | -. 054 | 1 |
| 55 |  | 3 | max | . 029 | 13 | . 8 | 1 | -. 005 | 12 |
| 56 |  |  | min | -. 034 | 12 | . 038 | 12 | -. 105 | 1 |
| 57 |  | 4 | max | . 027 | 13 | . 759 | 1 | -. 007 | 12 |
| 58 |  |  | min | -. 032 | 12 | . 036 | 12 | -. 154 | 1 |
| 59 |  | 5 | max | . 026 | 13 | . 717 | 1 | -. 01 | 12 |
| 60 |  |  | min | -. 03 | 12 | . 034 | 12 | -. 2 | 1 |
| 61 | M7 | 1 | max | . 081 | 6 | . 886 | 1 | 0 | 1 |
| 62 |  |  | min | -. 088 | 7 | . 043 | 13 | 0 | 1 |
| 63 |  | 2 | max | . 081 | 6 | . 845 | 1 | -. 003 | 13 |
| 64 |  |  | min | -. 088 | 7 | . 041 | 13 | -. 054 | 1 |
| 65 |  | 3 | max | . 081 | 6 | . 803 | 1 | -. 005 | 13 |
| 66 |  |  | min | -. 088 | 7 | . 039 | 13 | -. 106 | 1 |
| 67 |  | 4 | max | . 081 | 6 | . 762 | 1 | -. 007 | 13 |
| 68 |  |  | min | -. 088 | 7 | . 037 | 13 | -. 154 | 1 |
| 69 |  | 5 | max | . 081 | 6 | . 721 | 1 | -. 01 | 13 |
| 70 |  |  | min | -. 088 | 7 | . 035 | 13 | -. 201 | 1 |
| 71 | M8 | 1 | max | . 065 | 9 | . 879 | 1 | 0 | 1 |
| 72 |  |  | min | -. 054 | 8 | . 042 | 12 | 0 | 1 |
| 73 |  | 2 | max | . 063 | 9 | . 838 | 1 | -. 003 | 12 |
| 74 |  |  | min | -. 052 | 8 | . 04 | 12 | -. 054 | 1 |
| 75 |  | 3 | max | . 062 | 9 | . 797 | 1 | -. 005 | 12 |
| 76 |  |  | min | -. 051 | 8 | . 038 | 12 | -. 105 | 1 |
| 77 |  | 4 | max | . 06 | 9 | . 755 | 1 | -. 007 | 12 |
| 78 |  |  | min | -. 049 | 8 | . 036 | 12 | -. 153 | 1 |
| 79 |  | 5 | max | . 058 | 9 | . 714 | 1 | -. 01 | 12 |
| 80 |  |  | min | -. 047 | 8 | . 034 | 12 | -. 199 | 1 |
| 81 | M9 | 1 | max | . 055 | 2 | . 883 | 1 | 0 | 1 |
| 82 |  |  | min | -. 049 | 3 | . 042 | 13 | 0 | 1 |
| 83 |  | 2 | max | . 055 | 2 | . 841 | 1 | -. 003 | 13 |
| 84 |  |  | min | -. 049 | 3 | . 04 | 13 | -. 054 | 1 |
| 85 |  | 3 | max | . 055 | 2 | . 8 | 1 | -. 005 | 13 |
| 86 |  |  | min | -. 049 | 3 | . 038 | 13 | -. 105 | 1 |
| 87 |  | 4 | max | . 055 | 2 | 759 | 1 | -. 007 | 13 |
| 88 |  |  | min | -. 049 | 3 | . 036 | 13 | -. 154 | 1 |

## lintisA <br> Company . Larson Engineering Inc <br> $\begin{array}{lll}\text { Designer } & \text { MK } \\ \text { Job Number } \\ \text { 212 } \\ & 2120330.000\end{array}$

May 6, 2021
$7: 45$ AM 7:45 AM Chec By:

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axialk] | LC | Shear[k] | LC | Moment ${ }^{\text {k }}$ | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 |  | 5 | max | . 055 | 2 | . 717 | 1 | -. 01 | 13 |
| 90 |  |  | min | -. 049 | 3 | . 034 | 13 | -. 2 | 1 |
| 91 | M10 | 1 | max | . 135 | 10 | . 883 | 1 | 0 | 1 |
| 92 |  |  | min | -. 129 | 7 | . 042 | 13 | 0 | 1 |
| 93 |  | 2 | max | . 135 | 10 | . 841 | 1 | -. 003 | 13 |
| 94 |  |  | min | -. 129 | 7 | . 04 | 13 | -. 054 | 1 |
| 95 |  | 3 | max | . 135 | 10 | . 8 | 1 | -. 005 | 13 |
| 96 |  |  | min | -. 129 | 7 | . 038 | 13 | -. 105 | 1 |
| 97 |  | 4 | max | . 135 | 10 | . 759 | 1 | -. 007 | 13 |
| 98 |  |  | min | -. 129 | 7 | . 036 | 13 | -. 154 | 1 |
| 99 |  | 5 | max | . 135 | 10 | . 717 | 1 | -. 01 | 13 |
| 100 |  |  | min | -. 129 | 7 | . 034 | 13 | -. 2 | 1 |
| 101 | M11 | 1 | max | . 155 | 15 | . 883 | 1 | 0 | 1 |
| 102 |  |  | min | -. 087 | 14 | . 042 | 12 | 0 | 1 |
| 103 |  | 2 | max | . 155 | 15 | . 842 | 1 | -. 003 | 12 |
| 104 |  |  | min | -. 087 | 14 | . 04 | 12 | -. 054 | 1 |
| 105 |  | 3 | max | . 155 | 15 | . 8 | 1 | -. 005 | 12 |
| 106 |  |  | min | -. 087 | 14 | . 038 | 12 | -. 105 | 1 |
| 107 |  | 4 | max | . 155 | 15 | . 759 | 1 | -. 007 | 12 |
| 108 |  |  | min | -. 087 | 14 | . 036 | 12 | -. 154 | 1 |
| 109 |  | 5 | max | . 155 | 15 | . 718 | 1 | -. 01 | 12 |
| 110 |  |  | min | -. 087 | 14 | . 034 | 12 | -. 2 | 1 |
| 111 | M12 | 1 | max | . 129 | 10 | . 883 | 1 | 0 | 1 |
| 112 |  |  | min | -. 062 | 11 | . 042 | 13 | 0 | 1 |
| 113 |  | 2 | max | . 129 | 10 | . 842 | 1 | -. 003 | 13 |
| 114 |  |  | min | -. 062 | 11 | . 04 | 13 | -. 054 | 1 |
| 115 |  | 3 | max | . 129 | 10 | . 8 | 1 | -. 005 | 13 |
| 116 |  |  | min | -. 062 | 11 | . 038 | 13 | -. 105 | 1 |
| 117 |  | 4 | max | . 129 | 10 | . 759 | 1 | -. 007 | 13 |
| 118 |  |  | min | -. 062 | 11 | . 036 | 13 | -. 154 | 1 |
| 119 |  | 5 | max | . 129 | 10 | . 718 | 1 | -. 01 | 13 |
| 120 |  |  | min | -. 062 | 11 | . 034 | 13 | -. 2 | 1 |
| 121 | M13 | 1 | max | 1.736 | 15 | . 882 | 1 | 0 | 1 |
| 122 |  |  | min | -1.747 | 14 | . 042 | 12 | 0 | 1 |
| 123 |  | 2 | max | 1.736 | 15 | . 841 | 1 | -. 003 | 12 |
| 124 |  |  | min | -1.747 | 14 | . 04 | 12 | -. 054 | 1 |
| 125 |  | 3 | max | 1.736 | 15 | . 8 | 1 | -. 005 | 12 |
| 126 |  |  | min | -1.747 | 14 | . 038 | 12 | -. 105 | 1 |
| 127 |  | 4 | max | 1.736 | 15 | . 758 | 1 | -. 007 | 12 |
| 128 |  |  | min | -1.747 | 14 | . 036 | 12 | -. 154 | 1 |
| 129 |  | 5 | max | 1.736 | 15 | . 717 | 1 | -. 01 | 12 |
| 130 |  |  | min | -1.747 | 14 | . 034 | 12 | -. 2 | 1 |
| 131 | M14 | 1 | max | . 63 | 1 | 0 | 1 | 0 |  |
| 132 |  |  | min | . 019 | 12 | 0 | 1 | 0 | 1 |
| 133 |  | 2 | max | . 63 | 1 | 0 | 1 | 0 | 1 |
| 134 |  |  | min | . 019 | 12 | 0 | 1 | 0 | 1 |
| 135 |  | 3 | max | . 63 | 1 | 0 |  | 0 | 1 |
| 136 |  |  | min | . 019 | 12 | 0 | 1 | 0 | 1 |
| 137 |  | 4 | max | . 631 | 1 | 0 | 1 | 0 | 1 |
| 138 |  |  | min | . 02 | 12 | 0 | 1 | 0 | 1 |
| 139 |  | 5 | max | . 631 | 1 | 0 | 1 | 0 | 1 |
| 140 |  |  | min | . 02 | 12 | 0 | 1 | 0 | 1 |
| 141 | M15 | 1 | max | 1.618 | 1 | 0 |  | 0 | 1 |
| 142 |  |  | min | . 058 | 13 | 0 | 1 | 0 | 1 |
| 143 |  | 2 | max | 1.618 | 1 | 0 | 1 | 0 | 1 |
| 144 |  |  | min | . 058 | 13 | 0 | 1 | 0 | 1 |
| 145 |  | 3 | max | 1.619 |  | 0 | 1 | 0 | 1 |


Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Momentk-1t | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 146 |  |  | min | . 058 | 13 | 0 |  | 0 | 1 |
| 147 |  | 4 | max | 1.619 | 1 | 0 | 1 | 0 | 1 |
| 148 |  |  | min | . 058 | 13 | 0 | 1 | 0 | 1 |
| 149 |  | 5 | max | 1.619 | 1 | 0 | 1 | 0 | 1 |
| 150 |  |  | min | . 058 | 13 |  | 1 | 0 | 1 |
| 151 | M16 | 1 | max | 1.533 | 1 | 0 | 1 | 0 |  |
| 152 |  |  | min | -. 128 | 13 | 0 | 1 | 0 | 1 |
| 153 |  | 2 | max | 1.533 | 1 | 0 | 1 | 0 | 1 |
| 154 |  |  | min | -. 127 | 13 |  | 1 | 0 | 1 |
| 155 |  | 3 | max | 1.534 | 1 | 0 | 1 | 0 | 1 |
| 156 |  |  | min | -. 127 | 13 | 0 | 1 | 0 | 1 |
| 157 |  | 4 | max | 1.535 | 1 | 0 | 1 | 0 | 1 |
| 158 |  |  | min | -. 127 | 13 | 0 | 1 | 0 | 1 |
| 159 |  | 5 | max | 1.535 |  | 0 | 1 | 0 | 1 |
| 160 |  |  | min | -. 126 | 13 | 0 | 1 | 0 | 1 |
| 161 | M17 | 1 | max | . 883 | 1 | . 037 | 12 | 0 | 1 |
| 162 |  |  | min | . 042 | 13 | -. 032 | 13 | 0 | 1 |
| 163 |  | 2 | max | . 883 | 1 | . 098 | 10 | . 04 | 11 |
| 164 |  |  | min | . 043 | 13 | -. 087 | 11 | -. 049 | 10 |
| 165 |  | 3 | max | 1.462 | 1 | . 035 | 11 | . 058 | 11 |
| 166 |  |  | min | . 062 | 13 | -. 041 | 10 | -. 067 | 10 |
| 167 |  | 4 | max | 1.462 | 1 | . 035 | 11 | . 029 | 11 |
| 168 |  |  | min | . 062 | 13 | -. 041 | 10 | -. 034 | 10 |
| 169 |  | 5 | max | 1.463 | 1 | . 035 | 11 | 0 | 1 |
| 170 |  |  | min | . 063 | 13 | -. 041 | 10 | 0 | 1 |
| 171 | M18 | 1 | max | . 886 | 1 | . 088 | 7 | 0 | 1 |
| 172 |  |  | min | . 042 | 12 | -. 081 | 6 | 0 | 1 |
| 173 |  | 2 | max | . 887 | 1 | . 028 | 9 | . 039 | 2 |
| 174 |  |  | min | . 043 | 12 | -. 026 | 8 | -. 042 | 3 |
| 175 |  | 3 | max | 1.77 | 1 | . 012 | 2 | . 026 | 2 |
| 176 |  |  | min | . 086 | 12 | -. 013 | 3 | -. 028 | 3 |
| 177 |  | 4 | max | 1.771 | 1 | . 012 | 2 | . 013 | 2 |
| 178 |  |  | min | . 086 | 12 | -. 013 | 3 | -. 014 | 3 |
| 179 |  | 5 | max | 1.772 | 1 | . 012 | 2 | 0 | 1 |
| 180 |  |  | min | . 087 | 12 | -. 013 | 3 | 0 | 1 |
| 181 | M19 | 1 | max | . 879 | 1 | . 054 | 8 | 0 | 1 |
| 182 |  |  | min | . 042 | 13 | -. 065 | 9 | 0 | 1 |
| 183 |  | 2 | max | 1.754 | 1 | . 029 | 7 | 124 | 7 |
| 184 |  |  | min | -. 366 | 11 | -. 022 | 6 | -. 095 | 6 |
| 185 |  | 3 | max | 1.756 | 1 | . 029 | 7 | . 083 | 7 |
| 186 |  |  | min | -. 365 | 11 | -. 022 | 6 | -. 063 | 6 |
| 187 |  | 4 | max | 1.757 | 1 | . 029 | 7 | . 041 | 7 |
| 188 |  |  | min | -. 364 | 11 | -. 022 | 6 | -. 032 | 6 |
| 189 |  | 5 | max | 1.759 | 1 | . 029 | 7 | 0 | 1 |
| 190 |  |  | min | -. 363 | 11 | -. 022 | 6 | 0 | 1 |
| 191 | M20 | 1 | max | . 883 | 1 | . 048 | 3 | 0 | 1 |
| 192 |  |  | min | . 042 | 13 | -. 054 | 2 | 0 | 1 |
| 193 |  | 2 | max | . 883 | 1 | . 032 | 6 | . 02 | 2 |
| 194 |  |  | min | . 043 | 13 | -. 039 | 7 | -. 015 | 3 |
| 195 |  | 3 | max | 1.763 | 1 | . 032 | 10 | . 018 | 11 |
| 196 |  |  | min | . 085 | 13 | -. 013 | 3 | -. 022 | 10 |
| 197 |  | 4 | max | 1.764 | 1 | . 032 | 10 | . 027 | 11 |
| 198 |  |  | min | . 086 | 13 | -. 013 | 3 | -. 05 | 10 |
| 199 |  | 5 | max | 1.765 | 1 | . 032 | 10 | . 036 | 11 |
| 200 |  |  | min | . 086 | 13 | -. 013 | 3 | -. 078 | 10 |
| 201 | M21 | 1 | max | . 883 | 1 | . 129 | 7 | 0 | 1 |
| 202 |  |  | min | . 042 | 12 | -. 135 | 10 | 0 | 1 |



## Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment\|k-1 | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 203 |  | 2 | max | 1.766 | 1 | . 027 | 10 | . 094 | 10 |
| 204 |  |  | min | . 085 | 12 | -. 025 | 7 | -. 086 | 7 |
| 205 |  | 3 | max | 1.768 | 1 | . 027 | 10 | . 063 | 10 |
| 206 |  |  | min | . 086 | 12 | -. 025 | 7 | -. 058 | 7 |
| 207 |  | 4 | max | 1.769 | 1 | . 027 | 10 | . 031 | 10 |
| 208 |  |  | min | . 087 | 12 | -. 025 | 7 | -. 029 | 7 |
| 209 |  | 5 | max | 1.77 | 1 | . 027 | 10 | 0 | 1 |
| 210 |  |  | min | . 087 | 12 | -. 025 | 7 | 0 | 1 |
| 211 | M22 | 1 | max | . 883 | 1 | . 087 | 14 | 0 | 1 |
| 212 |  |  | min | . 042 | 13 | -. 156 | 15 | 0 | 1 |
| 213 |  | 2 | max | 1.727 | 1 | . 039 | 15 | . 171 | 15 |
| 214 |  |  | min | -. 439 | 11 | -. 022 | 14 | -. 096 | 14 |
| 215 |  | 3 | max | 1.729 | 1 | . 039 | 15 | . 114 | 15 |
| 216 |  |  | min | -. 438 | 11 | -. 022 | 14 | -. 064 | 14 |
| 217 |  | 4 | max | 1.731 | 1 | . 039 | 15 | . 057 | 15 |
| 218 |  |  | min | -. 437 | 11 | -. 022 | 14 | -. 032 | 14 |
| 219 |  | 5 | max | 1.732 | 1 | . 039 | 15 | 0 | 1 |
| 220 |  |  | min | -. 436 | 11 | -. 022 | 14 | 0 | 1 |
| 221 | M23 | 1 | max | . 883 | 1 | . 062 | 11 | 0 | 1 |
| 222 |  |  | min | . 042 | 13 | -. 129 | 10 | 0 | 1 |
| 223 |  | 2 | max | . 883 | 1 | . 061 | 14 | . 103 | 15 |
| 224 |  |  | min | . 043 | 13 | -. 109 | 15 | -. 057 | 14 |
| 225 |  | 3 | max | 1.767 | 1 | . 048 | 15 | . 091 | 15 |
| 226 |  |  | min | . 086 | 13 | -. 027 | 14 | -. 051 | 14 |
| 227 |  | 4 | max | 1.768 | 1 | . 048 | 15 | . 045 | 15 |
| 228 |  |  | min | . 086 | 13 | -. 027 | 14 | -. 025 | 14 |
| 229 |  | 5 | max | 1.768 | 1 | . 048 | 15 | 0 | 1 |
| 230 |  |  | min | . 087 | 13 | -. 027 | 14 | 0 | 1 |
| 231 | M24 | 1 | max | . 872 | 1 | . 054 | 11 | 0 | 1 |
| 232 |  |  | min | -. 671 | 14 | -. 057 | 6 | 0 | 1 |
| 233 |  | 2 | max | 1.757 | 1 | . 009 | 15 | . 035 | 15 |
| 234 |  |  | min | -. 587 | 14 | -. 008 | 14 | -. 032 | 14 |
| 235 |  | 3 | max | 1.758 | 1 | . 009 | 15 | . 023 | 15 |
| 236 |  |  | min | -. 586 | 14 | -. 008 | 14 | -. 021 | 14 |
| 237 |  | 4 | max | 1.759 | 1 | . 009 | 15 | . 012 | 15 |
| 238 |  |  | min | -. 584 | 14 | -. 008 | 14 | -. 011 | 14 |
| 239 |  | 5 | max | 1.761 | 1 | . 009 | 15 | 0 | 1 |
| 240 |  |  | min | -. 583 | 14 | -. 008 | 14 | 0 | 1 |
| 241 | M25 | 1 | max | 0 | 1 | 0 | 14 | 0 | 1 |
| 242 |  |  | min | 0 | 1 | 0 | 15 | 0 | 1 |
| 243 |  | 2 | max | . 022 | 15 | 1.159 | 14 | 222 | 15 |
| 244 |  |  | min | 0 | 13 | -1.152 | 15 | -. 223 | 14 |
| 245 |  | 3 | max | . 023 | 15 | 1.159 | 14 | . 824 | 15 |
| 246 |  |  | min | 0 | 13 | -1.152 | 15 | -. 828 | 14 |
| 247 |  | 4 | max | . 885 | 1 | . 583 | 15 | . 736 | 15 |
| 248 |  |  | min | . 044 | 13 | -. 588 | 14 | -. 739 | 14 |
| 249 |  | 5 | max | . 898 | 1 | 1.436 | 15 | . 278 | 15 |
| 250 |  |  | min | . 051 | 13 | -1.447 | 14 | -. 277 | 14 |
| 251 | M26 | 1 | max | 1.819 | 1 | 0 | 1 | 0 | 1 |
| 252 |  |  | min | -. 115 | 10 | 0 | 1 | 0 | 1 |
| 253 |  | 2 | max | 1.82 | 1 |  | 1 | 0 | 1 |
| 254 |  |  | min | -. 114 | 10 | 0 | 1 | 0 | 1 |
| 255 |  | 3 | max | 1.821 | 1 | 0 | 1 | 0 | 1 |
| 256 |  |  | min | -. 114 | 10 | 0 | 1 | 0 | 1 |
| 257 |  | 4 | max | 1.821 | 1 | 0 | 1 | 0 | 1 |
| 258 |  |  | min | -. 113 | 10 | 0 | 1 | 0 | 1 |
| 259 |  | 5 | max | 1.822 | 1 | 0 | 1 | 0 | 1 |

 $\begin{array}{ll}\begin{array}{l}\text { Designer } \\ \text { Joon Number } \\ \text { Model Name }\end{array} & \begin{array}{l}\text { MK } \\ 21210330.000 \\ \text { Hamlin Middle School }\end{array}\end{array}$

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear [k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 260 |  |  | min | -. 113 | 10 | 0 | 1 | 0 | 1 |
| 261 | M27 | 1 | max | 2.014 | 2 | 0 | 1 | 0 |  |
| 262 |  |  | min | -. 798 | 11 | 0 | 1 | 0 | 1 |
| 263 |  | 2 | max | 2.015 | 2 | 0 | 1 | 0 | 1 |
| 264 |  |  | min | -. 797 | 11 | 0 | 1 | 0 | 1 |
| 265 |  | 3 | max | 2.016 | 2 | 0 | 1 | 0 | 1 |
| 266 |  |  | min | -. 796 | 11 | 0 | 1 | 0 | 1 |
| 267 |  | 4 | max | 2.017 | 2 | 0 | 1 | 0 | 1 |
| 268 |  |  | min | -. 796 | 11 | 0 | 1 | 0 | 1 |
| 269 |  | 5 | max | 2.017 | 2 | 0 | 1 | 0 | 1 |
| 270 |  |  | min | -. 795 | 11 | 0 | 1 | 0 | 1 |
| 271 | M28 | 1 | max | 1.779 | 1 | 0 | 1 | 0 | 1 |
| 272 |  |  | min | . 062 | 10 | 0 | 1 | 0 | 1 |
| 273 |  | 2 | max | 1.78 | 1 | 0 | 1 | 0 | 1 |
| 274 |  |  | min | . 062 | 10 | 0 | 1 | 0 | 1 |
| 275 |  | 3 | max | 1.78 | 1 | 0 | 1 | 0 | 1 |
| 276 |  |  | min | . 063 | 10 | 0 | 1 | 0 | 1 |
| 277 |  | 4 | max | 1.781 | 1 | 0 | 1 | 0 | 1 |
| 278 |  |  | min | . 063 | 10 | 0 | 1 | 0 | 1 |
| 279 |  | 5 | max | 1.782 | 1 | 0 | 1 | 0 | 1 |
| 280 |  |  | min | . 064 | 10 | 0 | 1 | 0 | 1 |
| 281 | M29 | 1 | max | 1.962 | 3 | 0 | 1 | 0 | 1 |
| 282 |  |  | min | -1.059 | 14 | 0 | 1 | 0 | 1 |
| 283 |  | 2 | max | 1.963 | 3 | 0 |  | 0 | 1 |
| 284 |  |  | min | -1.058 | 14 | 0 | 1 | 0 | 1 |
| 285 |  | 3 | max | 1.964 | 3 | 0 | 1 | 0 | 1 |
| 286 |  |  | min | -1.058 | 14 | 0 | 1 | 0 | 1 |
| 287 |  | 4 | max | 1.964 | 3 | 0 | 1 | 0 | 1 |
| 288 |  |  | min | -1.057 | 14 | 0 | 1 | 0 | 1 |
| 289 |  | 5 | max | 1.965 | 3 | 0 | 1 | 0 | 1 |
| 290 |  |  | min | -1.056 | 14 | 0 | 1 | 0 | 1 |
| 291 | M30 | 1 | max | 1.734 | 2 | 0 | 1 | 0 | 1 |
| 292 |  |  | min | -1.192 | 15 | 0 | 1 | 0 | 1 |
| 293 |  | 2 | max | 1.735 | 2 | 0 | 1 | 0 | 1 |
| 294 |  |  | min | -1.191 | 15 | 0 | 1 | 0 | 1 |
| 295 |  | 3 | max | 1.736 | 2 | 0 | 1 | 0 | 1 |
| 296 |  |  | min | -1.19 | 15 | 0 | 1 | 0 | 1 |
| 297 |  | 4 | max | 1.737 | 2 | 0 |  | 0 | 1 |
| 298 |  |  | min | -1.189 | 15 | 0 | 1 | 0 | 1 |
| 299 |  | 5 | max | 1.738 | 2 | 0 | 1 | 0 | 1 |
| 300 |  |  | min | -1.188 | 15 | 0 | 1 | 0 | 1 |
| 301 | M31 | 1 | max | . 545 | 7 | 0 | 12 | 0 | 1 |
| 302 |  |  | min | -. 473 | 6 | -. 001 | 8 | 0 | 1 |
| 303 |  | 2 | max | . 546 | 7 | 0 | 12 | . 001 | 8 |
| 304 |  |  | min | -. 472 | 6 | 0 | 8 | 0 | 12 |
| 305 |  | 3 | max | . 547 | 7 | 0 | 1 | . 002 | 8 |
| 306 |  |  | min | -. 471 | 6 | 0 | 1 | 0 | 12 |
| 307 |  | 4 | max | . 548 | 7 | 0 | 9 | 001 | 8 |
| 308 |  |  | min | -. 47 | 6 | 0 | 13 | 0 | 12 |
| 309 |  | 5 | max | . 549 | 7 | . 001 | 9 | 0 | 1 |
| 310 |  |  | min | -. 469 | 6 | 0 | 13 |  | 1 |
| 311 | M32 | 1 | max | . 497 | 7 | 0 | 12 | 0 | 1 |
| 312 |  |  | min | -. 398 | 6 | 0 | 8 | 0 | 1 |
| 313 |  | 2 | max | 498 | 7 | 0 | 12 | 0 | 8 |
| 314 |  |  | min | -. 398 | 6 | 0 | 8 | 0 | 12 |
| 315 |  | 3 | max | 498 | 7 | 0 | 1 | 0 | 8 |
| 316 |  |  | min | -. 397 | 6 | 0 | 1 | 0 | 12 |

RISA-2D Version 17.0.1 [Z:I........IProject DocsICalcs|Home Plate Frame.r2d]
Page 20

## IIRISA $=$ $\begin{array}{lll}\text { Job Number } & \vdots 21210330.000 \\ \text { Model Name }\end{array}$

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment[k-1t | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 317 |  | 4 | max | 499 | 7 | 0 | 9 | 0 | 8 |
| 318 |  |  | min | -. 397 | 6 |  | 13 | 0 | 12 |
| 319 |  | 5 | max | . 5 | 7 | 0 | 9 | 0 | 1 |
| 320 |  |  | min | -. 396 | 6 |  | 13 | 0 | 1 |
| 321 | M34 | 1 | max | . 446 | 11 | 0 | 13 | 0 | 1 |
| 322 |  |  | min | -. 598 | 10 | 0 | 9 | 0 | 1 |
| 323 |  | 2 | max | . 446 | 11 | 0 | 13 | 0 | 9 |
| 324 |  |  | min | -. 597 | 10 | 0 | 9 | 0 | 13 |
| 325 |  | 3 | max | . 446 | 11 | 0 | 1 | 0 | 9 |
| 326 |  |  | min | -. 597 | 10 | 0 | 1 | 0 | 13 |
| 327 |  | 4 | max | . 447 | 11 | O | 8 | 0 | 9 |
| 328 |  |  | min | -. 597 | 10 | 0 | 12 | 0 | 13 |
| 329 |  | 5 | max | . 447 | 11 | 0 | 8 | 0 | 1 |
| 330 |  |  | min | -. 596 | 10 |  | 12 | 0 | 1 |
| 331 | M35 | 1 | max | . 446 | 11 | 0 | 13 | 0 | 1 |
| 332 |  |  | min | -. 598 | 10 | 0 | 8 | 0 | 1 |
| 333 |  | 2 | max | 446 | 11 | 0 | 13 | 0 | 8 |
| 334 |  |  | min | -. 598 | 10 | 0 | 8 | 0 | 13 |
| 335 |  | 3 | max | . 446 | 11 | 0 | 1 | 0 | 8 |
| 336 |  |  | min | -. 597 | 10 | 0 | 1 | 0 | 13 |
| 337 |  | 4 | max | . 447 | 11 | 0 | 9 | 0 | 8 |
| 338 |  |  | min | -. 597 | 10 | 0 | 12 | 0 | 13 |
| 339 |  | 5 | max | . 447 | 11 | 0 | 9 | 0 | 1 |
| 340 |  |  | min | -. 597 | 10 | 0 | 12 | 0 | 1 |
| 341 | M36 | 1 | max | . 482 | 11 | 0 | 12 | 0 | 1 |
| 342 |  |  | min | -. 596 | 10 | 0 | 8 | 0 | 1 |
| 343 |  | 2 | max | 483 | 11 | 0 | 12 | 0 | 8 |
| 344 |  |  | min | -. 595 | 10 | 0 | 8 | 0 | 12 |
| 345 |  | 3 | max | . 483 | 11 | 0 | 1 | . 001 | 8 |
| 346 |  |  | min | -. 595 | 10 | 0 | 1 | 0 | 12 |
| 347 |  | 4 | max | . 483 | 11 | 0 | 9 |  | 8 |
| 348 |  |  | min | -. 595 | 10 | 0 | 13 |  | 12 |
| 349 |  | 5 | max | . 484 | 11 | 0 | 9 | 0 | 1 |
| 350 |  |  | min | -. 594 | 10 | 0 | 13 | 0 | 1 |
| 351 | M37 | 1 | max | . 631 | 14 | . 575 | 15 | . 644 | 15 |
| 352 |  |  | min | -. 639 | 15 | -. 571 | 14 | -. 638 | 14 |
| 353 |  | 2 | max | . 631 | 14 | . 575 | 15 | . 483 | 15 |
| 354 |  |  | min | -. 639 | 15 | -. 571 | 14 | -. 479 | 14 |
| 355 |  | 3 | max | . 632 | 14 | . 575 | 15 | . 322 | 15 |
| 356 |  |  | min | -. 638 | 15 | -. 571 | 14 | -. 319 | 14 |
| 357 |  | 4 | max | . 632 | 14 | . 576 | 15 | . 161 | 15 |
| 358 |  |  | min | -. 638 | 15 | -. 57 | 14 | -. 159 | 14 |
| 359 |  | 5 | max | . 632 | 14 | . 576 | 15 | 0 | 1 |
| 360 |  |  | min | -. 638 | 15 | -. 57 | 14 | 0 | 1 |
| 361 | M38 | 1 | max | 1.152 | 15 | 0 | 12 | 0 | 1 |
| 362 |  |  | min | -1.158 | 14 | 0 | 9 | 0 | 1 |
| 363 |  | 2 | max | 1.152 | 15 | 0 | 12 | 0 | 9 |
| 364 |  |  | min | -1.158 | 14 | 0 | 9 | 0 | 12 |
| 365 |  | 3 | max | 1.152 | 15 | 0 | 1 | 0 | 9 |
| 366 |  |  | min | -1.158 | 14 | 0 | 1 | 0 | 12 |
| 367 |  | 4 | max | 1.152 | 15 | 0 | 8 | 0 | 9 |
| 368 |  |  | min | -1.158 | 14 | 0 | 13 | 0 | 12 |
| 369 |  | 5 | max | 1.152 | 15 | 0 | 8 | 0 | 1 |
| 370 |  |  | min | -1.158 | 14 | 0 | 13 | 0 | 1 |
| 371 | M39 | 1 | max | 0 | 1 | . 3 | 14 | 0 | 1 |
| 372 |  |  | min | 0 | 1 | -. 3 | 15 | 0 | 1 |
| 373 |  | 2 | max | . 002 | 9 | . 3 | 14 | 319 | 15 |



Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment [k-tt | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 374 |  |  | min | . 001 | 13 | -. 3 | 15 | -. 319 | 14 |
| 375 |  | 3 | max | . 004 | 9 | . 3 | 14 | . 638 | 15 |
| 376 |  |  | min | . 002 | 13 | -. 3 | 15 | -. 638 | 14 |
| 377 |  | 4 | max | . 006 | 9 | . 3 | 14 | . 957 | 15 |
| 378 |  |  | min | . 003 | 13 | -. 3 | 15 | -. 957 | 14 |
| 379 |  | 5 | max | . 009 | 9 | . 3 | 14 | 1.276 | 15 |
| 380 |  |  | min | . 004 | 13 | -. 3 | 15 | -1.276 | 14 |
| 381 | M244 | 1 | max | . 315 | 13 | 0 | 13 | 0 | 1 |
| 382 |  |  | min | -. 327 | 12 | 0 | 8 | 0 | 1 |
| 383 |  | 2 | max | . 316 | 13 | 0 | 13 | 0 | 8 |
| 384 |  |  | min | -. 327 | 12 | 0 | 8 | 0 | 13 |
| 385 |  | 3 | max | . 316 | 13 | 0 | 1 | 0 | 8 |
| 386 |  |  | min | -. 326 | 12 | 0 | 1 | 0 | 13 |
| 387 |  | 4 | max | . 316 | 13 | 0 | 9 | 0 | 8 |
| 388 |  |  | min | -. 326 | 12 | 0 | 12 | 0 | 13 |
| 389 |  | 5 | max | . 316 | 13 | 0 | 9 | 0 | 1 |
| 390 |  |  | min | -. 326 | 12 | 0 | 12 | 0 | 1 |
| 391 | M63 | 1 | max | 1.764 | 1 | 0 | 1 | 0 | 1 |
| 392 |  |  | min | . 026 | 10 | 0 | 1 | 0 | 1 |
| 393 |  | 2 | max | 1.765 | 1 | 0 | 1 | 0 | 1 |
| 394 |  |  | min | . 026 | 10 | 0 | 1 | 0 | 1 |
| 395 |  | 3 | max | 1.765 | 1 | 0 | 1 | 0 | 1 |
| 396 |  |  | min | . 027 | 10 | 0 | 1 | 0 | 1 |
| 397 |  | 4 | max | 1.766 | 1 | 0 | 1 | 0 | 1 |
| 398 |  |  | min | . 027 | 10 | 0 | 1 | 0 | 1 |
| 399 |  | 5 | max | 1.767 | 1 | 0 |  | 0 | 1 |
| 400 |  |  | min | . 028 | 10 | 0 | 1 | 0 | 1 |
| 401 | M64 | 1 | max | 0 | 3 | -. 002 | 5 | 0 | 1 |
| 402 |  |  | min | -. 001 | 2 | -. 134 | 6 | 0 | 1 |
| 403 |  | 2 | max | 0 | 3 | -. 002 | 5 | . 008 | 6 |
| 404 |  |  | min | -. 001 | 2 | -. 134 | 6 | 0 | 5 |
| 405 |  | 3 | max | 0 | 3 | -. 002 | 5 | 017 | 6 |
| 406 |  |  | min | -. 001 | 2 | -. 134 | 6 | 0 | 5 |
| 407 |  | 4 | max | 0 | 3 | -. 002 | 5 | . 025 | 6 |
| 408 |  |  | min | -. 001 | 2 | -. 134 | 6 | 0 | 5 |
| 409 |  | 5 | max | 0 | 3 | -. 002 | 5 | . 034 | 6 |
| 410 |  |  | min | -. 001 | 2 | -. 134 | 6 | 0 | 5 |
| 411 | M65 | 1 | max | 0 | 3 | . 027 | 15 | 0 | 1 |
| 412 |  |  | min | 0 | 2 | -. 019 | 14 | 0 | 1 |
| 413 |  | 2 | max | 0 | 3 | . 025 | 15 | . 027 | 14 |
| 414 |  |  | min | 0 | 2 | -. 021 | 14 | -. 035 | 15 |
| 415 |  | 3 | max | . 38 | 10 | . 019 | 7 | . 056 | 14 |
| 416 |  |  | min | -. 283 | 11 | -. 024 | 15 | -. 068 | 15 |
| 417 |  | 4 | max | . 38 | 10 | . 021 | 14 | . 027 | 14 |
| 418 |  |  | min | -. 283 | 11 | -. 025 | 15 | -. 035 | 15 |
| 419 |  | 5 | max | . 38 | 10 | . 019 | 14 | 0 | 1 |
| 420 |  |  | min | -. 283 | 11 | -. 027 | 15 | O | 1 |
| 421 | M66 | 1 | max | 1.773 | 1 | 0 | 1 | 0 | 1 |
| 422 |  |  | min | . 075 | 12 | 0 | 1 | 0 | 1 |
| 423 |  | 2 | max | 1.774 | 1 | 0 | 1 | 0 | 1 |
| 424 |  |  | min | . 076 | 12 | 0 | 1 | 0 | 1 |
| 425 |  | 3 | max | 1.775 | 1 | 0 | 1 | 0 | 1 |
| 426 |  |  | min | . 076 | 12 | 0 | 1 | 0 | 1 |
| 427 |  | 4 | max | 1.775 | 1 | 0 | 1 | 0 | 1 |
| 428 |  |  | min | . 076 | 12 | 0 | 1 | 0 | 1 |
| 429 |  | 5 | max | 1.776 | 1 | 0 | 1 | 0 | 1 |
| 430 |  |  | min | . 077 | 12 | 0 | 1 | 0 | 1 |

RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcsIHome Plate Frame.r2d]
Page 22

##  $\begin{array}{lll}\text { Job Number } & \begin{array}{ll}\text { 21210330.000 } \\ \text { Model Name } & : \text { Hamlin Middle School }\end{array} \\ \end{array}$

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 431 | M67 | 1 | max | 1.747 | 1 | 0 | 1 | 0 | 1 |
| 432 |  |  | min | -. 847 | 14 | 0 | 1 |  | 1 |
| 433 |  | 2 | max | 1.748 | 1 | 0 | 1 | 0 | 1 |
| 434 |  |  | min | -. 846 | 14 | 0 | 1 | 0 | 1 |
| 435 |  | 3 | max | 1.749 | 1 | 0 | 1 | 0 | 1 |
| 436 |  |  | min | -. 846 | 14 | 0 | 1 | 0 | 1 |
| 437 |  | 4 | max | 1.75 | 1 | 0 | 1 | 0 | 1 |
| 438 |  |  | min | -. 845 | 14 | 0 | 1 | 0 | 1 |
| 439 |  | 5 | max | 1.75 | 1 | 0 | 1 | 0 | 1 |
| 440 |  |  | min | -. 844 | 14 | 0 | 1 | 0 | 1 |
| 441 | M68 | 1 | max | 1.426 | 2 | 0 | 1 | 0 | 1 |
| 442 |  |  | min | -1.045 | 15 | 0 | 1 | 0 | 1 |
| 443 |  | 2 | max | 1.426 | 2 | 0 | 1 | 0 | 1 |
| 444 |  |  | min | -1.044 | 15 | 0 | 1 | 0 | 1 |
| 445 |  | 3 | max | 1.427 | 2 | 0 | 1 | 0 | 1 |
| 446 |  |  | min | -1.043 | 15 | 0 | 1 | 0 | 1 |
| 447 |  | 4 | max | 1.428 | 2 | 0 | 1 | 0 | 1 |
| 448 |  |  | min | -1.042 | 15 | 0 | 1 | 0 | 1 |
| 449 |  | 5 | max | 1.429 | 2 | 0 | 1 | 0 | 1 |
| 450 |  |  | min | -1.041 | 15 | 0 | 1 | 0 | 1 |
| 451 | M69 | 1 | max | . 047 | 15 | . 033 | 15 | 0 | 1 |
| 452 |  |  | min | -. 027 | 14 | -. 025 | 14 | 0 | 1 |
| 453 |  | 2 | max | . 047 | 15 | . 031 | 15 | 035 | 14 |
| 454 |  |  | min | -. 027 | 14 | -. 027 | 14 | -. 043 | 15 |
| 455 |  | 3 | max | . 376 | 10 | . 028 | 14 | . 071 | 14 |
| 456 |  |  | min | -. 281 | 11 | -. 03 | 15 | -. 083 | 15 |
| 457 |  | 4 | max | . 376 | 10 | . 027 | 14 | . 035 | 14 |
| 458 |  |  | min | -. 281 | 11 | -. 031 | 15 | -. 043 | 15 |
| 459 |  | 5 | max | . 376 | 10 | . 025 | 14 | 0 | 1 |
| 460 |  |  | min | -. 281 | 11 | -. 033 | 15 | 0 | 1 |
| 461 | M70 | 1 | max | . 623 | 7 | 0 | 12 | 0 | 1 |
| 462 |  |  | min | -. 415 | 2 | -. 001 | 9 | 0 | 1 |
| 463 |  | 2 | max | . 624 | 7 | 0 | 12 | 001 | 9 |
| 464 |  |  | min | -. 414 | 2 | 0 | 9 | 0 | 12 |
| 465 |  | 3 | max | . 625 | 7 | 0 | 1 | 002 | 9 |
| 466 |  |  | min | -. 413 | 2 | 0 | 1 | 0 | 12 |
| 467 |  | 4 | max | . 626 | 7 | 0 | 8 | 001 | 9 |
| 468 |  |  | min | -. 412 | 2 | 0 | 13 | 0 | 12 |
| 469 |  | 5 | max | . 627 | 7 | . 001 | 8 | 0 | 1 |
| 470 |  |  | min | -. 411 | 2 | 0 | 13 | 0 | 1 |
| 471 | M70A | 1 | max | . 007 | 8 | 464 | 1 | -. 004 | 12 |
| 472 |  |  | min | -. 007 | 9 | . 011 | 12 | -. 137 | 1 |
| 473 |  | 2 | max | . 018 | 8 | 162 | 1 | -. 005 | 12 |
| 474 |  |  | min | -. 018 | 9 | -. 004 | 12 | -. 28 | 1 |
| 475 |  | 3 | max | . 03 | 8 | -. 002 | 13 | 0 | 12 |
| 476 |  |  | min | -. 03 | 9 | -. 141 | 1 | -. 285 | 1 |
| 477 |  | 4 | max | . 042 | 8 | -. 016 | 13 | . 011 | 12 |
| 478 |  |  | min | -. 042 | 9 | -. 443 | 1 | -. 151 | 1 |
| 479 |  | 5 | max | . 054 | 8 | -. 031 | 13 | . 121 | 1 |
| 480 |  |  | min | -. 054 | 9 | -. 746 | 1 | -. 005 | 13 |
| 481 | M71 | 1 | max | . 054 | 8 | -. 031 | 13 | 121 | 1 |
| 482 |  |  | min | -. 054 | 9 | -. 746 | 1 | -. 005 | 13 |
| 483 |  | 2 | max | . 057 | 8 | -. 035 | 13 | 219 | 1 |
| 484 |  |  | min | -. 057 | 9 | -. 828 | 1 | 0 | 13 |
| 485 |  | 3 | max | . 061 | 8 | . 056 | 12 | 328 | 1 |
| 486 |  |  | min | -. 061 | 9 | -. 911 |  | 004 | 13 |
| 487 |  | 4 | max | . 064 | 8 | . 624 | 1 | 245 | 1 |



Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment ${ }^{\text {k }}$ | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 488 |  |  | min | -. 064 | 9 | . 015 | 13 | . 001 | 13 |
| 489 |  | 5 | max | . 067 | 8 | . 542 | 1 | . 172 | 1 |
| 490 |  |  | min | -. 067 | 9 | . 011 | 13 | 0 | 13 |
| 491 | M72 | 1 | max | . 067 | 8 | . 542 | 1 | . 172 | 1 |
| 492 |  |  | min | -. 067 | 9 | . 011 | 13 | 0 | 13 |
| 493 |  | 2 | max | . 078 | 8 | . 279 | 1 | . 013 | 12 |
| 494 |  |  | min | -. 078 | 9 | -. 002 | 13 | -. 002 | 13 |
| 495 |  | 3 | max | . 088 | 8 | . 023 | 12 | . 001 | 13 |
| 496 |  |  | min | -. 088 | 9 | -. 014 | 13 | -. 05 | 1 |
| 497 |  | 4 | max | . 098 | 8 | . 01 | 12 | . 009 | 13 |
| 498 |  |  | min | -. 098 | 9 | -. 247 | 1 | -. 005 | 12 |
| 499 |  | 5 | max | . 109 | 8 | -. 002 | 12 | . 146 | 1 |
| 500 |  |  | min | -. 109 | 9 | -. 51 | 1 | -. 007 | 12 |
| 501 | M73 | 1 | max | 109 | 8 | -. 002 | 12 | . 146 | 1 |
| 502 |  |  | min | -. 109 | 9 | -. 51 | 1 | -. 007 | 12 |
| 503 |  | 2 | max | . 112 | 8 | -. 006 | 12 | . 215 | 1 |
| 504 |  |  | min | -. 112 | 9 | -. 592 |  | -. 006 | 12 |
| 505 |  | 3 | max | . 154 | 11 | . 85 | 1 | . 294 | 1 |
| 506 |  |  | min | -. 17 | 10 | . 032 | 12 | -. 005 | 12 |
| 507 |  | 4 | max | . 154 | 11 | . 768 | 1 | . 193 | 1 |
| 508 |  |  | min | -. 17 | 10 | . 028 | 12 | -. 009 | 12 |
| 509 |  | 5 | max | 154 | 11 | . 685 | 1 | . 102 | 1 |
| 510 |  |  | min | -. 17 | 10 | . 024 | 12 | -. 012 | 12 |
| 511 | M74 | 1 | max | . 154 | 11 | . 685 | 1 | . 102 | 1 |
| 512 |  |  | min | -. 17 | 10 | . 024 | 12 | -. 012 | 12 |
| 513 |  | 2 | max | . 154 | 11 | . 411 | 1 | . 007 | 13 |
| 514 |  |  | min | -. 17 | 10 | . 011 | 12 | -. 125 | 1 |
| 515 |  | 3 | max | . 154 | 11 | . 136 | 1 | -. 002 | 13 |
| 516 |  |  | min | -. 17 | 10 | -. 003 | 12 | -. 238 | 1 |
| 517 |  | 4 | max | 154 | 11 | . 002 | 13 | -. 006 | 13 |
| 518 |  |  | min | -. 17 | 10 | -. 138 | 1 | -. 238 | 1 |
| 519 |  | 5 | max | . 154 | 11 | -. 011 | 13 | -. 004 | 13 |
| 520 |  |  | min | -. 17 | 10 | -. 412 | 1 | -. 124 | 1 |
| 521 | M75 | 1 | max | . 154 | 11 | -. 011 | 13 | -. 004 | 13 |
| 522 |  |  | min | -. 17 | 10 | -. 412 | 1 | -. 124 | 1 |
| 523 |  | 2 | max | . 154 | 11 | -. 013 | 13 | -. 003 | 13 |
| 524 |  |  | min | -. 17 | 10 | -. 454 | 1 | -. 097 | 1 |
| 525 |  | 3 | max | . 154 | 11 | -. 015 | 13 | -. 002 | 13 |
| 526 |  |  | min | -. 17 | 10 | -. 495 | 1 | -. 067 | 1 |
| 527 |  | 4 | max | . 154 | 11 | -. 017 | 13 | -. 001 | 13 |
| 528 |  |  | min | -. 17 | 10 | -. 536 | 1 | -. 035 | 1 |
| 529 |  | 5 | max | . 154 | 11 | -. 019 | 13 | 0 | 1 |
| 530 |  |  | min | -. 17 | 10 | -. 578 | 1 | 0 | 1 |
| 531 | M76 | 1 | max | . 026 | 13 | . 717 | 1 | -. 01 | 12 |
| 532 |  |  | min | -. 03 | 12 | . 034 | 13 | -. 2 | 1 |
| 533 |  | 2 | max | . 012 | 13 | . 359 | 1 | -. 024 | 13 |
| 534 |  |  | min | -. 02 | 10 | . 017 | 13 | -. 492 | 1 |
| 535 |  | 3 | max | . 01 | 11 | 0 | 4 | -. 028 | 13 |
| 536 |  |  | min | -. 02 | 10 | 0 | 5 | -. 589 | 1 |
| 537 |  | 4 | max | . 014 | 8 | -. 017 | 12 | -. 024 | 13 |
| 538 |  |  | min | -. 02 | 10 | -. 359 | 1 | -. 492 | 1 |
| 539 |  | 5 | max | . 028 | 8 | -. 034 | 12 | -. 01 | 13 |
| 540 |  |  | min | -. 031 | 9 | -. 717 | 1 | -. 2 | 1 |
| 541 | M77 | 1 | max | . 028 | 8 | -. 034 | 13 | -. 01 | 13 |
| 542 |  |  | min | -. 031 | 9 | -. 717 | 1 | -. 2 | 1 |
| 543 |  | 2 | max | . 03 | 8 | -. 036 | 13 | -. 007 | 13 |
| 544 |  |  | min | -. 033 | 9 | -. 759 | 1 | -. 154 | 1 |

## lirkISA <br> Company Designer Job Num Designer Job Number Model Name <br> Larson Engineering Inc <br> 21210330.000

 May 6, 20217:45 AM
Checked By:

Envelope Member Section Forces (Continued)



Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 602 |  |  | min | -. 061 | 13 | -. 717 | 1 | -. 2 | 1 |
| 603 |  | 2 | max | . 067 | 12 | -. 036 | 13 | -. 007 | 13 |
| 604 |  |  | min | -. 062 | 13 | -. 759 | 1 | -. 154 | 1 |
| 605 |  | 3 | max | . 069 | 12 | -. 038 | 13 | -. 005 | 13 |
| 606 |  |  | min | -. 064 | 13 | -. 8 | 1 | -. 105 | 1 |
| 607 |  | 4 | max | . 07 | 12 | -. 04 | 13 | -. 003 | 13 |
| 608 |  |  | min | -. 065 | 13 | -. 841 | 1 | -. 054 | 1 |
| 609 |  | 5 | max | . 072 | 12 | -. 042 | 13 | 0 | 1 |
| 610 |  |  | min | -. 067 | 13 | -. 883 | 1 | 0 | 1 |
| 611 | M84 | 1 | max | . 135 | 10 | . 717 | 1 | -. 01 | 13 |
| 612 |  |  | min | -. 129 | 7 | . 034 | 13 | -. 2 | 1 |
| 613 |  | 2 | max | . 135 | 10 | . 359 | 1 | -. 024 | 13 |
| 614 |  |  | min | -. 129 | 7 | . 017 | 13 | -. 492 | 1 |
| 615 |  | 3 | max | 135 | 10 | 0 | 4 | -. 028 | 13 |
| 616 |  |  | min | -. 129 | 7 | 0 | 5 | -. 589 | 1 |
| 617 |  | 4 | max | . 135 | 10 | -. 017 | 12 | -. 024 | 13 |
| 618 |  |  | min | -. 129 | 7 | -. 359 | 1 | -. 492 | 1 |
| 619 |  | 5 | max | . 135 | 10 | -. 034 | 12 | -. 01 | 13 |
| 620 |  |  | min | -. 129 | 7 | -. 717 | 1 | -. 2 | 1 |
| 621 | M85 | 1 | max | . 135 | 10 | -. 034 | 13 | -. 01 | 13 |
| 622 |  |  | min | -. 129 | 7 | -. 717 | 1 | -. 2 | 1 |
| 623 |  | 2 | max | 135 | 10 | -. 036 | 13 | -. 007 | 13 |
| 624 |  |  | min | -. 129 | 7 | -. 759 | 1 | -. 154 | 1 |
| 625 |  | 3 | max | . 135 | 10 | -. 038 | 13 | -. 005 | 13 |
| 626 |  |  | min | -. 129 | 7 | -. 8 | 1 | -. 105 | 1 |
| 627 |  | 4 | max | . 135 | 10 | -. 04 | 13 | -. 003 | 13 |
| 628 |  |  | min | -. 129 | 7 | -. 841 | 1 | -. 054 | 1 |
| 629 |  | 5 | max | . 135 | 10 | -. 042 | 13 | 0 | 1 |
| 630 |  |  | min | -. 129 | 7 | -. 883 | 1 | 0 | 1 |
| 631 | M86 | 1 | max | 155 | 15 | . 717 | 1 | -. 01 | 12 |
| 632 |  |  | min | -. 087 | 14 | . 034 | 13 | -. 2 | 1 |
| 633 |  | 2 | max | . 155 | 15 | . 359 | 1 | -. 024 | 12 |
| 634 |  |  | min | -. 087 | 14 | . 017 | 13 | -. 492 | 1 |
| 635 |  | 3 | max | . 155 | 15 | 0 | 4 | -. 028 | 12 |
| 636 |  |  | min | -. 087 | 14 | 0 | 5 | -. 589 | 1 |
| 637 |  | 4 | max | . 155 | 15 | -. 017 | 12 | -. 024 | 13 |
| 638 |  |  | min | -. 087 | 14 | -. 359 | 1 | -. 492 | 1 |
| 639 |  | 5 | max | . 155 | 15 | -. 034 | 12 | -. 01 | 13 |
| 640 |  |  | min | -. 087 | 14 | -. 717 | 1 | -. 2 | 1 |
| 641 | M87 | 1 | max | . 155 | 15 | -. 035 | 13 | -. 01 | 13 |
| 642 |  |  | min | -. 087 | 14 | -. 718 | 1 | -. 2 | 1 |
| 643 |  | 2 | max | . 155 | 15 | -. 036 | 13 | -. 007 | 13 |
| 644 |  |  | min | -. 087 | 14 | -. 759 | 1 | -. 154 | 1 |
| 645 |  | 3 | max | . 155 | 15 | -. 038 | 13 | -. 005 | 13 |
| 646 |  |  | min | -. 087 | 14 | -. 8 | 1 | -. 105 | 1 |
| 647 |  | 4 | max | . 155 | 15 | -. 04 | 13 | -. 003 | 13 |
| 648 |  |  | min | -. 087 | 14 | -. 842 | 1 | -. 054 | 1 |
| 649 |  | 5 | max | . 155 | 15 | -. 042 | 13 | , | 1 |
| 650 |  |  | min | -. 087 | 14 | -. 883 | 1 | 0 | 1 |
| 651 | M88 | 1 | max | . 129 | 10 | . 717 | 1 | -. 01 | 13 |
| 652 |  |  | min | -. 062 | 11 | . 034 | 13 | -. 2 | 1 |
| 653 |  | 2 | max | . 129 | 10 | . 359 | 1 | -. 024 | 13 |
| 654 |  |  | min | -. 062 | 11 | . 017 | 13 | -. 492 | 1 |
| 655 |  | 3 | max | . 129 | 10 | 0 | 4 | -. 028 | 13 |
| 656 |  |  | min | -. 062 | 11 | 0 | 5 | -. 589 | 1 |
| 657 |  | 4 | max | 129 | 10 | -. 017 | 12 | -. 024 | 13 |
| 658 |  |  | min | -. 064 | 13 | -. 359 | 1 | -. 492 | 1 |

## lırisA <br> Company . Larson Engineering Inc <br> $\begin{array}{lll}\text { Designer } & \vdots \text { MK } \\ \text { Job Number } \\ \vdots 21210330.000\end{array}$

May 6, 2021
$7: 45$ AM 7:45 AM Chec By:

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axialk] | LC | Shear[k] | LC | Momentik | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 659 |  | 5 | max | . 129 | 10 | -. 034 | 12 | -. 01 | 13 |
| 660 |  |  | min | -. 078 | 13 | -. 717 | 1 | -. 2 | 1 |
| 661 | M89 | 1 | max | . 129 | 10 | -. 034 | 13 | -. 01 | 13 |
| 662 |  |  | min | -. 078 | 13 | -. 718 | 1 | -. 2 | 1 |
| 663 |  | 2 | max | . 129 | 10 | -. 036 | 13 | -. 007 | 13 |
| 664 |  |  | min | -. 08 | 13 | -. 759 | 1 | -. 154 | 1 |
| 665 |  | 3 | max | . 129 | 10 | -. 038 | 13 | -. 005 | 13 |
| 666 |  |  | min | -. 081 | 13 | -. 8 | 1 | -. 105 | 1 |
| 667 |  | 4 | max | . 129 | 10 | -. 04 | 13 | -. 003 | 13 |
| 668 |  |  | min | -. 083 | 13 | -. 842 | 1 | -. 054 | 1 |
| 669 |  | 5 | max | . 129 | 10 | -. 042 | 13 | 0 | 1 |
| 670 |  |  | min | -. 084 | 13 | -. 883 | 1 | 0 | 1 |
| 671 | M90 | 1 | max | 1.736 | 15 | . 717 | 1 | -. 01 | 12 |
| 672 |  |  | min | -1.747 | 14 | . 034 | 13 | -. 2 | 1 |
| 673 |  | 2 | max | 1.736 | 15 | . 359 | 1 | -. 024 | 12 |
| 674 |  |  | min | -1.747 | 14 | . 017 | 13 | -. 492 | 1 |
| 675 |  | 3 | max | 1.736 | 15 | 0 | 4 | -. 028 | 12 |
| 676 |  |  | min | -1.747 | 14 | 0 | 5 | -. 589 | 1 |
| 677 |  | 4 | max | 1.736 | 15 | -. 017 | 12 | -. 024 | 12 |
| 678 |  |  | min | -1.747 | 14 | -. 359 | 1 | -. 492 | 1 |
| 679 |  | 5 | max | 1.736 | 15 | -. 034 | 12 | -. 01 | 13 |
| 680 |  |  | min | -1.747 | 14 | -. 717 | 1 | -. 2 | 1 |
| 681 | M91 | 1 | max | 1.736 | 15 | -. 034 | 13 | -. 01 | 13 |
| 682 |  |  | min | -1.747 | 14 | -. 717 | 1 | -. 2 | 1 |
| 683 |  | 2 | max | 1.736 | 15 | -. 036 | 13 | -. 007 | 13 |
| 684 |  |  | min | -1.747 | 14 | -. 758 | 1 | -. 154 | 1 |
| 685 |  | 3 | max | 1.736 | 15 | -. 038 | 13 | -. 005 | 13 |
| 686 |  |  | min | -1.747 | 14 | -. 8 | 1 | -. 105 | 1 |
| 687 |  | 4 | max | 1.736 | 15 | -. 04 | 13 | -. 003 | 13 |
| 688 |  |  | min | -1.747 | 14 | -. 841 | 1 | -. 054 | 1 |
| 689 |  | 5 | max | 1.736 | 15 | -. 042 | 13 | 0 | 1 |
| 690 |  |  | min | -1.747 | 14 | -. 882 | 1 | 0 | 1 |
| 691 | M92 | 1 | max | 0 | 7 | . 407 | 10 | . 001 | 1 |
| 692 |  |  | min | -. 001 | 2 | -. 005 | 1 | -. 102 | 10 |
| 693 |  | 2 | max | 157 | 7 | . 003 | 1 | . 002 | 1 |
| 694 |  |  | min | -. 127 | 6 | -. 206 | 10 | -. 143 | 10 |
| 695 |  | 3 | max | . 157 | 7 | . 002 | 1 | . 017 | 11 |
| 696 |  |  | min | -. 127 | 6 | -. 207 | 10 | -. 031 | 10 |
| 697 |  | 4 | max | . 157 | 7 | . 001 | 1 | . 081 | 10 |
| 698 |  |  | min | -. 127 | 6 | -. 207 | 10 | 0 | 1 |
| 699 |  | 5 | max | . 157 | 7 | 0 | 1 | . 193 | 10 |
| 700 |  |  | min | -. 127 | 6 | -. 207 | 10 | 0 | 1 |
| 701 | M93 | 1 | max | . 157 | 7 | 0 | 1 | 193 | 10 |
| 702 |  |  | min | -. 127 | 6 | -. 208 | 10 | 0 | 1 |
| 703 |  | 2 | max | . 157 | 7 | 0 | 1 | . 219 | 10 |
| 704 |  |  | min | -. 127 | 6 | -. 208 | 10 | 0 | 1 |
| 705 |  | 3 | max | . 157 | 7 | . 231 | 11 | . 245 | 10 |
| 706 |  |  | min | -. 127 | 6 | -. 208 | 10 | -. 001 | 1 |
| 707 |  | 4 | max | . 127 | 6 | . 231 | 11 | . 219 | 10 |
| 708 |  |  | min | -. 157 | 7 | 0 | 1 | 0 | 1 |
| 709 |  | 5 | max | . 127 | 6 | . 231 | 11 | 194 | 10 |
| 710 |  |  | min | -. 157 | 7 | 0 | 1 | 0 | 1 |
| 711 | M94 | 1 | max | . 127 | 6 | . 232 | 11 | 194 | 10 |
| 712 |  |  | min | -. 157 | 7 | 0 | 1 | 0 | 1 |
| 713 |  | 2 | max | . 127 | 6 | . 231 | 11 | . 081 | 10 |
| 714 |  |  | min | -. 157 | 7 | -. 001 | 1 | -. 08 | 11 |
| 715 |  | 3 | max | . 127 | 6 | . 231 | 11 | 0 | 2 |



Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment ${ }^{\text {k }}$ | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 716 |  |  | min | -. 157 | 7 | -. 002 | 1 | -. 205 | 11 |
| 717 |  | 4 | max | . 127 | 6 | . 23 | 11 | . 002 | 1 |
| 718 |  |  | min | -. 157 | 7 | -. 003 | 1 | -. 33 | 11 |
| 719 |  | 5 | max | . 003 | 6 | . 005 | 1 | . 001 | 1 |
| 720 |  |  | min | 0 | 3 | -. 795 | 11 | -. 199 | 11 |
| 721 | M95 | 1 | max | . 003 | 6 | . 005 | 1 | . 001 | 1 |
| 722 |  |  | min | 0 | 3 | -. 795 | 11 | -. 199 | 11 |
| 723 |  | 2 | max | . 003 | 6 | . 005 | 1 | 0 | 1 |
| 724 |  |  | min | 0 | 3 | -. 795 | 11 | -. 149 | 11 |
| 725 |  | 3 | max | . 003 | 6 | . 005 | 1 | 0 | 1 |
| 726 |  |  | min | 0 | 3 | -. 795 | 11 | -. 099 | 11 |
| 727 |  | 4 | max | . 003 | 6 | . 005 | 1 | 0 | 1 |
| 728 |  |  | min | 0 | 3 | -. 795 | 11 | -. 05 | 11 |
| 729 |  | 5 | max | . 003 | 6 | . 005 | 1 | 0 | 1 |
| 730 |  |  | min | 0 | 3 | -. 795 | 11 | 0 | 1 |
| 731 | M96 | 1 | max | 0 | 3 | -. 002 | 5 | . 034 | 6 |
| 732 |  |  | min | -. 001 | 2 | -. 134 | 6 | 0 | 5 |
| 733 |  | 2 | max | 0 | 1 | . 194 | 14 | . 013 | 6 |
| 734 |  |  | min | 0 | 1 | 0 | 5 | -. 018 | 10 |
| 735 |  | 3 | max | 0 | 1 | . 193 | 14 | . 001 | 1 |
| 736 |  |  | min | 0 | 1 | 0 | 5 | -. 111 | 10 |
| 737 |  | 4 | max | 0 | 1 | 193 | 14 | . 001 | 5 |
| 738 |  |  | min | 0 | 1 | -. 001 | 5 | -. 203 | 10 |
| 739 |  | 5 | max | . 227 | 11 | . 008 | 5 | . 105 | 15 |
| 740 |  |  | min | -. 31 | 10 | -1.108 | 14 | 0 | 1 |
| 741 | M97 | 1 | max | . 227 | 11 | . 008 | 5 | . 105 | 15 |
| 742 |  |  | min | -. 31 | 10 | -1.108 | 14 | 0 | 1 |
| 743 |  | 2 | max | . 227 | 11 | . 007 | 5 | . 162 | 10 |
| 744 |  |  | min | -. 31 | 10 | -1.108 | 14 | -. 001 | 1 |
| 745 |  | 3 | max | . 227 | 11 | . 007 | 5 | . 3 | 10 |
| 746 |  |  | min | -. 31 | 10 | -1.108 | 14 | -. 002 | 1 |
| 747 |  | 4 | max | . 071 | 10 | . 374 | 15 | . 274 | 10 |
| 748 |  |  | min | -. 052 | 11 | -. 001 | 1 | -. 002 | 1 |
| 749 |  | 5 | max | . 071 | 10 | . 374 | 15 | . 248 | 10 |
| 750 |  |  | min | -. 052 | 11 | -. 001 | 1 | -. 002 | 1 |
| 751 | M98 | 1 | max | . 071 | 10 | . 374 | 15 | . 248 | 10 |
| 752 |  |  | min | -. 052 | 11 | -. 001 | 1 | -. 002 | 1 |
| 753 |  | 2 | max | . 071 | 10 | . 374 | 15 | . 134 | 10 |
| 754 |  |  | min | -. 052 | 11 | -. 002 | 1 | -. 08 | 15 |
| 755 |  | 3 | max | . 071 | 10 | . 373 | 15 | . 021 | 10 |
| 756 |  |  | min | -. 052 | 11 | -. 002 | 1 | -. 283 | 15 |
| 757 |  | 4 | max | . 071 | 10 | . 372 | 15 | . 002 | 2 |
| 758 |  |  | min | -. 052 | 11 | -. 003 | 1 | -. 485 | 15 |
| 759 |  | 5 | max | . 004 | 15 | . 005 | 1 | . 001 | 1 |
| 760 |  |  | min | 0 | 5 | -1.188 | 15 | -. 297 | 15 |
| 761 | M99 | 1 | max | . 004 | 15 | . 005 | 1 | . 001 | 1 |
| 762 |  |  | min | 0 | 5 | -1.188 | 15 | -. 297 | 15 |
| 763 |  | 2 | max | . 004 | 15 | . 005 | 1 | 0 | 1 |
| 764 |  |  | min | 0 | 5 | -1.188 | 15 | -. 223 | 15 |
| 765 |  | 3 | max | . 004 | 15 | . 005 | 1 | 0 | 1 |
| 766 |  |  | min | 0 | 5 | -1.188 | 15 | -. 148 | 15 |
| 767 |  | 4 | max | . 004 | 15 | . 005 | 1 | 0 | 1 |
| 768 |  |  | min | 0 | 5 | -1.188 | 15 | -. 074 | 15 |
| 769 |  | 5 | max | . 004 | 15 | . 004 | 1 | 0 | 1 |
| 770 |  |  | min | 0 | 5 | -1.188 | 15 | 0 | 1 |
| 771 | M100 | 1 | max | . 008 | 11 | . 967 | 10 | 0 | 1 |
| 772 |  |  | min | 0 | 4 | -. 006 | 3 | 0 | 1 |

RISA-2D Version 17.0.1 [Z:I...1...IProject DocsICalcsIHome Plate Frame.r2d]
Page 28

## lirkISA <br> Designe Designer Job Number Model Name <br> Larson Engineering Inc <br> 21210330.000

 May 6, 20217:45 AM
Checked By:

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 773 |  | 2 | max | . 008 | 11 | . 967 | 10 | 0 | 3 |
| 774 |  |  | min | 0 | 4 | -. 006 | 3 | -. 06 | 10 |
| 775 |  | 3 | max | . 008 | 11 | . 967 | 10 | 0 | 3 |
| 776 |  |  | min | 0 | 4 | -. 006 | 3 | -. 121 | 10 |
| 777 |  | 4 | max | . 008 | 11 | . 967 | 10 | . 001 | 3 |
| 778 |  |  | min | 0 | 4 | -. 006 | 3 | -. 181 | 10 |
| 779 |  | 5 | max | . 008 | 11 | . 967 | 10 | . 001 | 3 |
| 780 |  |  | min | 0 | 4 | -. 006 | 3 | -. 242 | 10 |
| 781 | M101 |  | max | 615 | 11 | . 042 | 10 | 0 | 1 |
| 782 |  |  | min | -. 39 | 2 | -. 038 | 11 | 0 | 1 |
| 783 |  | 2 | max | . 615 | 11 | . 041 | 10 | . 075 | 11 |
| 784 |  |  | min | -. 39 | 2 | -. 039 | 11 | -. 081 | 10 |
| 785 |  | 3 | max | . 152 | 11 | . 099 | 11 | 0 | 14 |
| 786 |  |  | min | -. 108 | 1 | -. 099 | 10 | -. 006 | 6 |
| 787 |  | 4 | max | . 626 | 10 | . 04 | 10 | . 076 | 10 |
| 788 |  |  | min | -. 396 | 3 | -. 041 | 11 | -. 082 | 11 |
| 789 |  | 5 | max | . 626 | 10 | . 038 | 10 | 0 | 1 |
| 790 |  |  | min | -. 396 | 3 | -. 043 | 11 | 0 | 1 |
| 791 | M102 | 1 | max | 463 | 11 | . 048 | 10 | 0 | 1 |
| 792 |  |  | min | -. 372 | 2 | -. 044 | 11 | 0 | 1 |
| 793 |  | 2 | max | . 463 | 11 | . 046 | 10 | 088 | 11 |
| 794 |  |  | min | -. 372 | 2 | -. 046 | 11 | -. 091 | 10 |
| 795 |  | 3 | max | . 123 | 6 | . 113 | 11 | 0 | 11 |
| 796 |  |  | min | . 022 | 14 | -. 114 | 10 | -. 005 | 2 |
| 797 |  | 4 | max | 485 | 10 | . 046 | 10 | . 089 | 10 |
| 798 |  |  | min | -. 387 | 3 | -. 046 | 11 | -. 092 | 11 |
| 799 |  | 5 | max | . 485 | 10 | . 045 | 10 | 0 | 1 |
| 800 |  |  | min | -. 387 | 3 | -. 048 | 11 | 0 | 1 |
| 801 | M103 | 1 | max | . 365 | 10 | 416 | 1 | 0 | 1 |
| 802 |  |  | min | -. 409 | 3 | -. 003 | 11 | 0 | 1 |
| 803 |  | 2 | max | . 365 | 10 | . 393 | 1 | 0 | 11 |
| 804 |  |  | min | -. 409 | 3 | -. 006 | 11 | -. 025 | 1 |
| 805 |  | 3 | max | . 365 | 10 | . 371 | 1 | 0 | 11 |
| 806 |  |  | min | -. 409 | 3 | -. 008 | 11 | -. 049 | 1 |
| 807 |  | 4 | max | . 365 | 10 | . 348 | 1 | . 001 | 11 |
| 808 |  |  | min | -. 409 | 3 | -. 01 | 11 | -. 072 | 1 |
| 809 |  | 5 | max | . 365 | 10 | . 326 | 1 | . 002 | 11 |
| 810 |  |  | min | -. 409 | 3 | -. 012 | 11 | -. 093 | 1 |
| 811 | M104 | 1 | max | 2.885 | 7 | 0 | 1 | 0 | 1 |
| 812 |  |  | min | -. 97 | 10 | 0 | 1 | 0 | 1 |
| 813 |  | 2 | max | 2.887 | 7 | 0 | 1 | 0 | 1 |
| 814 |  |  | min | -. 969 | 10 | 0 | 1 | 0 | 1 |
| 815 |  | 3 | max | 2.888 | 7 | 0 | 1 | 0 | 1 |
| 816 |  |  | min | -. 969 | 10 | 0 | 1 | 0 | 1 |
| 817 |  | 4 | max | 2.889 | 7 | 0 | 1 | 0 | 1 |
| 818 |  |  | min | -. 968 | 10 | 0 | 1 | 0 | 1 |
| 819 |  | 5 | max | 2.89 | 7 | 0 | 1 | 0 | 1 |
| 820 |  |  | min | -. 967 | 10 | 0 | 1 | 0 | 1 |
| 821 | M105 | 1 | max | 1.839 | 2 | 0 | 1 | 0 | 1 |
| 822 |  |  | min | -. 73 | 11 | 0 | 1 | 0 | 1 |
| 823 |  | 2 | max | 1.84 | 2 | 0 | 1 |  | 1 |
| 824 |  |  | min | -. 729 | 11 | 0 | 1 | 0 | 1 |
| 825 |  | 3 | max | 1.841 | 2 | 0 | 1 | 0 | 1 |
| 826 |  |  | min | -. 729 | 11 | 0 | 1 |  | 1 |
| 827 |  | 4 | max | 1.842 | 2 | 0 | 1 | 0 | 1 |
| 828 |  |  | min | -. 728 | 11 | 0 | 1 | 0 | 1 |
| 829 |  | 5 | max | 1.843 | 2 | 0 | 1 | 0 | 1 |


May 6,2021
$7: 45$ AMM
Check

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 830 |  |  | min | -. 728 | 11 | 0 | 1 | 0 | 1 |
| 831 | M106 | 1 | max | 1.804 | 3 | 0 | 1 | 0 | 1 |
| 832 |  |  | min | -. 7 | 10 | 0 | 1 | 0 | 1 |
| 833 |  | 2 | max | 1.805 | 3 | 0 | 1 | 0 | 1 |
| 834 |  |  | min | -. 7 | 10 | 0 | 1 | 0 | 1 |
| 835 |  | 3 | max | 1.805 | 3 | 0 | 1 | 0 | 1 |
| 836 |  |  | min | -. 699 | 10 | 0 | 1 | 0 | 1 |
| 837 |  | 4 | max | 1.806 | 3 | 0 | 1 | 0 | 1 |
| 838 |  |  | min | -. 699 | 10 | 0 | 1 | 0 |  |
| 839 |  | 5 | max | 1.807 | 3 | 0 | 1 | 0 | 1 |
| 840 |  |  | min | -. 698 | 10 | 0 | 1 | 0 | 1 |
| 841 | M107 | 1 | max | 2.879 | 6 | 0 | 1 | 0 | 1 |
| 842 |  |  | min | -. 951 | 11 | 0 | 1 | 0 | 1 |
| 843 |  | 2 | max | 2.88 | 6 | 0 | 1 | 0 | 1 |
| 844 |  |  | min | -. 951 | 11 | 0 | 1 | 0 | 1 |
| 845 |  | 3 | max | 2.881 | 6 | 0 | 1 | 0 | 1 |
| 846 |  |  | min | -. 95 | 11 | 0 | 1 | 0 | 1 |
| 847 |  | 4 | max | 2.882 | 6 | 0 | 1 | 0 | 1 |
| 848 |  |  | min | -. 949 | 11 | 0 | 1 | 0 | 1 |
| 849 |  | 5 | max | 2.883 | 6 | 0 | 1 | 0 | 1 |
| 850 |  |  | min | -. 949 | 11 | 0 | 1 | 0 | 1 |
| 851 | M108 | 1 | max | 2.474 | 3 | 0 | 1 | 0 | 1 |
| 852 |  |  | min | -. 826 | 10 | 0 | 1 | 0 | 1 |
| 853 |  | 2 | max | 2.475 | 3 | 0 | 1 | 0 | 1 |
| 854 |  |  | min | -. 825 | 10 | 0 | 1 | 0 | 1 |
| 855 |  | 3 | max | 2.476 | 3 | 0 | 1 | 0 | 1 |
| 856 |  |  | min | -. 825 | 10 | 0 | 1 | 0 | 1 |
| 857 |  | 4 | max | 2.477 | 3 | 0 | 1 | 0 | 1 |
| 858 |  |  | min | -. 824 | 10 | 0 | 1 | 0 | 1 |
| 859 |  | 5 | max | 2.478 | 3 | 0 | 1 | 0 | 1 |
| 860 |  |  | min | -. 823 | 10 | 0 | 1 | 0 | 1 |
| 861 | M109 | 1 | max | 1.333 | 2 | 0 | 1 | 0 | 1 |
| 862 |  |  | min | -. 193 | 11 | 0 | 1 | 0 | 1 |
| 863 |  | 2 | max | 1.334 | 2 | 0 | 1 | 0 | 1 |
| 864 |  |  | min | -. 193 | 11 | 0 | 1 | 0 | 1 |
| 865 |  | 3 | max | 1.335 | 2 | 0 | 1 | 0 | 1 |
| 866 |  |  | min | -. 192 | 11 | 0 | 1 | 0 | 1 |
| 867 |  | 4 | max | 1.336 | 2 | 0 | 1 | 0 | 1 |
| 868 |  |  | min | -. 192 | 11 | 0 | 1 | 0 | 1 |
| 869 |  | 5 | max | 1.337 | 2 | 0 | 1 | 0 | 1 |
| 870 |  |  | min | -. 191 | 11 | 0 | 1 | 0 | 1 |
| 871 | M110 | 1 | max | 1.311 | 1 | 0 | 1 | 0 | 1 |
| 872 |  |  | min | -. 124 | 10 | 0 | 1 | 0 | 1 |
| 873 |  | 2 | max | 1.312 | 1 | 0 | 1 |  | 1 |
| 874 |  |  | min | -. 123 | 10 | 0 | 1 | 0 | 1 |
| 875 |  | 3 | max | 1.313 | 1 | 0 | 1 | 0 | 1 |
| 876 |  |  | min | -. 122 | 10 | 0 | 1 | 0 | 1 |
| 877 |  | 4 | max | 1.313 | 1 | 0 | 1 | 0 | 1 |
| 878 |  |  | min | -. 122 | 10 | 0 | 1 | 0 | 1 |
| 879 |  | 5 | max | 1.314 | 1 | 0 | 1 | 0 | 1 |
| 880 |  |  | min | -. 121 | 10 | 0 | 1 | 0 | 1 |
| 881 | M111 | 1 | max | 2.437 | 2 | 0 | 1 | 0 |  |
| 882 |  |  | min | -. 787 | 11 | 0 | 1 | 0 | 1 |
| 883 |  | 2 | max | 2.438 | 2 | 0 | 1 | 0 | 1 |
| 884 |  |  | min | -. 787 | 11 | 0 | 1 | 0 | 1 |
| 885 |  | 3 | max | 2.439 | 2 | 0 | 1 | 0 | 1 |
| 886 |  |  | min | -. 786 | 11 | 0 | 1 | 0 | 1 |

RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcs|Home Plate Frame.r2d]
Page 30

## |lirisA <br> Designe Designer Job Number Model Name <br> Larson Engineering Inc MK <br> 21210330.000

 May 6, 20217:45 AM
Checked By:

Envelope Member Section Forces (Continued)


May 6, 2021

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment ${ }^{\text {k }}$ | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 944 |  |  | min | -1.137 | 10 | 0 | 9 | 0 | 12 |
| 945 |  | 3 | max | . 719 | 3 | 0 | 1 | . 002 | 9 |
| 946 |  |  | min | -1.136 | 10 | 0 | 1 | 0 | 12 |
| 947 |  | 4 | max | . 72 | 3 | 0 | 8 | . 001 | 9 |
| 948 |  |  | min | -1.136 | 10 | 0 | 13 | 0 | 12 |
| 949 |  | 5 | max | . 721 | 3 | 001 | 8 | 0 | 1 |
| 950 |  |  | min | -1.135 | 10 | 0 | 13 | 0 | 1 |
| 951 | M118 | 1 | max | . 658 | 2 | . 001 | 8 | 0 | 1 |
| 952 |  |  | min | -. 822 | 11 | 0 | 13 | 0 | 1 |
| 953 |  | 2 | max | . 659 | 2 | 0 | 8 | 0 | 13 |
| 954 |  |  | min | -. 822 | 11 | 0 | 13 | -. 001 | 8 |
| 955 |  | 3 | max | . 66 | 2 | 0 | 1 | 0 | 13 |
| 956 |  |  | min | -. 821 | 11 | 0 | 1 | -. 002 | 8 |
| 957 |  | 4 | max | . 661 | 2 | 0 | 12 | 0 | 13 |
| 958 |  |  | min | -. 821 | 11 | 0 | 9 | -. 001 | 8 |
| 959 |  | 5 | max | . 662 | 2 | 0 | 12 | 0 | 1 |
| 960 |  |  | min | -. 82 | 11 | -. 001 | 9 | 0 | 1 |
| 961 | M119 | 1 | max | . 691 | 3 | 0 | 13 | 0 | 1 |
| 962 |  |  | min | -. 869 | 10 | -. 001 | 8 | 0 | 1 |
| 963 |  | 2 | max | . 692 | 3 | 0 | 13 | . 001 | 8 |
| 964 |  |  | min | -. 869 | 10 | 0 | 8 | 0 | 13 |
| 965 |  | 3 | max | . 693 | 3 | 0 | 1 | . 002 | 8 |
| 966 |  |  | min | -. 868 | 10 | 0 | 1 | 0 | 13 |
| 967 |  | 4 | max | . 694 | 3 | 0 | 9 | . 001 | 8 |
| 968 |  |  | min | -. 868 | 10 | 0 | 12 | 0 | 13 |
| 969 |  | 5 | max | . 695 | 3 | . 001 | 9 | 0 | 1 |
| 970 |  |  | min | -. 867 | 10 | 0 | 12 | 0 | 1 |
| 971 | M120 | 1 | max | . 81 | 2 | . 001 | 9 | 0 | 1 |
| 972 |  |  | min | -. 752 | 11 | 0 | 13 | 0 | 1 |
| 973 |  | 2 | max | . 811 | 2 | 0 | 9 | 0 | 13 |
| 974 |  |  | min | -. 752 | 11 | 0 | 13 | -. 001 | 9 |
| 975 |  | 3 | max | . 812 | 2 | 0 | 1 | 0 | 13 |
| 976 |  |  | min | -. 751 | 11 | 0 | 1 | -. 002 | 9 |
| 977 |  | 4 | max | . 813 | 2 | 0 | 12 | 0 | 13 |
| 978 |  |  | min | -. 751 | 11 | 0 | 8 | -. 001 | 9 |
| 979 |  | 5 | max | . 813 | 2 | 0 | 12 | 0 | 1 |
| 980 |  |  | min | -. 75 | 11 | -. 001 | 8 | 0 | 1 |
| 981 | M121 | 1 | max | .741 | 3 | 0 | 12 | 0 | 1 |
| 982 |  |  | min | -. 661 | 10 | -. 001 | 9 | 0 | 1 |
| 983 |  | 2 | max | . 742 | 3 | 0 | 12 | . 001 | 9 |
| 984 |  |  | min | -. 66 | 10 | 0 | 9 | 0 | 12 |
| 985 |  | 3 | max | . 743 | 3 | 0 | 1 | . 002 | 9 |
| 986 |  |  | min | -. 66 | 10 | 0 | 1 | 0 | 12 |
| 987 |  | 4 | max | . 744 | 3 | 0 | 8 | . 001 | 9 |
| 988 |  |  | min | -. 659 | 10 | 0 | 13 | 0 | 12 |
| 989 |  | 5 | max | . 745 | 3 | . 001 | 8 | 0 | 1 |
| 990 |  |  | min | -. 659 | 10 | 0 | 13 | 0 | 1 |
| 991 | M122 | 1 | max | . 365 | 10 | . 327 | 1 | . 002 | 11 |
| 992 |  |  | min | -. 409 | 3 | -. 013 | 11 | -. 093 | 1 |
| 993 |  | 2 | max | . 365 | 10 | . 121 | 1 | . 015 | 11 |
| 994 |  |  | min | -. 409 | 3 | -. 034 | 11 | -. 221 | 1 |
| 995 |  | 3 | max | . 365 | 10 | . 038 | 10 | . 041 | 11 |
| 996 |  |  | min | -. 409 | 3 | -. 088 | 3 | -. 231 | 1 |
| 997 |  | 4 | max | . 365 | 10 | . 017 | 10 | . 078 | 11 |
| 998 |  |  | min | -. 409 | 3 | -. 293 | 1 | -. 137 | 2 |
| 999 |  | 5 | max | . 365 | 10 | -. 004 | 10 | . 133 | 3 |
| 1000 |  |  | min | -. 409 | 3 | -. 499 | 1 | -. 108 | 10 |

RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcsIHome Plate Frame.r2d]
Page 32

## lirkISA <br> Designe Designer Job Number Model Name LKarson Engineering Inc <br> 21210330.000

 May 6, 20217:45 AM
Checked By Checked By:___

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment ${ }^{\text {ctit }}$ | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1001 | M123 | 1 | max | . 365 | 10 | -. 006 | 10 | . 133 | 3 |
| 1002 |  |  | min | -. 409 | 3 | -. 498 | 1 | -. 108 | 10 |
| 1003 |  | 2 | max | . 365 | 10 | -. 01 | 10 | . 187 | 3 |
| 1004 |  |  | min | -. 409 | 3 | -. 544 | 1 | -. 107 | 10 |
| 1005 |  | 3 | max | . 365 | 10 | . 178 | 7 | . 246 | 3 |
| 1006 |  |  | min | -. 411 | 3 | -. 589 | 1 | -. 106 | 10 |
| 1007 |  | 4 | max | . 365 | 10 | . 364 | 1 | . 201 | 3 |
| 1008 |  |  | min | -. 411 | 3 | -. 077 | 10 | -. 096 | 10 |
| 1009 |  | 5 | max | . 365 | 10 | . 319 | 1 | . 161 | 3 |
| 1010 |  |  | min | -. 411 | 3 | -. 082 | 10 | -. 086 | 10 |
| 1011 | M124 | 1 | max | . 365 | 10 | . 318 | 1 | . 161 | 3 |
| 1012 |  |  | min | -. 411 | 3 | -. 083 | 10 | -. 086 | 10 |
| 1013 |  | 2 | max | . 365 | 10 | . 176 | 3 | . 057 | 3 |
| 1014 |  |  | min | -. 411 | 3 | -. 099 | 10 | -. 047 | 10 |
| 1015 |  | 3 | max | . 365 | 10 | . 115 | 11 | . 009 | 1 |
| 1016 |  |  | min | -. 411 | 3 | -. 115 | 10 | 0 | 10 |
| 1017 |  | 4 | max | . 365 | 10 | . 099 | 11 | . 055 | 2 |
| 1018 |  |  | min | -. 411 | 3 | -. 173 | 2 | -. 046 | 11 |
| 1019 |  | 5 | max | . 365 | 10 | . 083 | 11 | . 158 | 2 |
| 1020 |  |  | min | -. 411 | 3 | -. 313 | 1 | -. 086 | 11 |
| 1021 | M125 | 1 | max | . 365 | 10 | . 083 | 11 | . 158 | 2 |
| 1022 |  |  | min | -. 411 | 3 | -. 314 | 1 | -. 086 | 11 |
| 1023 |  | 2 | max | . 365 | 10 | . 078 | 11 | . 197 | 2 |
| 1024 |  |  | min | -. 411 | 3 | -. 359 | 1 | -. 096 | 11 |
| 1025 |  | 3 | max | . 366 | 10 | . 582 | 1 | . 241 | 2 |
| 1026 |  |  | min | -. 412 | 3 | -. 177 | 6 | -. 105 | 11 |
| 1027 |  | 4 | max | . 366 | 10 | . 537 | 1 | . 183 | 2 |
| 1028 |  |  | min | -. 412 | 3 | . 007 | 11 | -. 106 | 11 |
| 1029 |  | 5 | max | . 366 | 10 | 492 | 1 | . 13 | 2 |
| 1030 |  |  | min | -. 412 | 3 | . 002 | 11 | -. 107 | 11 |
| 1031 | M126 | 1 | max | . 366 | 10 | . 493 | 1 | . 13 | 2 |
| 1032 |  |  | min | -. 412 | 3 | . 003 | 11 | -. 107 | 11 |
| 1033 |  | 2 | max | . 366 | 10 | . 286 | 1 | . 078 | 10 |
| 1034 |  |  | min | -. 412 | 3 | -. 018 | 11 | -. 136 | 3 |
| 1035 |  | 3 | max | . 366 | 10 | . 083 | 2 | . 04 | 10 |
| 1036 |  |  | min | -. 412 | 3 | -. 039 | 11 | -. 227 | 1 |
| 1037 |  | 4 | max | . 366 | 10 | . 034 | 10 | . 015 | 10 |
| 1038 |  |  | min | -. 412 | 3 | -. 127 | 1 | -. 214 | 1 |
| 1039 |  | 5 | max | . 366 | 10 | . 013 | 10 | . 002 | 10 |
| 1040 |  |  | min | -. 412 | 3 | -. 334 | 1 | -. 082 | 1 |
| 1041 | M127 | 1 | max | . 366 | 10 | . 013 | 10 | . 002 | 10 |
| 1042 |  |  | min | -. 412 | 3 | -. 332 | 1 | -. 082 | 1 |
| 1043 |  | 2 | max | . 366 | 10 | . 011 | 10 | . 001 | 10 |
| 1044 |  |  | min | -. 412 | 3 | -. 352 | 1 | -. 063 | 1 |
| 1045 |  | 3 | max | . 366 | 10 | . 009 | 10 | 0 | 10 |
| 1046 |  |  | min | -. 412 | 3 | -. 372 | 1 | -. 043 | 1 |
| 1047 |  | 4 | max | . 366 | 10 | . 007 | 10 | 0 | 10 |
| 1048 |  |  | min | -. 412 | 3 | -. 392 | 1 | -. 022 | 1 |
| 1049 |  | 5 | max | . 366 | 10 | . 005 | 10 | 0 | 1 |
| 1050 |  |  | min | -. 412 | 3 | -. 412 | 1 | 0 | 1 |
| 1051 | M128 | 1 | max | . 008 | 11 | . 967 | 10 | . 001 | 3 |
| 1052 |  |  | min | 0 | 1 | -. 006 | 3 | -. 242 | 10 |
| 1053 |  | 2 | max | . 111 | 11 | . 003 | 1 | . 002 | 3 |
| 1054 |  |  | min | -. 069 | 2 | -. 288 | 10 | -. 391 | 10 |
| 1055 |  | 3 | max | . 111 | 11 | . 003 | 1 | . 028 | 11 |
| 1056 |  |  | min | -. 069 | 2 | -. 288 | 10 | -. 226 | 10 |
| 1057 |  | 4 | max | . 111 | 11 | . 002 | 1 | . 155 | 11 |



Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Momentik | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1058 |  |  | min | -. 069 | 2 | -. 288 | 10 | -. 061 | 10 |
| 1059 |  | 5 | max | . 111 | 11 | . 001 | 1 | 283 | 11 |
| 1060 |  |  | min | -. 069 | 2 | -. 289 | 10 | -. 002 | 4 |
| 1061 | M129 | 1 | max | . 111 | 11 | . 001 | 1 | 283 | 11 |
| 1062 |  |  | min | -. 069 | 2 | -. 289 | 10 | -. 002 | 4 |
| 1063 |  | 2 | max | . 111 | 11 | . 001 | 1 | . 311 | 11 |
| 1064 |  |  | min | -. 069 | 2 | -. 289 | 10 | -. 002 | 1 |
| 1065 |  | 3 | max | . 317 | 2 | 1.419 | 11 | . 338 | 11 |
| 1066 |  |  | min | -. 507 | 11 | -. 289 | 10 | -. 002 | 1 |
| 1067 |  | 4 | max | . 317 | 2 | 1.419 | 11 | 161 | 11 |
| 1068 |  |  | min | -. 507 | 11 | -. 01 | 4 | -. 001 | 1 |
| 1069 |  | 5 | max | . 317 | 2 | 1.419 | 11 | . 137 | 10 |
| 1070 |  |  | min | -. 507 | 11 | -. 01 | 4 | -. 016 | 11 |
| 1071 | M130 | 1 | max | . 317 | 2 | 1.419 | 11 | 137 | 10 |
| 1072 |  |  | min | -. 507 | 11 | -. 01 | 4 | -. 016 | 11 |
| 1073 |  | 2 | max | 0 | 1 | . 373 | 10 | . 028 | 10 |
| 1074 |  |  | min | 0 | 1 | -. 376 | 11 | -. 301 | 11 |
| 1075 |  | 3 | max | 0 | 1 | . 373 | 10 | . 002 | 1 |
| 1076 |  |  | min | 0 | 1 | -. 376 | 11 | -. 136 | 11 |
| 1077 |  | 4 | max | 0 | 1 | . 373 | 10 | . 029 | 11 |
| 1078 |  |  | min | 0 | 1 | -. 377 | 11 | -. 298 | 10 |
| 1079 |  | 5 | max | . 322 | 3 | . 01 | 5 | 136 | 11 |
| 1080 |  |  | min | -. 516 | 10 | -1.414 | 10 | -. 014 | 10 |
| 1081 | M131 | 1 | max | . 322 | 3 | . 01 | 5 | . 136 | 11 |
| 1082 |  |  | min | -. 516 | 10 | -1.414 | 10 | -. 014 | 10 |
| 1083 |  | 2 | max | . 322 | 3 | . 01 | 5 | 162 | 10 |
| 1084 |  |  | min | -. 516 | 10 | -1.414 | 10 | -. 001 | 1 |
| 1085 |  | 3 | max | . 322 | 3 | . 287 | 11 | . 339 | 10 |
| 1086 |  |  | min | -. 516 | 10 | -1.414 | 10 | -. 002 | 1 |
| 1087 |  | 4 | max | . 114 | 10 | . 287 | 11 | . 311 | 10 |
| 1088 |  |  | min | -. 071 | 3 | -. 001 | 1 | -. 002 | 1 |
| 1089 |  | 5 | max | . 114 | 10 | . 286 | 11 | . 283 | 10 |
| 1090 |  |  | min | -. 071 | 3 | -. 001 | 1 | -. 002 | 5 |
| 1091 | M132 | 1 | max | . 114 | 10 | . 287 | 11 | . 283 | 10 |
| 1092 |  |  | min | -. 071 | 3 | -. 001 | 1 | -. 002 | 5 |
| 1093 |  | 2 | max | . 114 | 10 | . 286 | 11 | 153 | 10 |
| 1094 |  |  | min | -. 071 | 3 | -. 002 | 1 | -. 063 | 11 |
| 1095 |  | 3 | max | 114 | 10 | . 286 | 11 | . 024 | 10 |
| 1096 |  |  | min | -. 071 | 3 | -. 003 | 1 | -. 227 | 11 |
| 1097 |  | 4 | max | . 114 | 10 | . 285 | 11 | . 002 | 2 |
| 1098 |  |  | min | -. 071 | 3 | -. 003 | 1 | -. 391 | 11 |
| 1099 |  | 5 | max | . 008 | 10 | . 006 | 2 | . 001 | 2 |
| 1100 |  |  | min | 0 | 5 | -. 948 | 11 | -. 209 | 11 |
| 1101 | M133 | 1 | max | . 008 | 10 | . 006 | 2 | . 001 | 2 |
| 1102 |  |  | min | 0 | 5 | -. 948 | 11 | -. 209 | 11 |
| 1103 |  | 2 | max | . 008 | 10 | . 006 | 2 | 0 | 2 |
| 1104 |  |  | min | 0 | 5 | -. 948 | 11 | -. 157 | 11 |
| 1105 |  | 3 | max | . 008 | 10 | . 006 | 2 | 0 | 2 |
| 1106 |  |  | min | 0 | 5 | -. 949 | 11 | -. 104 | 11 |
| 1107 |  | 4 | max | . 008 | 10 | . 006 | 2 | 0 | 2 |
| 1108 |  |  | min | 0 | 5 | -. 949 | 11 | -. 052 | 11 |
| 1109 |  | 5 | max | . 008 | 10 | . 006 | 2 | 0 | 1 |
| 1110 |  |  | min | 0 | 5 | -. 949 | 11 | - | 1 |
| 1111 | M134 | 1 | max | . 18 | 10 | . 001 | 8 | 0 | 1 |
| 1112 |  |  | min | -. 117 | 11 | 0 | 13 | 0 | 1 |
| 1113 |  | 2 | max | 18 | 10 | 0 | 8 | 0 | 13 |
| 1114 |  |  | min | -. 117 | 11 | 0 | 13 | 0 | 8 |

## lırisA <br> Company Larson Engineering Inc <br> $\begin{array}{lll}\text { Dosigner } & \vdots \text { MK } \\ \text { Job Number } \\ \vdots 21210330.000\end{array}$

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial [k] | LC | Shear[k] | LC | Momentk-1t | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1115 |  | 3 | max | . 18 | 10 | 0 | 1 | 0 | 13 |
| 1116 |  |  | min | -. 117 | 11 | 0 | 1 | 0 | 8 |
| 1117 |  | 4 | max | . 18 | 10 | 0 | 12 | 0 | 13 |
| 1118 |  |  | min | -. 117 | 11 |  | 9 | 0 | 8 |
| 1119 |  | 5 | max | . 18 | 10 | 0 | 12 | 0 | 1 |
| 1120 |  |  | min | -. 117 | 11 | -. 001 | 9 | 0 | 1 |
| 1121 | M135 | 1 | max | 1.876 | 14 | . 029 | 15 | 0 | 1 |
| 1122 |  |  | min | -1.864 | 15 | -. 03 | 14 | 0 | 1 |
| 1123 |  | 2 | max | 1.876 | 14 | . 029 | 15 | . 002 | 14 |
| 1124 |  |  | min | -1.864 | 15 | -. 03 | 14 | -. 002 | 15 |
| 1125 |  | 3 | max | 1.876 | 14 | . 029 | 15 | . 004 | 14 |
| 1126 |  |  | min | -1.864 | 15 | -. 03 | 14 | -. 004 | 15 |
| 1127 |  | 4 | max | 1.876 | 14 | . 029 | 15 | . 006 | 14 |
| 1128 |  |  | min | -1.864 | 15 | -. 03 | 14 | -. 005 | 15 |
| 1129 |  | 5 | max | 1.876 | 14 | . 029 | 15 | . 008 | 14 |
| 1130 |  |  | min | -1.864 | 15 | -. 03 | 14 | -. 007 | 15 |
| 1131 | M136 | 1 | max | . 009 | 8 | . 3 | 14 | 1.276 | 15 |
| 1132 |  |  | min | . 004 | 12 | -. 3 | 15 | -1.276 | 14 |
| 1133 |  | 2 | max | . 01 | 9 | . 852 | 15 | 1.334 | 15 |
| 1134 |  |  | min | -. 012 | 15 | -. 858 | 14 | -1.334 | 14 |
| 1135 |  | 3 | max | . 01 | 9 | . 852 | 15 | 1.104 | 15 |
| 1136 |  |  | min | -. 012 | 15 | -. 858 | 14 | -1.102 | 14 |
| 1137 |  | 4 | max | . 011 | 9 | . 852 | 15 | . 874 | 15 |
| 1138 |  |  | min | -. 011 | 15 | -. 858 | 14 | -. 87 | 14 |
| 1139 |  | 5 | max | . 011 | 9 | . 852 | 15 | . 644 | 15 |
| 1140 |  |  | min | -. 011 | 15 | -. 858 | 14 | -. 638 | 14 |
| 1141 | M137 | 1 | max | . 898 | 1 | 1.436 | 15 | . 278 | 15 |
| 1142 |  |  | min | . 051 | 13 | -1.447 | 14 | -. 277 | 14 |
| 1143 |  | 2 | max | . 899 | 1 | 1.436 | 15 | . 098 | 15 |
| 1144 |  |  | min | . 051 | 13 | -1.447 | 14 | -. 096 | 14 |
| 1145 |  | 3 | max | 1.176 | 14 | 1.436 | 15 | . 084 | 14 |
| 1146 |  |  | min | -. 906 | 15 | -1.447 | 14 | -. 081 | 15 |
| 1147 |  | 4 | max | 1.177 | 14 | . 019 | 14 | . 082 | 14 |
| 1148 |  |  | min | -. 906 | 15 | -. 024 | 15 | -. 078 | 15 |
| 1149 |  | 5 | max | 1.177 | 14 | . 019 | 14 | . 08 | 14 |
| 1150 |  |  | min | -. 905 | 15 | -. 024 | 15 | -. 075 | 15 |
| 1151 | M138 | 1 | max | 1.177 | 14 | . 022 | 14 | . 08 | 14 |
| 1152 |  |  | min | -. 905 | 15 | -. 021 | 15 | -. 075 | 15 |
| 1153 |  | 2 | max | 1.178 | 14 | . 022 | 14 | . 062 | 14 |
| 1154 |  |  | min | -. 904 | 15 | -. 021 | 15 | -. 058 | 15 |
| 1155 |  | 3 | max | 1.179 | 14 | . 022 | 14 | . 044 | 14 |
| 1156 |  |  | min | -. 903 | 15 | -. 021 | 15 | -. 041 | 15 |
| 1157 |  | 4 | max | 1.18 | 14 | . 022 | 14 | . 026 | 14 |
| 1158 |  |  | min | -. 902 | 15 | -. 021 | 15 | -. 024 | 15 |
| 1159 |  | 5 | max | 1.181 | 14 | . 022 | 14 | . 008 | 14 |
| 1160 |  |  | min | -. 901 | 15 | -. 021 | 15 | -. 007 | 15 |
| 1161 | M139 | 1 | max | 1.181 | 14 | . 024 | 14 | . 008 | 14 |
| 1162 |  |  | min | -. 901 | 15 | -. 02 | 15 | -. 007 | 15 |
| 1163 |  | 2 | max | 1.181 | 14 | . 024 | 14 | . 006 | 14 |
| 1164 |  |  | min | -. 901 | 15 | -. 02 | 15 | -. 005 | 15 |
| 1165 |  | 3 | max | 1.182 | 14 | . 024 | 14 | . 004 | 14 |
| 1166 |  |  | min | -. 901 | 15 | -. 02 | 15 | -. 003 | 15 |
| 1167 |  | 4 | max | 1.182 | 14 | . 024 | 14 | . 002 | 14 |
| 1168 |  |  | min | -. 9 | 15 | -. 02 | 15 | -. 002 | 15 |
| 1169 |  | 5 | max | 1.182 | 14 | . 024 | 14 | 0 | 1 |
| 1170 |  |  | min | -. 9 | 15 | -. 02 | 15 | 0 | 1 |
| 1171 | M140 | 1 | max | 1.877 | 14 | . 007 | 14 | 008 | 14 |


| Company <br> Designer Job Number Model Name |  |  | Larson Engineering Inc MK $21210330.000$ <br> Hamlin Middle School |  |  |  |  | May 6, 2021 7:45 AM Checked By: |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Envelope Member Section Forces (Continued) |  |  |  |  |  |  |  |  |  |
|  | Membe | Sec |  | Axial[k] | LC | Shear[k] | LC | Momenttk | LC |
| 1172 |  |  | min | -1.864 | 15 | -. 005 | 15 | -. 007 | 15 |
| 1173 |  | 2 | max | 1.877 | 14 | . 007 | 14 | . 003 | 14 |
| 1174 |  |  | min | -1.864 | 15 | -. 006 | 15 | -. 004 | 15 |
| 1175 |  | 3 | max | 1.877 | 14 | . 007 | 14 | 0 | 13 |
| 1176 |  |  | min | -1.864 | 15 | -. 006 | 15 | 0 | 14 |
| 1177 |  | 4 | max | 1.877 | 14 | . 006 | 14 | . 003 | 15 |
| 1178 |  |  | min | -1.864 | 15 | -. 006 | 15 | -. 005 | 14 |
| 1179 |  | 5 | max | 1.877 | 14 | . 006 | 14 | . 007 | 15 |
| 1180 |  |  | min | -1.864 | 15 | -. 007 | 15 | -. 008 | 14 |
| 1181 | M141 | 1 | max | 1.877 | 14 | . 028 | 15 | . 007 | 15 |
| 1182 |  |  | min | -1.864 | 15 | -. 033 | 14 | -. 008 | 14 |
| 1183 |  | 2 | max | 1.877 | 14 | . 028 | 15 | . 005 | 15 |
| 1184 |  |  | min | -1.864 | 15 | -. 033 | 14 | -. 006 | 14 |
| 1185 |  | 3 | max | 1.877 | 14 | . 028 | 15 | . 004 | 15 |
| 1186 |  |  | min | -1.864 | 15 | -. 033 | 14 | -. 004 | 14 |
| 1187 |  | 4 | max | 1.877 | 14 | . 028 | 15 | . 002 | 15 |
| 1188 |  |  | min | -1.864 | 15 | -. 033 | 14 | -. 002 | 14 |
| 1189 |  | 5 | max | 1.877 | 14 | . 028 | 15 | 0 | 1 |
| 1190 |  |  | min | -1.864 | 15 | -. 033 | 14 | 0 | 1 |

## Envelope AA ADM1-15: ASD - Building Aluminum Code Checks



[^10]Page 36

|  | S | Company <br> Designer <br> Model Na <br> - | Larson Engineering Inc MK 21210330.000 Hamlin Middle Schoo |  |  |  |  |  |  |  |  | May 6, 2021 7:45 AM Checked By: |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Envelope AA ADM1-15: ASD - Building Aluminum Code Checks (Continued) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Member |  | Shape | Code Ch. |  | LC Shear Ch |  | Loc[ft] LC |  | C Pno/Om[k | Pnt/Om[k] Mn/Om |  | Vn/Om[k] Cb Eqn |  |  |
| 34 | M35 | L1.5x1.5x.1... | 494 | 2.234 | 7 | . 001 | 0 | 8 | . 915 | 4.794 | 103 | 1.534 | 1 | H.1-1 |
| 35 | M36 | L1.5x1.5x.1... | . 649 | 2.509 | 7 | . 001 | 0 | 8 | 754 | 4.794 | . 103 | 1.534 | 1 | H.1-1 |
| 36 | M37 | USC4X1.85 | . 488 | 0 | 15 | 147 | 1.119 | 15 | 13.493 | 14.273 | 1.451 | 3.927 | 1 1.. | H. |
| 37 | M38 | L2X2X0.188 | . 220 | 415 | 15 | . 000 | 0 | 9 | 5.252 | 6.573 | . 183 | 2.051 | 1 | H.1-1 |
| 38 | M39 | USC4X1.85 | . 386 | 4.25 | 15 | . 033 | 0 | 15 | 6.318 | 30.595 | 3.303 | 9.164 | $1 .$. | H.1-1 |
| 39 | M244 | L1.5x1.5x.1... | 178 | 1.552 | 9 | . 000 | 0 | 8 | 1.817 | 4.794 | 103 | 1.534 | 1 | H.1-1 |
| 40 | M63 | L2X2X0. 188 | . 549 | 3.25 | 1 | . 000 | 0 | 1 | 3.221 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 41 | M64 | L3X2X0. 188 | . 085 | . 25 | 6 | . 044 | . 25 | 6 | 7.077 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 42 | M65 | L3X2X0.188 | . 330 | 2.67 | 10 | . 009 | 5.34 | 15 | 1.881 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 43 | M66 | L2X2X0.188 | . 551 | 3.25 | 1 | . 000 | 0 | 1 | 3.221 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 44 | M67 | L2X2X0. 188 | . 543 | 3.25 | 1 | . 000 | 0 | 1 | 3.221 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 45 | M68 | L3X2X0.188 | . 351 | 3.25 | 2 | . 000 | 0 | 1 | 4.075 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 46 | M69 | L3X2X0. 188 | . 353 | 2.67 | 10 | . 011 | 5.34 | 15 | 1.881 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 47 | M70 | L2X2X0.188 | . 495 | 2.93 | 7 | . 001 | 5.41 | 8 | 1.286 | 6.573 | . 183 | 2.051 | 1 | H.1-1 |
| 48 | M70A | L3X2X0.188 | . 326 | . 705 | 1 | 104 | 1.83 | 1 | 8.141 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 49 | M71 | L3X2X0. 188 | . 976 | . 25 | 1 | 296 | . 25 | 1 | 6.197 | 8.273 | . 356 | 3.076 | 1 | H.3-2 |
| 50 | M72 | L3X2X0.188 | . 271 | 0 | 1 | . 076 | 0 | 1 | 8.667 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 51 | M73 | L3X2X0.188 | . 828 | 25 | 1 | . 276 | . 25 | 1 | 6.197 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 52 | M74 | L3X2X0. 188 | . 275 | 1.038 | 1 | . 096 | 0 | 1 | 8.518 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 53 | M75 | L3X2X0.188 | . 314 | 0 | 1 | . 188 | . 25 | 1 | 7.077 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 54 | M76 | L3X2X0. 188 | . 641 | 1.085 | 1 | 100 | 0 | 1 | 7.302 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 55 | M77 | L3X2X0. 188 | . 508 | 0 | 1 | 287 | 25 | 1 | 7.077 | 8.273 | . 394 | 3.076 | 1 | 4.1-1 |
| 56 | M78 | L3X2X0.188 | . 646 | 1.085 | 1 | 101 | 0 | 1 | 7.302 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 57 | M79 | L3X2X0.188 | . 528 | 0 | 1 | . 288 | 26 | 1 | 7.019 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 58 | M80 | L3X2X0.188 | . 636 | 1.085 | 1 | . 101 | 2.17 | 1 | 7.302 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 59 | M81 | L3X2X0.188 | . 488 | 0 | 1 | . 286 | . 24 | 1 | 7.138 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 60 | M82 | L3X2X0. 188 | . 641 | 1.085 | 1 | . 100 | 0 | 1 | 7.302 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 61 | M83 | L3X2X0.188 | . 508 | 0 | 1 | 287 | 25 | 1 | 7.077 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 62 | M84 | L3X2X0. 188 | . 641 | 1.085 | 1 | 100 | 2.17 | 1 | 7.302 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 63 | M85 | L3X2X0.188 | . 508 | 0 | 1 | . 287 | . 25 | 1 | 7.077 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 64 | M86 | L3X2X0. 188 | . 641 | 1.085 | 1 | . 100 | 0 | 1 | 7.302 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 65 | M87 | L3X2X0.188 | . 508 | 0 | 1 | . 287 | . 25 | 1 | 7.077 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 66 | M88 | L3X2X0. 188 | . 641 | 1.085 | 1 | . 100 | 0 | 1 | 7.302 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 67 | M89 | L3X2X0. 188 | . 508 | 0 | 1 | . 287 | . 25 | 1 | 7.077 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 68 | M90 | L3X2X0. 188 | . 641 | 1.085 | 1 | . 100 | 0 | 1 | 7.302 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 69 | M91 | L3X2X0.188 | . 508 | 0 | 1 | . 287 | 25 | 1 | 7.077 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 70 | M92 | L3X2X0.188 | . 320 | 249 | 10 | . 057 | 0 | 10 | 7.302 | 17.733 | 634 | 7.142 | 1 | H.1-1 |
| 71 | M93 | L3X2X0. 188 | . 640 | . 255 | 10 | . 075 | . 25 | 11 | 6.197 | 8.273 | 394 | 3.076 | 1 | H.1-1 |
| 72 | M94 | L3X2X0. 188 | . 625 | 1.921 | 11 | . 111 | 2.17 | 11 | 7.302 | 17.733 | 634 | 7.142 | 1 | H.1-1 |
| 73 | M95 | L3X2X0. 188 | . 559 | 0 | 11 | . 259 | . 25 | 11 | 7.077 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 74 | M96 | L3X2X0.188 | . 416 | 1.921 | 14 | . 155 | 2.17 | 14 | 7.302 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 75 | M97 | L3X2X0.188 | . 799 | . 25 | 10 | . 360 | . 25 | 14 | 6.197 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 76 | M98 | L3X2X0.188 | . 934 | 1.921 | 15 | . 166 | 2.17 | 15 | 7.302 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 77 | M99 | L3X2X0.188 | . 912 | 0 | 15 | . 386 | . 25 | 15 | 7.077 | 8.273 | . 356 | 3.076 | 1 | H.3-2 |
| 78 | M100 | L3X2X0. 188 | . 680 | 25 | 10 | . 314 | 0 | 10 | 7.077 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 79 | M101 | L3X2X0. 188 | . 959 | 5.119 | 10 | . 033 | 5.038 | 10 | . 905 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 80 | M102 | L3X2X0. 188 | . 848 | 5.119 | 10 | . 037 | 5.038 | 10 | 905 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 81 | M103 | L3X2X0.188 | . 261 | . 25 | 1 | . 135 | 0 | 1 | 7.077 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 82 | M104 | L3X2X0. 188 | . 978 | 4.19 | 7 | . 000 | 0 | 1 | 2.955 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 83 | M105 | L2X2X0.188 | . 857 | 4.19 | 2 | . 000 | 0 | 1 | 2.149 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 84 | M106 | L2X2X0. 188 | . 841 | 4.19 | 3 | . 000 | 0 | 1 | 2.149 | 6.573 | 196 | 2.051 | 1 | H.1-1 |
| 85 | M107 | L3X2X0.188 | . 976 | 4.19 | 6 | . 000 | 0 | 1 | 2.955 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 86 | M108 | L3X2X0. 188 | . 809 | 4.1 | 3 | . 000 | 0 | 1 | 3.063 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 87 | M109 | L2X2X0.188 | . 595 | 4.1 | 2 | . 000 | 0 | 1 | 2.248 | 6.573 | . 196 | 2.051 | 1 | H.3-2 |
| 88 | M110 | L2X2X0. 188 | . 585 | 4.1 | 1 | . 000 | 0 | 1 | 2.248 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 89 | M111 | L3X2X0.188 | . 797 | 4.1 | 2 | . 000 | 0 | 1 | 3.063 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 90 | M112 | L3X2X0.188 | . 724 | 4.1 | 3 | . 000 | 0 | 1 | 3.063 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |


|  | 15 | Company Designer Job Numb Model Na |  | son Eng <br> 210330.0 <br> min Mid | eering |  |  |  |  |  |  | May 6, 2021 7:45 AM Checked By: |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Envelope AA ADM1-15: ASD - Building Aluminum Code Checks (Continued) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Member | Shape | Code Ch. | Loc[fti] |  | hear Ch | Loc[ft] |  | Pno/Om[k | Pnt/Om[k | Mn/Om[k | Vn/Om |  |  |
| 91 | M113 | L2X2X0.188 | 446 | 4.1 | 1 | . 000 | 0 | 1 | 2.248 | 6.573 | 196 | 2.051 | 1 | H.1-1 |
| 92 | M114 | L2X2X0.188 | . 441 | 4.1 | 1 | . 000 | 0 | 1 | 2.248 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 93 | M115 | L3X2X0.188 | . 704 | 4.1 | 2 | . 000 | 0 | 1 | 3.063 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 94 | M116 | L2X2X0.188 | 481 | 2.727 | 2 | . 001 | 0 | 8 | 1.485 | 6.573 | 196 | 2.051 | 1 | H.1-1 |
| 95 | M117 | L2X2X0.188 | . 489 | 2.718 | 3 | . 001 | 5.017 | 8 | 1.495 | 6.573 | 183 | 2.051 | 1 | H.1-1 |
| 96 | M118 | L2X2X0.188 | 439 | 2.686 | 2 | . 001 | 4.959 | 9 | 1.53 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 97 | M119 | L2X2X0.188 | . 458 | 2.626 | 3 | . 001 | 0 | 8 | 1.54 | 6.573 | . 183 | 2.051 | 1 | H.1-1 |
| 98 | M120 | L2X2X0.188 | . 538 | 2.686 | 2 | . 001 | 4.959 | 8 | 1.53 | 6.573 | 196 | 2.051 | 1 | H.1-1 |
| 99 | M121 | L2X2X0.188 | 490 | 2.626 | 3 | . 001 | 0 | 9 | 1.54 | 6.573 | 183 | 2.051 | 1 | H.1- |
| 100 | M122 | L3X2X0.188 | . 274 | . 906 | 1 | . 070 | 2.29 | 1 | 6.983 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 101 | M123 | L3X2X0.188 | . 741 | . 25 | 3 | . 191 | 25 | 1 | 6.197 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 102 | M124 | L3X2X0.188 | . 277 | 0 | 3 | . 045 | 0 | 1 | 8.322 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 103 | M125 | L3X2X0.188 | . 697 | 25 | 2 | . 189 | 25 | 1 | 6.197 | 8.273 | . 356 | 3.076 | 1 | H.1- |
| 104 | M126 | L3X2X0.188 | . 269 | 1.36 | 1 | . 069 | 0 | 1 | 6.983 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 105 | M127 | L3X2X0.188 | . 234 | 0 | 1 | . 134 | . 22 | 1 | 7.268 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 106 | M128 | L3X2X0.188 | . 757 | 262 | 10 | . 135 | 0 | 10 | 6.983 | 17.733 | . 634 | 7.142 | , | H.1-1 |
| 107 | M129 | L3X2X0.188 | . 920 | . 25 | 11 | 461 | 25 | 11 | 6.197 | 8.273 | . 394 | 3.076 | 1 | H.1- |
| 108 | M130 | L3X2X0.188 | . 584 | . 237 | 11 | . 199 | 0 | 11 | 8.322 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 109 | M131 | L3X2X0.188 | . 923 | 25 | 10 | 460 | 25 | 10 | 6.197 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 110 | M132 | L3X2X0.188 | . 745 | 2.004 | 11 | . 133 | 2.29 | 11 | 6.983 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 111 | M133 | L3X2X0.188 | . 587 | 0 | 11 | . 308 | . 22 | 11 | 7.268 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 112 | M134 | L2X2X0.188 | . 049 | 1.335 | 6 | . 001 | 0 | 8 | 3.926 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 113 | M135 | L1.5x1.5x.1... | . 497 | . 25 | 14 | . 020 | 25 | 14 | 4.433 | 4.794 | 103 | 1.534 | 1 | H.1-1 |
| 114 | M136 | USC4X1.85 | . 931 | . 248 | 15 | . 219 | . 259 | 14 | 13.594 | 14.273 | 1.451 | 3.927 | $1 .$. | H.1-1 |
| 115 | M137 | L3X2X0.25 | . 548 | 0 | 14 | . 354 | 0 | 14 | 9.146 | 10.818 | . 516 | 4.091 | 1 | H.1-1 |
| 116 | M138 | L3X2X0. 25 | . 251 | 0 | 14 | . 002 |  | 14 | 6.653 | 23.19 | 1.081 | 9.545 | 1 | H.1-1 |
| 117 | M139 | L3X2X0.25 | . 138 | 0 | 14 | . 006 | 0 | 14 | 9.618 | 10.818 | . 528 | 4.091 | 1 | H.1-1 |
| 118 | M140 | L1.5x1.5x.1... | . 707 | 2.41 | 14 | . 002 | 0 | 14 | 2.787 | 10.276 | 253 | 3.58 | 1 | H.1-1 |
| 119 | M141 | L1.5x1.5x.1... | 497 | 0 | 14 | . 021 | 255 | 14 | 4.425 | 4.794 | 114 | 1.534 | 1 | H.1-1 |



| Larson Engineering Inc |
| :--- |
| MK |
| 21210330.000 |

Hamlin Middle School
Member \& Node Labels
Attachment 5, Page 47 of 236


| Larson Engineering Inc |
| :--- |
| MK |
| 21210330.000 |

Hamlin Middle School
Member Shapes

SK - 2
Apr 30, 2021 at 4:20 PM
First Base Frames.r2d


| Larson Engineering Inc | Hamlin Middle School Dead Loads | SK - 3 |
| :---: | :---: | :---: |
| MK |  | Apr 30, 2021 at 4:20 PM |
| 21210330.000 |  | First Base Frames.r2d |

Attachment 5, Page 49 of 236
-6001b/f


| Larson Engineering Inc | Hamlin Middle School Live Loads | SK - 4 |
| :---: | :---: | :---: |
| MK |  | Apr 30, 2021 at 4:21 PM |
| 21210330.000 |  | First Base Frames.r2d |

Attachment 5, Page 50 of 236


Loads: BLC 3, WL

| Larson Engineering Inc | Hamlin Middle School Wind Loads (Strength) | SK - 5 |
| :---: | :---: | :---: |
| MK |  | Apr 30, 2021 at 4:23 PM |
| 21210330.000 |  | First Base Frames.r2d |

Attachment 5, Page 51 of 236


| Larson Engineering Inc | Hamlin Middle School Handrail Load | SK - 6 |
| :---: | :---: | :---: |
| MK |  | Apr 30, 2021 at 4:23 PM |
| 21210330.000 |  | First Base Frames.r2d |



Member Code Checks Displayed (Enveloped) Envelope Only Solution
Larson Engineering Inc

Member Envelope Unity

Apr 30, 2021 at 4:23 PM
First Base Frames.r2d

| RSA | Company Designer <br> Job Number Model Name <br> Model Name | Larson Engineering Inc MK <br> 21210330.000 <br> Hamlin Middle Schoo | Apr 30, 2021 4:24 PM Checked By: |
| :---: | :---: | :---: | :---: |



## Aluminum Section Sets

| Label |  | Shape | Type | Design List AA Channel | $\begin{gathered} \text { Material } \\ \hline 6061-\mathrm{T} 6 \mathrm{~W} \end{gathered}$ | Design Rules | $\begin{gathered} \mathrm{A}[\mathrm{in} 2] \\ \hline .527 \\ \hline \end{gathered}$ | I $(90,270)$ [... $(0,180)[$ [... |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | L1.5x1.5×0.1875 | L1.5x1.5x. 188 | Beam |  |  |  |  |  |  |
| 2 | L2 $2 \times 2 \times 0.1875$ | L2X2X0.188 | Beam | AA Channel | 6061-T6 W | Typical | 723 | . 268 | 268 |
| 3 | L3x2x0.1875 | L3X2X0.188 | Beam | AA Channel | 6061-T6 W | Typical | 91 | . 292 | 821 |
| 4 | L3x2x0.1875 UW | L3X2X0.188 | Beam | AA Channel | 6061-T6 | Typical | 91 | . 292 | 821 |
| 5 | C4x1.5 | USC4X1.85 | Beam | AA Channel | 6061-T6 W | Typical | 1.57 | 32 | 3.83 |
| 6 | C4x1.5 UW | USC4X1.85 | Beam | AA Channel | 6061-T6 | Typical | 1.57 | . 32 | 3.83 |
| 7 | AL6 | USC5X2.32 | Beam | AA Channel | 6061-T6 W | Typical | 1.97 | 48 | 7.49 |

Joint Coordinates and Temperatures

|  | Label | X [ft] | Y [ft] | Temp [F] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | N1 | 0 | 0 | 0 |
| 2 | N2 | 2.79 | 0 | 0 |
| 3 | N3 | 4.79 | 0 | 0 |
| 4 | N4 | 6.79 | 0 | 0 |
| 5 | N5 | 8.79 | 0 | 0 |
| 6 | N6 | 11 | 0 | 0 |
| 7 | N7 | 13.21 | 0 | 0 |
| 8 | N8 | 14.79 | 0 | 0 |
| 9 | N9 | 16.79 | 0 | 0 |
| 10 | N10 | 18.79 | 0 | 0 |
| 11 | N11 | 20.79 | 0 | 0 |
| 12 | N12 | 22.79 | 0 | 0 |
| 13 | N13 | 24.79 | 0 | 0 |
| 14 | N14 | 26.79 | 0 | 0 |
| 15 | N15 | 28.79 | 0 | 0 |
| 16 | N16 | 30.79 | 0 | 0 |
| 17 | N17 | 32.79 | 0 | 0 |
| 18 | N18 | 34.79 | 0 | 0 |
| 19 | N19 | 36.79 | 0 | 0 |
| 20 | N20 | 38.79 | 0 | 0 |
| 21 | N21 | 0 | 2.04 | 0 |
| 22 | N22 | 2.79 | 2.04 | 0 |
| 23 | N23 | 2.79 | 2.71 | 0 |
| 24 | N24 | 4.79 | 2.71 | 0 |
| 25 | N25 | 4.79 | 3.38 | 0 |
| 26 | N26 | 6.79 | 3.38 | 0 |
| 27 | N27 | 6.79 | 4.04 | 0 |
| 28 | N28 | 8.79 | 4.04 | 0 |
| 29 | N29 | 8.79 | 5.358 | 0 |
| 30 | N30 | 11 | 5.358 | 0 |
| 31 | N31 | 13.21 | 5.358 | 0 |
| 32 | N32 | 14.79 | 5.358 | 0 |
| 33 | N33 | 14.79 | 6.018 | 0 |
| 34 | N34 | 16.79 | 6.018 | 0 |


| RRSA | Company Designer Job Number Model Name | Larson Engineering Inc MK <br> 21210330.000 <br> Hamlin Middle School | Apr 30, 2021 4:24 PM Checked By: |
| :---: | :---: | :---: | :---: |

Joint Coordinates and Temperatures (Continued)



RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcs|First Base Frames.r2d]


Joint Coordinates and Temperatures (Continued)


## |lıRISA <br> Company Designer : Larson Engineering Inc MK <br> $\begin{array}{ll}\text { Designer } & \text { MK } \\ \text { Job Number } & \text { M1210330.000 } \\ \text { Model Name } & : \text { Hamlin Middle School }\end{array}$

Apr 30, 2021
$4: 24 \mathrm{PM}$
4:24 PM
Checked By:

Joint Coordinates and Temperatures (Continued)

|  | Label | $\mathrm{X}[\mathrm{tf}]$ | Y [ft] | Temp [F] |
| :---: | :---: | :---: | :---: | :---: |
| 206 | N206 | 38.54 | 0 | 0 |
| 207 | N207 | 25.04 | 25 | 0 |
| 208 | N208 | 26.54 | 25 | 0 |
| 209 | N209 | 27.04 | 25 | 0 |
| 210 | N210 | 28.54 | 25 | 0 |
| 211 | N211 | 29.04 | 25 | 0 |
| 212 | N212 | 30.54 | 25 | 0 |
| 213 | N213 | 31.04 | 25 | 0 |
| 214 | N214 | 32.54 | 25 | 0 |
| 215 | N215 | 35.04 | 25 | 0 |
| 216 | N216 | 36.54 | 25 | 0 |
| 217 | N217 | 37.04 | 25 | 0 |
| 218 | N218 | 38.54 | 25 | 0 |
| 219 | N219 | 38.79 | 13.768 | 0 |
| 220 | N220 | 38.79 | 9.73 | 0 |
| 221 | N221 | 38.79 | 38.7845 | 0 |
| 222 | N222 | 38.79 | 37.9545 | 0 |
| 223 | N223 | 38.79 | 37.4545 | 0 |
| 224 | N224 | 38.79 | 34.7465 | 0 |
| 225 | N225 | 38.79 | 12.688 | 0 |
| 226 | N226 | 38.79 | 12.938 | 0 |
| 227 | N227 | 38.79 | 12.438 | 0 |
| 228 | N228 | 39.62 | 13.938 | 0 |
| 229 | N229 | 38.79 | 37.7045 | 0 |
| 230 | N230 | 39.62 | 38.9545 | 0 |


| Joint Label |  | X [kin] | Y [kin] | Rotation[k-ft/rad] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | N90 | Reaction | Reaction |  |
| 2 | N91 | Reaction | Reaction |  |
| 3 | N94 | Reaction | Reaction |  |
| 4 | N92 | Reaction | Reaction |  |
| 5 | N95 | Reaction | Reaction |  |
| 6 | N93 | Reaction | Reaction |  |
| 7 | N96 | Reaction | Reaction |  |
| 8 | N1 |  | CS10000 |  |
| 9 | N2 |  | CS10000 |  |
| 10 | N3 |  | CS10000 |  |
| 11 | N4 |  | CS10000 |  |
| 12 | N5 |  | CS10000 |  |
| 13 | N6 |  | CS10000 |  |
| 14 | N7 |  | CS10000 |  |
| 15 | N8 |  | CS10000 |  |
| 16 | N9 |  | CS10000 |  |
| 17 | N10 |  | CS10000 |  |
| 18 | N11 |  | CS10000 |  |
| 19 | N12 |  | CS10000 |  |
| 20 | N13 |  | CS10000 |  |
| 21 | N14 |  | CS10000 |  |
| 22 | N15 |  | CS10000 |  |
| 23 | N16 |  | CS10000 |  |
| 24 | N17 |  | CS10000 |  |
| 25 | N18 |  | CS10000 |  |
| 26 | N19 |  | CS10000 |  |
| 27 | N20 |  | CS10000 |  |

RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcs|First Base Frames.r2d]
Page 5

4:24 PM $\begin{array}{lll}\text { Job Number } & \vdots & 21210330.000 \\ \text { Model Name } & : & \text { Hamlin Middle School }\end{array}$

Checked By:___

Joint Boundary Conditions (Continued)

|  | Joint Label | X [Kin] | $Y[k / i n]$ | Rotation[k-ft/rad] |
| :---: | :---: | :---: | :---: | :---: |
| 28 | N97 |  | CS10000 |  |
| 29 | N98 |  | CS10000 |  |
| 30 | N99 |  | CS10000 |  |
| 31 | N100 |  | CS10000 |  |
| 32 | N101 |  | CS10000 |  |
| 33 | N102 |  | CS10000 |  |
| 34 | N103 |  | CS10000 |  |
| 35 | N104 |  | CS10000 |  |
| 36 | N105 |  | CS10000 |  |
| 37 | N106 |  | CS10000 |  |
| 38 | N107 |  | CS10000 |  |
| 39 | N108 |  | CS10000 |  |
| 40 | N109 |  | CS10000 |  |
| 41 | N110 |  | CS10000 |  |
| 42 | N111 |  | CS10000 |  |
| 43 | N172 | Reaction | Reaction |  |
| 44 | N173 | Reaction | Reaction |  |
| 45 | N174 | Reaction | Reaction |  |
| 46 | N175 | Reaction | Reaction |  |
| 47 | N176 | Reaction | Reaction |  |
| 48 | N177 | Reaction | Reaction |  |
| 49 | N178 | Reaction | Reaction |  |
| 50 | N179 | Reaction | Reaction |  |
| 51 | N180 | Reaction | Reaction |  |
| 52 | N181 | Reaction | Reaction |  |
| 53 | N182 | Reaction | Reaction |  |
| 54 | N183 | Reaction | Reaction |  |
| 55 | N184 | Reaction | Reaction |  |

## Member Primary Data

|  | Label | 1 Joint | $J$ Joint | Rotate(deg) | Section/Shape | Type | Design List | Material | Design Rules |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | N1 | N4 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 2 | M2 | N13 | N195 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 3 | M3 | N18 | N203 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 4 | M4 | N63 | N65 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 5 | M5 | N71 | N75 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 6 | M6 | N76 | N78 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 7 | M7 | N79 | N83 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 8 | M8 | N84 | N86 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 9 | M9 | N87 | N89 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 10 | M10 | N21 | N193 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 11 | M11 | N23 | N24 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 12 | M12 | N25 | N26 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 13 | M13 | N27 | N28 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 14 | M14 | N29 | N32 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 15 | M15 | N33 | N34 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 16 | M16 | N35 | N36 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 17 | M17 | N37 | N38 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 18 | M18 | N39 | N40 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 19 | M19 | N41 | N42 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 20 | M20 | N43 | N44 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 21 | M21 | N45 | N46 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 22 | M22 | N47 | N48 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 23 | M23 | N49 | N50 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 24 | M24 | N51 | N52 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |

[^11]

$\begin{array}{ll}\text { Company } & \vdots \text { Larson Engineering Inc } \\ \text { Designer } & \vdots \text { MK }\end{array}$

| MK |
| :--- |
| 21210330.000 |

Apr 30, 2021
$: 24 \mathrm{PM}$ Model Name $\vdots$ Hamlin Midddle School

Member Primary Data (Continued)

|  | Label | 1 Joint | $J$ Joint | Rotate(deg) | Section/Shape | Type | Design List | Material | Design Rules |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | M25 | N53 | N54 | 180 | L3x2×0.1875 | Beam | AA Channel | $6061-\mathrm{T}$ W | Typical |
| 26 | M26 | N55 | N56 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 27 | M27 | N21 | N1 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 28 | M28 | N23 | N2 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 29 | M29 | N25 | N3 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 30 | M30 | N27 | N4 | 180 | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 31 | M31 | N29 | N63 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 32 | M32 | N30 | N64 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 33 | M33 | N31 | N65 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 34 | M34 | N33 | N66 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 35 | M35 | N35 | N67 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 36 | M36 | N37 | N68 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 37 | M37 | N39 | N69 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 38 | M38 | N41 | N70 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 39 | M39 | N64 | N6 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 40 | M40 | N65 | N7 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 41 | M41 | N66 | N8 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 42 | M42 | N67 | N9 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 43 | M43 | N68 | N10 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 44 | M44 | N69 | N11 |  | L2x2x0. 1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 45 | M45 | N70 | N12 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 46 | M46 | N43 | N79 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 47 | M47 | N45 | N80 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 48 | M48 | N47 | N81 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 49 | M49 | N49 | N82 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 50 | M50 | N51 | N83 | 180 | L3x2x0. 1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 51 | M51 | N79 | N71 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 52 | M52 | N80 | N72 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 53 | M53 | N81 | N73 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 54 | M54 | N82 | N74 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 55 | M55 | N83 | N75 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 56 | M56 | N71 | N13 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 57 | M57 | N72 | N14 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 58 | M58 | N73 | N15 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 59 | M59 | N74 | N16 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 60 | M60 | N75 | N17 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 61 | M61 | N53 | N87 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 62 | M62 | N55 | N88 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 63 | M63 | N57 | N219 | 180 | L3x2x0. 1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 64 | M64 | N87 | N84 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 65 | M65 | N88 | N85 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 66 | M66 | N89 | N86 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 67 | M67 | N84 | N76 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 68 | M68 | N85 | N77 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 69 | M69 | N86 | N78 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 70 | M70 | N76 | N18 |  | L2x2x0.1875 | Beam | AA Channel | $6061-\mathrm{T}$ W | Typical |
| 71 | M71 | N77 | N19 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 72 | M72 | N78 | N20 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 73 | M73 | N61 | N59 |  | C4x1.5 | Beam | AA Channel | 6061-T6 W | Typical |
| 74 | M74 | N60 | N58 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 75 | M75 | N62 | N228 |  | C $4 \times 1.5$ UW | Beam | AA Channel | 6061-T6 | Typical |
| 76 | M76 | N63 | N5 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 77 | M77 | N26 | N3 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 78 | M78 | N66 | N9 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 79 | M79 | N70 | N11 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 80 | M80 | N40 | N185 |  | L1.5 $\times 1.5 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 81 | M81 | N75 | N16 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |

 $\begin{array}{ll}\text { Designer } & \vdots \text { MK } \\ \text { Job Number } & \vdots 21210330.000 \\ \text { Model Name } & \vdots \\ & \text { Hamlin Middle School }\end{array}$

Member Primary Data (Continued)

|  | Label | 1 Joint | $J$ Joint | Rotate(deg) | Section/Shape | Type | Design List | Material | Design Rules |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 82 | M82 | N83 | N74 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 83 | M83 | N50 | N187 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 84 | M84 | N78 | N19 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 85 | M85 | N86 | N77 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 86 | M86 | N89 | N85 |  | L1.5×1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 87 | M87 | N225 | N88 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 88 | M88 | N104 | N207 |  | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 89 | M89 | N109 | N215 |  | L3×2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 90 | M90 | N148 | N152 |  | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 91 | M91 | N153 | N157 |  | L3×2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 92 | M92 | N158 | N160 |  | L3×2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 93 | M93 | N161 | N165 |  | L3×2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 94 | M94 | N166 | N168 |  | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 95 | M95 | N169 | N171 |  | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 96 | M96 | N112 | N115 | 180 | AL6 | Beam | AA Channel | 6061-T6 W | Typical |
| 97 | M97 | N116 | N117 | 180 | L3×2×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 98 | M98 | N118 | N119 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 99 | M99 | N120 | N121 | 180 | L3×2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 100 | M100 | N122 | N123 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 101 | M101 | N124 | N125 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 102 | M102 | N126 | N127 | 180 | L3×2×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 103 | M103 | N128 | N129 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 104 | M104 | N130 | N131 | 180 | L3×2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 105 | M105 | N132 | N133 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 106 | M106 | N134 | N135 | 180 | L3×2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 107 | M107 | N136 | N137 | 180 | L3×2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 108 | M108 | N138 | N139 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 109 | M109 | N113 | N146 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 110 | M110 | N114 | N147 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 111 | M111 | N116 | N148 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 112 | M112 | N118 | N149 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 113 | M113 | N120 | N150 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 114 | M114 | N122 | N151 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 115 | M115 | N124 | N152 | 180 | L3 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 116 | M116 | N146 | N97 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 117 | M117 | N147 | N98 | 180 | L3 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 118 | M118 | N148 | N99 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 119 | M119 | N149 | N100 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 120 | M120 | N150 | N101 |  | L2×2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 121 | M121 | N151 | N102 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 122 | M122 | N152 | N103 | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 123 | M123 | N126 | N161 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 124 | M124 | N128 | N162 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 125 | M125 | N130 | N163 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 126 | M126 | N132 | N164 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 127 | M127 | N134 | N165 | 180 | L3 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 128 | M128 | N161 | N153 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 129 | M129 | N162 | N154 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 130 | M130 | N163 | N155 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 131 | M131 | N164 | N156 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 132 | M132 | N165 | N157 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 133 | M133 | N153 | N104 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 134 | M134 | N154 | N105 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 135 | M135 | N155 | N106 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 136 | M136 | N156 | N107 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 137 | M137 | N157 | N108 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 138 | M138 | N136 | N169 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |

RISA-2D Version 17.0.1 [Z:I........|Project DocsICalcsIFirst Base Frames.r2d]
Page 8

## lırisA Company : Larson Engineering Inc $\begin{array}{ll}\text { Designer } & \text { MK } \\ \text { Jon Number } & \text { MK } \\ \text { 21210330.000 } \\ \text { Model Name } & \text { : Hamlin Middle School }\end{array}$

Member Primary Data (Continued)

|  | Label | I Joint | $J$ Joint | Rotate(deg) | Section/Shape | Type | Design List | Material | Design Rules |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 139 | M139 | N138 | N170 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 140 | M140 | N140 | N221 | 180 | L3 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 141 | M141 | N169 | N166 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 142 | M142 | N170 | N167 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 143 | M143 | N171 | N168 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 144 | M144 | N166 | N158 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 145 | M145 | N167 | N159 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 146 | M146 | N168 | N160 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 147 | M147 | N158 | N109 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 148 | M148 | N159 | N110 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 149 | M149 | N160 | N111 | 180 | L3 3 2x0. 1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 150 | M150 | N144 | N142 |  | C $4 \times 1.5$ | Beam | AA Channel | 6061-T6 W | Typical |
| 151 | M151 | N143 | N141 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 152 | M152 | N145 | N230 |  | C4×1.5 UW | Beam | AA Channel | 6061-T6 | Typical |
| 153 | M153 | N148 | N100 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 154 | M154 | N152 | N102 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 155 | M155 | N123 | N189 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 156 | M156 | N157 | N107 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 157 | M157 | N165 | N156 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 158 | M158 | N133 | N191 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 159 | M159 | N160 | N110 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 160 | M160 | N168 | N159 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 161 | M161 | N171 | N167 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 162 | M162 | N229 | N170 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 163 | M163 | N146 | N147 |  | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 164 | M164 | N97 | N98 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 165 | M165 | N99 | N103 |  | L3×2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 166 | M166 | N147 | N97 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 167 | M167 | N114 | N146 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 168 | M168 | N8 | N12 |  | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 169 | M169 | N66 | N70 |  | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 170 | M170 | N5 | N7 |  | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 171 | M171 | N65 | N6 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 172 | M172 | N31 | N64 |  | L1.5×1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 173 | M173 | N186 | N69 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 174 | M174 | N188 | N82 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 175 | M175 | N190 | N151 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 176 | M176 | N192 | N164 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 177 | M177 | N185 | N186 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 178 | M178 | N187 | N188 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 179 | M179 | N189 | N190 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 180 | M180 | N191 | N192 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 181 | M181 | N193 | N194 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 182 | M182 | N194 | N22 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 183 | M183 | N195 | N196 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 184 | M184 | N196 | N197 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 185 | M185 | N197 | N198 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 186 | M186 | N198 | N199 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 187 | M187 | N199 | N200 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 188 | M188 | N200 | N201 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 189 | M189 | N201 | N202 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 190 | M190 | N202 | N17 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 191 | M191 | N203 | N204 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 192 | M192 | N204 | N205 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 193 | M193 | N205 | N206 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 194 | M194 | N206 | N20 |  | L3 $2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 195 | M195 | N207 | N208 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |

RISA-2D Version 17.0.1 [Z:I.......|Project DocslCalcs|First Base Frames.r2d]


Member Primary Data (Continued)

|  | Label | I Joint | $J$ Joint | Rotate(deg) | Section/Shape | Type | Design List | Material | Design Rules |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 196 | M196 | N208 | N209 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 197 | M197 | N209 | N210 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 198 | M198 | N210 | N211 |  | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 199 | M199 | N211 | N212 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 200 | M200 | N212 | N213 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 201 | M201 | N213 | N214 |  | L3x2×0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 202 | M202 | N214 | N108 |  | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 203 | M203 | N215 | N216 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 204 | M204 | N216 | N217 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 205 | M205 | N217 | N218 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 206 | M206 | N218 | N111 |  | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 207 | M207 | N219 | N226 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 208 | M208 | N220 | N89 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 209 | M209 | N221 | N222 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 210 | M210 | N223 | N224 | 180 | L3x2×0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 211 | M211 | N224 | N171 | 180 | L3x2×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 212 | M212 | N54 | N225 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 213 | M213 | N55 | N225 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 214 | M214 | N226 | N227 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 215 | M215 | N227 | N220 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 216 | M216 | N228 | N61 |  | C4x1.5 | Beam | AA Channel | 6061-T6 W | Typical |
| 217 | M217 | N137 | N229 |  | L2 $2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 218 | M218 | N138 | N229 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 219 | M219 | N222 | N223 | 180 | L3x2×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 220 | M220 | N230 | N144 |  | C4×1.5 | Beam | AA Channel | 6061-T6 W | Typical |


|  | Label | 1 Release | J Release | 1 Offset[in] | J Offset[in] | T/C Only | Physical | том | Inactive |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 |  |  |  |  |  | Yes |  |  |
| 2 | M2 |  |  |  |  |  | Yes |  |  |
| 3 | M3 |  |  |  |  |  | Yes |  |  |
| 4 | M4 |  |  |  |  |  | Yes |  |  |
| 5 | M5 |  |  |  |  |  | Yes |  |  |
| 6 | M6 |  |  |  |  |  | Yes |  |  |
| 7 | M7 |  |  |  |  |  | Yes |  |  |
| 8 | M8 |  |  |  |  |  | Yes |  |  |
| 9 | M9 |  |  |  |  |  | Yes |  |  |
| 10 | M10 | PIN |  |  |  |  | Yes |  |  |
| 11 | M11 | PIN | PIN |  |  |  | Yes |  |  |
| 12 | M12 | PIN | PIN |  |  |  | Yes |  |  |
| 13 | M13 | PIN | PIN |  |  |  | Yes |  |  |
| 14 | M14 | PIN | PIN |  |  |  | Yes |  |  |
| 15 | M15 | PIN | PIN |  |  |  | Yes |  |  |
| 16 | M16 | PIN | PIN |  |  |  | Yes |  |  |
| 17 | M17 | PIN | PIN |  |  |  | Yes |  |  |
| 18 | M18 | PIN | PIN |  |  |  | Yes |  |  |
| 19 | M19 | PIN | PIN |  |  |  | Yes |  |  |
| 20 | M20 | PIN | PIN |  |  |  | Yes |  |  |
| 21 | M21 | PIN | PIN |  |  |  | Yes |  |  |
| 22 | M22 | PIN | PIN |  |  |  | Yes |  |  |
| 23 | M23 | PIN | PIN |  |  |  | Yes |  |  |
| 24 | M24 | PIN | PIN |  |  |  | Yes |  |  |
| 25 | M25 | PIN | PIN |  |  |  | Yes |  |  |
| 26 | M26 | PIN | PIN |  |  |  | Yes |  |  |
| 27 | M27 | PIN | PIN |  |  |  | Yes |  |  |

- 

Member Advanced Data (Continued)

|  | Label | I Release | J Release | 1 Offset[in] | J Offset[in] | T/C Only | Physical | том | Inactive |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | M28 | PIN | PIN |  |  |  | Yes |  |  |
| 29 | M29 | PIN | PIN |  |  |  | Yes |  |  |
| 30 | M30 | PIN | PIN |  |  |  | Yes |  |  |
| 31 | M31 | PIN | PIN |  |  |  | Yes |  |  |
| 32 | M32 | PIN | PIN |  |  |  | Yes |  |  |
| 33 | M33 | PIN | PIN |  |  |  | Yes |  |  |
| 34 | M34 | PIN | PIN |  |  |  | Yes |  |  |
| 35 | M35 | PIN | PIN |  |  |  | Yes |  |  |
| 36 | M36 | PIN | PIN |  |  |  | Yes |  |  |
| 37 | M37 | PIN | PIN |  |  |  | Yes |  |  |
| 38 | M38 | PIN | PIN |  |  |  | Yes |  |  |
| 39 | M39 | PIN | PIN |  |  |  | Yes |  |  |
| 40 | M40 | PIN | PIN |  |  |  | Yes |  |  |
| 41 | M41 | PIN | PIN |  |  |  | Yes |  |  |
| 42 | M42 | PIN | PIN |  |  |  | Yes |  |  |
| 43 | M43 | PIN | PIN |  |  |  | Yes |  |  |
| 44 | M44 | PIN | PIN |  |  |  | Yes |  |  |
| 45 | M45 | PIN | PIN |  |  |  | Yes |  |  |
| 46 | M46 | PIN | PIN |  |  |  | Yes |  |  |
| 47 | M47 | PIN | PIN |  |  |  | Yes |  |  |
| 48 | M48 | PIN | PIN |  |  |  | Yes |  |  |
| 49 | M49 | PIN | PIN |  |  |  | Yes |  |  |
| 50 | M50 | PIN | PIN |  |  |  | Yes |  |  |
| 51 | M51 | PIN | PIN |  |  |  | Yes |  |  |
| 52 | M52 | PIN | PIN |  |  |  | Yes |  |  |
| 53 | M53 | PIN | PIN |  |  |  | Yes |  |  |
| 54 | M54 | PIN | PIN |  |  |  | Yes |  |  |
| 55 | M55 | PIN | PIN |  |  |  | Yes |  |  |
| 56 | M56 | PIN | PIN |  |  |  | Yes |  |  |
| 57 | M57 | PIN | PIN |  |  |  | Yes |  |  |
| 58 | M58 | PIN | PIN |  |  |  | Yes |  |  |
| 59 | M59 | PIN | PIN |  |  |  | Yes |  |  |
| 60 | M60 | PIN | PIN |  |  |  | Yes |  |  |
| 61 | M61 | PIN | PIN |  |  |  | Yes |  |  |
| 62 | M62 | PIN | PIN |  |  |  | Yes |  |  |
| 63 | M63 |  |  |  |  |  | Yes |  |  |
| 64 | M64 | PIN | PIN |  |  |  | Yes |  |  |
| 65 | M65 | PIN | PIN |  |  |  | Yes |  |  |
| 66 | M66 | PIN | PIN |  |  |  | Yes |  |  |
| 67 | M67 | PIN | PIN |  |  |  | Yes |  |  |
| 68 | M68 | PIN | PIN |  |  |  | Yes |  |  |
| 69 | M69 | PIN | PIN |  |  |  | Yes |  |  |
| 70 | M70 | PIN | PIN |  |  |  | Yes |  |  |
| 71 | M71 | PIN | PIN |  |  |  | Yes |  |  |
| 72 | M72 | PIN | PIN |  |  |  | Yes |  |  |
| 73 | M73 |  | PIN |  |  |  | Yes |  |  |
| 74 | M74 | PIN | PIN |  |  |  | Yes |  |  |
| 75 | M75 |  |  |  |  |  | Yes |  |  |
| 76 | M76 | PIN | PIN |  |  |  | Yes |  |  |
| 77 | M77 | PIN | PIN |  |  |  | Yes |  |  |
| 78 | M78 | PIN | PIN |  |  |  | Yes |  |  |
| 79 | M79 | PIN | PIN |  |  |  | Yes |  |  |
| 80 | M80 | PIN | PIN |  |  |  | Yes |  |  |
| 81 | M81 | PIN | PIN |  |  |  | Yes |  |  |
| 82 | M82 | PIN | PIN |  |  |  | Yes |  |  |
| 83 | M83 | PIN | PIN |  |  |  | Yes |  |  |
| 84 | M84 | PIN | PIN |  |  |  | Yes |  |  |



Member Advanced Data (Continued)

|  | Label | I Release | J Release | 1 Offset[in] | J Offsetin] | T/C Only | Physical | том | Inactive |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 85 | M85 | PIN | PIN |  |  |  | Yes |  |  |
| 86 | M86 | PIN | PIN |  |  |  | Yes |  |  |
| 87 | M87 | PIN | PIN |  |  |  | Yes |  |  |
| 88 | M88 |  |  |  |  |  | Yes |  |  |
| 89 | M89 |  |  |  |  |  | Yes |  |  |
| 90 | M90 |  |  |  |  |  | Yes |  |  |
| 91 | M91 |  |  |  |  |  | Yes |  |  |
| 92 | M92 |  |  |  |  |  | Yes |  |  |
| 93 | M93 |  |  |  |  |  | Yes |  |  |
| 94 | M94 |  |  |  |  |  | Yes |  |  |
| 95 | M95 |  |  |  |  |  | Yes |  |  |
| 96 | M96 |  | PIN |  |  |  | Yes |  |  |
| 97 | M97 | PIN | PIN |  |  |  | Yes |  |  |
| 98 | M98 | PIN | PIN |  |  |  | Yes |  |  |
| 99 | M99 | PIN | PIN |  |  |  | Yes |  |  |
| 100 | M100 | PIN | PIN |  |  |  | Yes |  |  |
| 101 | M101 | PIN | PIN |  |  |  | Yes |  |  |
| 102 | M102 | PIN | PIN |  |  |  | Yes |  |  |
| 103 | M103 | PIN | PIN |  |  |  | Yes |  |  |
| 104 | M104 | PIN | PIN |  |  |  | Yes |  |  |
| 105 | M105 | PIN | PIN |  |  |  | Yes |  |  |
| 106 | M106 | PIN | PIN |  |  |  | Yes |  |  |
| 107 | M107 | PIN | PIN |  |  |  | Yes |  |  |
| 108 | M108 | PIN | PIN |  |  |  | Yes |  |  |
| 109 | M109 | PIN | PIN |  |  |  | Yes |  |  |
| 110 | M110 | PIN | PIN |  |  |  | Yes |  |  |
| 111 | M111 | PIN | PIN |  |  |  | Yes |  |  |
| 112 | M112 | PIN | PIN |  |  |  | Yes |  |  |
| 113 | M113 | PIN | PIN |  |  |  | Yes |  |  |
| 114 | M114 | PIN | PIN |  |  |  | Yes |  |  |
| 115 | M115 | PIN | PIN |  |  |  | Yes |  |  |
| 116 | M116 | PIN | PIN |  |  |  | Yes |  |  |
| 117 | M117 | PIN | PIN |  |  |  | Yes |  |  |
| 118 | M118 | PIN | PIN |  |  |  | Yes |  |  |
| 119 | M119 | PIN | PIN |  |  |  | Yes |  |  |
| 120 | M120 | PIN | PIN |  |  |  | Yes |  |  |
| 121 | M121 | PIN | PIN |  |  |  | Yes |  |  |
| 122 | M122 | PIN | PIN |  |  |  | Yes |  |  |
| 123 | M123 | PIN | PIN |  |  |  | Yes |  |  |
| 124 | M124 | PIN | PIN |  |  |  | Yes |  |  |
| 125 | M125 | PIN | PIN |  |  |  | Yes |  |  |
| 126 | M126 | PIN | PIN |  |  |  | Yes |  |  |
| 127 | M127 | PIN | PIN |  |  |  | Yes |  |  |
| 128 | M128 | PIN | PIN |  |  |  | Yes |  |  |
| 129 | M129 | PIN | PIN |  |  |  | Yes |  |  |
| 130 | M130 | PIN | PIN |  |  |  | Yes |  |  |
| 131 | M131 | PIN | PIN |  |  |  | Yes |  |  |
| 132 | M132 | PIN | PIN |  |  |  | Yes |  |  |
| 133 | M133 | PIN | PIN |  |  |  | Yes |  |  |
| 134 | M134 | PIN | PIN |  |  |  | Yes |  |  |
| 135 | M135 | PIN | PIN |  |  |  | Yes |  |  |
| 136 | M136 | PIN | PIN |  |  |  | Yes |  |  |
| 137 | M137 | PIN | PIN |  |  |  | Yes |  |  |
| 138 | M138 | PIN | PIN |  |  |  | Yes |  |  |
| 139 | M139 | PIN | PIN |  |  |  | Yes |  |  |
| 140 | M140 |  |  |  |  |  | Yes |  |  |
| 141 | M141 | PIN | PIN |  |  |  | Yes |  |  |



Apr 30, 2021
4:24 PM


Member Advanced Data (Continued)

|  | Label | I Release | J Release | 1 Offset[in] | J Offset[in] | T/C Only | Physical | том | Inactive |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 142 | M142 | PIN | PIN |  |  |  | Yes |  |  |
| 143 | M143 | PIN | PIN |  |  |  | Yes |  |  |
| 144 | M144 | PIN | PIN |  |  |  | Yes |  |  |
| 145 | M145 | PIN | PIN |  |  |  | Yes |  |  |
| 146 | M146 | PIN | PIN |  |  |  | Yes |  |  |
| 147 | M147 | PIN | PIN |  |  |  | Yes |  |  |
| 148 | M148 | PIN | PIN |  |  |  | Yes |  |  |
| 149 | M149 | PIN | PIN |  |  |  | Yes |  |  |
| 150 | M150 |  | PIN |  |  |  | Yes |  |  |
| 151 | M151 | PIN | PIN |  |  |  | Yes |  |  |
| 152 | M152 |  |  |  |  |  | Yes |  |  |
| 153 | M153 | PIN | PIN |  |  |  | Yes |  |  |
| 154 | M154 | PIN | PIN |  |  |  | Yes |  |  |
| 155 | M155 | PIN | PIN |  |  |  | Yes |  |  |
| 156 | M156 | PIN | PIN |  |  |  | Yes |  |  |
| 157 | M157 | PIN | PIN |  |  |  | Yes |  |  |
| 158 | M158 | PIN | PIN |  |  |  | Yes |  |  |
| 159 | M159 | PIN | PIN |  |  |  | Yes |  |  |
| 160 | M160 | PIN | PIN |  |  |  | Yes |  |  |
| 161 | M161 | PIN | PIN |  |  |  | Yes |  |  |
| 162 | M162 | PIN | PIN |  |  |  | Yes |  |  |
| 163 | M163 |  |  |  |  |  | Yes |  |  |
| 164 | M164 |  |  |  |  |  | Yes |  |  |
| 165 | M165 |  |  |  |  |  | Yes |  |  |
| 166 | M166 | PIN | PIN |  |  |  | Yes |  |  |
| 167 | M167 | PIN | PIN |  |  |  | Yes |  |  |
| 168 | M168 |  |  |  |  |  | Yes |  |  |
| 169 | M169 |  |  |  |  |  | Yes |  |  |
| 170 | M170 |  |  |  |  |  | Yes |  |  |
| 171 | M171 | PIN | PIN |  |  |  | Yes |  |  |
| 172 | M172 | PIN | PIN |  |  |  | Yes |  |  |
| 173 | M173 | PIN | PIN |  |  |  | Yes |  |  |
| 174 | M174 | PIN | PIN |  |  |  | Yes |  |  |
| 175 | M175 | PIN | PIN |  |  |  | Yes |  |  |
| 176 | M176 | PIN | PIN |  |  |  | Yes |  |  |
| 177 | M177 | PIN | PIN |  |  |  | Yes |  |  |
| 178 | M178 | PIN | PIN |  |  |  | Yes |  |  |
| 179 | M179 | PIN | PIN |  |  |  | Yes |  |  |
| 180 | M180 | PIN | PIN |  |  |  | Yes |  |  |
| 181 | M181 |  |  |  |  |  | Yes |  |  |
| 182 | M182 |  | PIN |  |  |  | Yes |  |  |
| 183 | M183 |  |  |  |  |  | Yes |  |  |
| 184 | M184 |  |  |  |  |  | Yes |  |  |
| 185 | M185 |  |  |  |  |  | Yes |  |  |
| 186 | M186 |  |  |  |  |  | Yes |  |  |
| 187 | M187 |  |  |  |  |  | Yes |  |  |
| 188 | M188 |  |  |  |  |  | Yes |  |  |
| 189 | M189 |  |  |  |  |  | Yes |  |  |
| 190 | M190 |  |  |  |  |  | Yes |  |  |
| 191 | M191 |  |  |  |  |  | Yes |  |  |
| 192 | M192 |  |  |  |  |  | Yes |  |  |
| 193 | M193 |  |  |  |  |  | Yes |  |  |
| 194 | M194 |  |  |  |  |  | Yes |  |  |
| 195 | M195 |  |  |  |  |  | Yes |  |  |
| 196 | M196 |  |  |  |  |  | Yes |  |  |
| 197 | M197 |  |  |  |  |  | Yes |  |  |
| 198 | M198 |  |  |  |  |  | Yes |  |  |



Member Advanced Data (Continued)

|  | Label | 1 Release | J Release | 1 Offset[in] | J Offsetin] | T/C Only | Physical | том | Inactive |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 199 | M199 |  |  |  |  |  | Yes |  |  |
| 200 | M200 |  |  |  |  |  | Yes |  |  |
| 201 | M201 |  |  |  |  |  | Yes |  |  |
| 202 | M202 |  |  |  |  |  | Yes |  |  |
| 203 | M203 |  |  |  |  |  | Yes |  |  |
| 204 | M204 |  |  |  |  |  | Yes |  |  |
| 205 | M205 |  |  |  |  |  | Yes |  |  |
| 206 | M206 |  |  |  |  |  | Yes |  |  |
| 207 | M207 |  |  |  |  |  | Yes |  |  |
| 208 | M208 |  | PIN |  |  |  | Yes |  |  |
| 209 | M209 |  |  |  |  |  | Yes |  |  |
| 210 | M210 |  |  |  |  |  | Yes |  |  |
| 211 | M211 |  | PIN |  |  |  | Yes |  |  |
| 212 | M212 | PIN | PIN |  |  |  | Yes |  |  |
| 213 | M213 | PIN | PIN |  |  |  | Yes |  |  |
| 214 | M214 |  |  |  |  |  | Yes |  |  |
| 215 | M215 |  |  |  |  |  | Yes |  |  |
| 216 | M216 |  |  |  |  |  | Yes |  |  |
| 217 | M217 | PIN | PIN |  |  |  | Yes |  |  |
| 218 | M218 | PIN | PIN |  |  |  | Yes |  |  |
| 219 | M219 |  |  |  |  |  | Yes |  |  |
| 220 | M220 |  |  |  |  |  | Yes |  |  |


RISA-2D Version 17.0.1 [Z:I........|Project Docs\Calcs|First Base Frames.r2d]
Page 14

|  | Company Designer Job Number Model Name | Larson Engineering Inc MK 21210330.000 Hamlin Middle School | Apr 30, 2021 4:24 PM Checked By: |
| :---: | :---: | :---: | :---: |

Aluminum Design Parameters (Continued)

|  | Label | Shape | Length $[$ ff] | Lb-out[ff] | Lb-inf(ti] | Lcomp top [ff] | Lcomp botffit | L-torqu. | K-out | K-in | Cb | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31 | M31 | L2x2×0.1875 | 2.67 |  |  | Lb out |  |  |  |  |  | Lateral |
| 32 | M32 | L2×2×0.1875 | 2.67 |  |  | Lb out |  |  |  |  |  | Lateral |
| 33 | M33 | L3×2×0.1875 | 2.67 |  |  | Lb out |  |  |  |  |  | Lateral |
| 34 | M34 | L2 $2 \times 2 \times 0.1875$ | 3.188 |  |  | Lb out |  |  |  |  |  | Lateral |
| 35 | M35 | L2 $2 \times 2 \times 0.1875$ | 3.858 |  |  | Lb out |  |  |  |  |  | Lateral |
| 36 | M36 | L2 $2 \times 2 \times 0.1875$ | 4.528 |  |  | Lb out |  |  |  |  |  | Lateral |
| 37 | M37 | L2 $2 \times 2 \times 0.1875$ | 5.188 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 38 | M38 | L3×2×0.1875 | 5.858 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 39 | M39 | L2×2×0.1875 | 2.688 |  |  | Lb out |  |  |  |  |  | Lateral |
| 40 | M40 | L3×2×0.1875 | 2.688 |  |  | Lb out |  |  |  |  |  | Lateral |
| 41 | M41 | L2x2×0.1875 | 2.83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 42 | M42 | L2 $2 \times 2 \times 0.1875$ | 2.83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 43 | M43 | L2 $2 \times 2 \times 0.1875$ | 2.83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 44 | M44 | L2 $2 \times 2 \times 0.1875$ | 2.83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 45 | M45 | L3×2×0.1875 | 2.83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 46 | M46 | L2 $2 \times 2 \times 0.1875$ | 3.198 |  |  | Lb out |  |  |  |  |  | Lateral |
| 47 | M47 | L2 $2 \times 2 \times 0.1875$ | 3.858 |  |  | Lb out |  |  |  |  |  | Lateral |
| 48 | M48 | L2×2×0.1875 | 4.528 |  |  | Lb out |  |  |  |  |  | Lateral |
| 49 | M49 | L2 $2 \times 2 \times 0.1875$ | 5.198 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 50 | M50 | L3×2×0.1875 | 5.858 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 51 | M51 | L2 $2 \times 2 \times 0.1875$ | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 52 | M52 | L2×2×0.1875 | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 53 | M53 | L2×2×0.1875 | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 54 | M54 | L2 $2 \times 2 \times 0.1875$ | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 55 | M55 | L3×2×0.1875 | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 56 | M56 | L2 $2 \times 2 \times 0.1875$ | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 57 | M57 | L2 $2 \times 2 \times 0.1875$ | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 58 | M58 | L2 $2 \times 2 \times 0.1875$ | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 59 | M59 | L2x2×0.1875 | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 60 | M60 | L3×2×0.1875 | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 61 | M61 | L2×2×0.1875 | 3.208 |  |  | Lb out |  |  |  |  |  | Lateral |
| 62 | M62 | L2 $2 \times 2 \times 0.1875$ | 3.878 |  |  | Lb out |  |  |  |  |  | Lateral |
| 63 | M63 | L3×2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 64 | M64 | L2 $2 \times 2 \times 0.1875$ | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 65 | M65 | L2x2×0.1875 | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 66 | M66 | L3×2×0.1875 | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 67 | M67 | L2 $2 \times 2 \times 0.1875$ | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 68 | M68 | L2×2×0.1875 | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 69 | M69 | L3×2×0.1875 | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 70 | M70 | L2 $2 \times 2 \times 0.1875$ | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 71 | M71 | L2 $2 \times 2 \times 0.1875$ | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 72 | M72 | L3×2×0.1875 | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 73 | M73 | C4x1.5 | 1.174 |  |  | Lb out |  |  |  |  |  | Lateral |
| 74 | M74 | L2 $2 \times 2 \times 0.1875$ | . 83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 75 | M75 | C4x1.5 UW | 4.25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 76 | M76 | L2 $2 \times 2 \times 0.1875$ | 2.688 |  |  | Lb out |  |  |  |  |  | Lateral |
| 77 | M77 | L1.5x1.5×0.... | 3.927 |  |  | Lb out |  |  |  |  |  | Lateral |
| 78 | M78 | L1.5x1.5×0.... | 3.465 |  |  | Lb out |  |  |  |  |  | Lateral |
| 79 | M79 | L1.5x1.5×0.... | 3.465 |  |  | Lb out |  |  |  |  |  | Lateral |
| 80 | M80 | L1.5x1.5x0.. | 3.35 |  |  | Lb out |  |  |  |  |  | Lateral |
| 81 | M81 | L1.5x1.5x0.... | 3.672 |  |  | Lb out |  |  |  |  |  | Lateral |
| 82 | M82 | L1.5x1.5×0.... | 3.672 |  |  | Lb out |  |  |  |  |  | Lateral |
| 83 | M83 | L1.5x1.5×0... | 3.358 |  |  | Lb out |  |  |  |  |  | Lateral |
| 84 | M84 | L1.5x1.5×0.... | 3.74 |  |  | Lb out |  |  |  |  |  | Lateral |
| 85 | M85 | L1.5x1.5×0.... | 3.74 |  |  | Lb out |  |  |  |  |  | Lateral |
| 86 | M86 | L1.5x1.5x0. | 3.74 |  |  | Lb out |  |  |  |  |  | Lateral |
| 87 | M87 | L2 $2 \times 2 \times 0.1875$ | 3.78 |  |  | Lb out |  |  |  |  |  | Lateral |



Aluminum Design Parameters (Continued)

|  | Label | Shape | Length $[$ [t] | Lb-out[ff] | Lb-in[ft] | Lcomp top [ft] | Lcomp botffit | L-torgu. | K-out | K-in | Cb | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 88 | M88 | L3x2×0.1875 | . 25 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 89 | M89 | L3×2×0.1875 | 25 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 90 | M90 | L3×2×0.1875 | 8 |  |  | Lb out |  |  |  |  |  | Lateral |
| 91 | M91 | L3×2×0.1875 | 8 |  |  | Lb out |  |  |  |  |  | Lateral |
| 92 | M92 | L3×2×0.1875 | 4 |  |  | Lb out |  |  |  |  |  | Lateral |
| 93 | M93 | L3×2×0.1875 | 8 |  |  | Lb out |  |  |  |  |  | Lateral |
| 94 | M94 | L3×2×0.1875 | 4 |  |  | Lb out |  |  |  |  |  | Lateral |
| 95 | M95 | L3×2×0.1875 | 4 |  |  | Lb out |  |  |  |  |  | Lateral |
| 96 | M96 | AL6 | 6 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 97 | M97 | L3x2×0.1875 |  |  |  | Lb out |  |  |  |  |  | Lateral |
| 98 | M98 | L3×2×0.1875 | , |  |  | Lb out |  |  |  |  |  | Lateral |
| 99 | M99 | L3x2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 100 | M100 | L3×2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 101 | M101 | L3×2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 102 | M102 | L3×2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 103 | M103 | L3×2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 104 | M104 | L3×2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 105 | M105 | L3×2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 106 | M106 | L3×2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 107 | M107 | L3x2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 108 | M108 | L3×2×0.1875 | , |  |  | Lb out |  |  |  |  |  | Lateral |
| 109 | M109 | L2 $2 \times 2 \times 0.1875$ | 2.687 |  |  | Lb out |  |  |  |  |  | Lateral |
| 110 | M110 | L3×2×0.1875 | 2.687 |  |  | Lb out |  |  |  |  |  | Lateral |
| 111 | M111 | L2 $2 \times 2 \times 0.1875$ | 3.216 |  |  | Lb out |  |  |  |  |  | Lateral |
| 112 | M112 | L2x2x0.1875 | 3.886 |  |  | Lb out |  |  |  |  |  | Lateral |
| 113 | M113 | L2×2×0.1875 | 4.555 |  |  | Lb out |  |  |  |  |  | Lateral |
| 114 | M114 | L2 $2 \times 2 \times 0.1875$ | 5.216 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 115 | M115 | L3x2×0.1875 | 5.886 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 116 | M116 | L2 $2 \times 2 \times 0.1875$ | 2.688 |  |  | Lb out |  |  |  |  |  | Lateral |
| 117 | M117 | L3×2×0.1875 | 2.688 |  |  | Lb out |  |  |  |  |  | Lateral |
| 118 | M118 | L2×2×0.1875 | 2.819 |  |  | Lb out |  |  |  |  |  | Lateral |
| 119 | M119 | L2x2×0.1875 | 2.819 |  |  | Lb out |  |  |  |  |  | Lateral |
| 120 | M120 | L2 $2 \times 2 \times 0.1875$ | 2.819 |  |  | Lb out |  |  |  |  |  | Lateral |
| 121 | M121 | L2x2×0.1875 | 2.819 |  |  | Lb out |  |  |  |  |  | Lateral |
| 122 | M122 | L3×2×0.1875 | 2.819 |  |  | Lb out |  |  |  |  |  | Lateral |
| 123 | M123 | L2x2×0.1875 | 3.214 |  |  | Lb out |  |  |  |  |  | Lateral |
| 124 | M124 | L2 $2 \times 2 \times 0.1875$ | 3.875 |  |  | Lb out |  |  |  |  |  | Lateral |
| 125 | M125 | L2 $2 \times 2 \times 0.1875$ | 4.545 |  |  | Lb out |  |  |  |  |  | Lateral |
| 126 | M126 | L2 $2 \times 2 \times 0.1875$ | 5.214 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 127 | M127 | L3×2×0.1875 | 5.875 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 128 | M128 | L2×2×0.1875 | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 129 | M129 | L2 $2 \times 2 \times 0.1875$ | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 130 | M130 | L2 $2 \times 2 \times 0.1875$ | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 131 | M131 | L2×2×0.1875 | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 132 | M132 | L3×2×0.1875 | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 133 | M133 | L2x2×0.1875 | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 134 | M134 | L2 $2 \times 2 \times 0.1875$ | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 135 | M135 | L2 $2 \times 2 \times 0.1875$ | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 136 | M136 | L2×2×0.1875 | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 137 | M137 | L3×2×0.1875 | 3.08 |  |  | Lb out |  |  |  |  |  | Lateral |
| 138 | M138 | L2×2×0.1875 | 3.225 |  |  | Lb out |  |  |  |  |  | Lateral |
| 139 | M139 | L2 $2 \times 2 \times 0.1875$ | 3.895 |  |  | Lb out |  |  |  |  |  | Lateral |
| 140 | M140 | L3x2×0.1875 | . 25 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 141 | M141 | L2x2×0.1875 | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 142 | M142 | L2 $2 \times 2 \times 0.1875$ | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 143 | M143 | L3x2×0.1875 | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 144 | M144 | L2x2×0.1875 | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |

RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcs|First Base Frames.r2d]
Page 16


Apr 30, 2021
4:24 PM
Checked By

## Aluminum Design Parameters (Continued)

|  | Label | Shape | Length $[$ (t) | Lb-outffl | Lb-in[ft] | Lcomp top[ft | Lcomp bot[ft | L-torgu. | K-out | K-in | Cb | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 145 | M145 | L2 $2 \times 2 \times 0.1875$ | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 146 | M146 | L3×2×0.1875 | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 147 | M147 | L2 $2 \times 2 \times 0.1875$ | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 148 | M148 | L2 $2 \times 2 \times 0.1875$ | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 149 | M149 | L3x2×0.1875 | 3.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 150 | M150 | C4×1.5 | 1.119 |  |  | Lb out |  |  |  |  |  | Lateral |
| 151 | M151 | L2 $2 \times 2 \times 0.1875$ | . 83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 152 | M152 | C4x1.5 UW | 4.25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 153 | M153 | L1.5x1.5×0... | 3.456 |  |  | Lb out |  |  |  |  |  | Lateral |
| 154 | M154 | L1.5x1.5×0... | 3.456 |  |  | Lb out |  |  |  |  |  | Lateral |
| 155 | M155 | L1.5×1.5×0... | 3.373 |  |  | Lb out |  |  |  |  |  | Lateral |
| 156 | M156 | L1.5x1.5×0... | 3.672 |  |  | Lb out |  |  |  |  |  | Lateral |
| 157 | M157 | L1.5×1.5×0.... | 3.672 |  |  | Lb out |  |  |  |  |  | Lateral |
| 158 | M158 | L1.5x1.5×0... | 3.372 |  |  | Lb out |  |  |  |  |  | Lateral |
| 159 | M159 | L1.5x1.5×0... | 3.74 |  |  | Lb out |  |  |  |  |  | Lateral |
| 160 | M160 | L1.5x1.5×0... | 3.74 |  |  | Lb out |  |  |  |  |  | Lateral |
| 161 | M161 | L1.5x1.5×0... | 3.74 |  |  | Lb out |  |  |  |  |  | Lateral |
| 162 | M162 | L2 $2 \times 2 \times 0.1875$ | 3.794 |  |  | Lb out |  |  |  |  |  | Lateral |
| 163 | M163 | L3×2x0.1875 | 2.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 164 | M164 | L3×2×0.1875 | 2.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 165 | M165 | L3×2×0.1875 | 8 |  |  | Lb out |  |  |  |  |  | Lateral |
| 166 | M166 | L1.5x1.5×0... | 3.448 |  |  | Lb out |  |  |  |  |  | Lateral |
| 167 | M167 | L1.5x1.5×0... | 3.448 |  |  | Lb out |  |  |  |  |  | Lateral |
| 168 | M168 | L3x2x0.1875 | 8 |  |  | Lb out |  |  |  |  |  | Lateral |
| 169 | M169 | L3x2x0.1875 | 8 |  |  | Lb out |  |  |  |  |  | Lateral |
| 170 | M170 | L3×2×0.1875 | 4.42 |  |  | Lb out |  |  |  |  |  | Lateral |
| 171 | M171 | L1.5x1.5×0... | 3.48 |  |  | Lb out |  |  |  |  |  | Lateral |
| 172 | M172 | L1.5x1.5×0... | 3.466 |  |  | Lb out |  |  |  |  |  | Lateral |
| 173 | M173 | L1.5x1.5×0.... | 3.202 |  |  | Lb out |  |  |  |  |  | Lateral |
| 174 | M174 | L1.5x1.5×0... | 3.202 |  |  | Lb out |  |  |  |  |  | Lateral |
| 175 | M175 | L1.5x1.5×0... | 3.202 |  |  | Lb out |  |  |  |  |  | Lateral |
| 176 | M176 | L1.5×1.5×0... | 3.202 |  |  | Lb out |  |  |  |  |  | Lateral |
| 177 | M177 | L2 $2 \times 2 \times 0.1875$ | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 178 | M178 | L2 $2 \times 2 \times 0.1875$ | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 179 | M179 | L2 $2 \times 2 \times 0.1875$ | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 180 | M180 | L2 $2 \times 2 \times 0.1875$ | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 181 | M181 | L3x2×0.187... | 2.29 |  |  | Lb out |  |  |  |  |  | Lateral |
| 182 | M182 | L3×2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 183 | M183 | L3x2x0.187... | 1.5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 184 | M184 | L3×2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 185 | M185 | L3x2×0.187... | 1.5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 186 | M186 | L3×2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 187 | M187 | L3x2×0.187... | 1.5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 188 | M188 | L3×2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 189 | M189 | L3x2x0.187... | 1.5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 190 | M190 | L3×2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 191 | M191 | L3x2×0.187... | 1.5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 192 | M192 | L3×2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 193 | M193 | L3x2×0.187... | 1.5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 194 | M194 | L3×2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 195 | M195 | L3x2×0.187... | 1.5 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 196 | M196 | L3×2×0.1875 | . 5 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 197 | M197 | L3x2x0.187... | 1.5 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 198 | M198 | L3×2×0.1875 | . 5 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 199 | M199 | L3x2x0.187... | 1.5 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 200 | M200 | L3 $3 \times 2 \times 0.1875$ | . 5 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 201 | M201 | L3x2×0.187... | 1.5 | Segment |  | Lb out |  |  |  |  |  | Lateral |



## Aluminum Design Parameters (Continued)

|  | Label | Shape | Length[ft | Lb-out[ffl | Lb-in[ft] | Lcomp topfit | Lcomp botffit | L-torau... | K-out | K-in | Cb | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 202 | M202 | L3x2×0.1875 | . 25 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 203 | M203 | L3x2x0.187... | 1.5 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 204 | M204 | L3x2×0.1875 | . 5 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 205 | M205 | L3x2×0.187... | 1.5 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 206 | M206 | L3x2×0.1875 | 25 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 207 | M207 | L3x2×0.187... | . 83 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 208 | M208 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 209 | M209 | L3x2×0.187... | 83 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 210 | M210 | L3x2×0.187... | 2.708 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 211 | M211 | L3x2×0.1875 | . 267 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 212 | M212 | L2x2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 213 | M213 | L1.5x1.5×0.... | 2.109 |  |  | Lb out |  |  |  |  |  | Lateral |
| 214 | M214 | L3x2×0.1875 | 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 215 | M215 | L3x2×0.187... | 2.708 |  |  | Lb out |  |  |  |  |  | Lateral |
| 216 | M216 | C4x1.5 | 75 |  |  | Lb out |  |  |  |  |  | Lateral |
| 217 | M217 | L2 $\times 2 \times 1.1875$ | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 218 | M218 | L1.5x1.5x0.. | 2.109 |  |  | Lb out |  |  |  |  |  | Lateral |
| 219 | M219 | L3x2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 220 | M220 | C4×1.5 | . 58 |  |  | Lb out |  |  |  |  |  | Lateral |


\section*{| Joint Loads and Enforced Displacements (BLC 4 : GUARD) |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Joint Label |  |  |  |  |  |  | L.D,M | Direction | Magnitudel(k,k-ft), (in,rad). (k*s^2/ft.). |}

Member Distributed Loads (BLC 1 : DL)


## |lirisA <br> Company Larson Engineering Inc <br> $\begin{array}{l:l}\text { Designer } & \text { MK } \\ \text { Job Number } & \\ \text { Model Name } & 21210330.000 \\ \text { Hamlin Middle }\end{array}$ <br> 21210330.000 Hamlin Middle School

Apr 30, 2021
4:24 PM
Check

Member Distributed Loads (BLC 1 : DL) (Continued)


## Member Distributed Loads (BLC 2: LL)

|  | Member Label | Direction | Start Magnitude[[l/ft, F, ksf] | End Magnitudelib/ft. | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M10 | Y | -600 | -600 | 0 | 0 |
| 2 | M11 | Y | -600 | -600 | 0 | 0 |
| 3 | M12 | Y | -600 | -600 | 0 | 0 |
| 4 | M13 | Y | -600 | -600 | 0 | 0 |
| 5 | M14 | Y | -600 | -600 | 0 | 0 |
| 6 | M15 | Y | -600 | -600 | 0 | 0 |
| 7 | M16 | Y | -600 | -600 | 0 | 0 |
| 8 | M17 | Y | -600 | -600 | 0 | 0 |
| 9 | M18 | Y | -600 | -600 | 0 | 0 |
| 10 | M19 | Y | -600 | -600 | 0 | 0 |
| 11 | M20 | Y | -600 | -600 | 0 | 0 |
| 12 | M21 | Y | -600 | -600 | 0 | 0 |
| 13 | M22 | Y | -600 | -600 | 0 | 0 |
| 14 | M23 | Y | -600 | -600 | 0 | 0 |
| 15 | M24 | Y | -600 | -600 | 0 | 0 |
| 16 | M25 | Y | -600 | -600 | 0 | 0 |
| 17 | M26 | Y | -600 | -600 | 0 | 0 |
| 18 | M96 | Y | -600 | -600 | 0 | 0 |
| 19 | M97 | Y | -600 | -600 | 0 | 0 |
| 20 | M98 | Y | -600 | -600 | 0 | 0 |
| 21 | M99 | Y | -600 | -600 | 0 | 0 |
| 22 | M100 | Y | -600 | -600 | 0 | 0 |
| 23 | M101 | Y | -600 | -600 | 0 | 0 |
| 24 | M102 | Y | -600 | -600 | 0 | 0 |
| 25 | M103 | Y | -600 | -600 | 0 | 0 |
| 26 | M104 | Y | -600 | -600 | 0 | 0 |
| 27 | M105 | Y | -600 | -600 | 0 | 0 |
| 28 | M106 | Y | -600 | -600 | 0 | 0 |
| 29 | M107 | Y | -600 | -600 | 0 | 0 |
| 30 | M108 | Y | -600 | -600 | 0 | 0 |
| 31 | M181 | Y | -600 | -600 | 0 | 0 |
| 32 | M182 | Y | -600 | -600 | 0 | . 25 |

## Member Distributed Loads (BLC 3:WL)




## Member Distributed Loads (BLC 3:WL) (Continued)

|  | Member Label | Direction | Start Magnitude[lib/t,F, ksf] | End Magnitude[Ib/tt. | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | M50 | X | 144 | 144 | 0 | . 66 |
| 15 | M61 | X | 144 | 144 | 0 | 66 |
| 16 | M62 | X | 144 | 144 | 0 | 66 |
| 17 | M63 | X | 144 | 144 | 0 | 0 |
| 18 | M111 | X | 144 | 144 | 0 | . 66 |
| 19 | M112 | X | 144 | 144 | 0 | 66 |
| 20 | M113 | X | 144 | 144 | 0 | 66 |
| 21 | M114 | X | 144 | 144 | 0 | 66 |
| 22 | M115 | X | 144 | 144 | 0 | 66 |
| 23 | M123 | X | 144 | 144 | 0 | . 66 |
| 24 | M124 | X | 144 | 144 | 0 | . 66 |
| 25 | M125 | X | 144 | 144 | 0 | 66 |
| 26 | M126 | X | 144 | 144 | 0 | 66 |
| 27 | M127 | X | 144 | 144 | 0 | . 66 |
| 28 | M138 | X | 144 | 144 | 0 | . 66 |
| 29 | M139 | X | 144 | 144 | 0 | . 66 |
| 30 | M140 | X | 144 | 144 | 0 | 0 |
| 31 | M207 | X | 144 | 144 | 0 | 41 |
| 32 | M209 | X | 144 | 144 | 0 | 41 |



## Load Combinations



Envelope Joint Reactions

(
Envelope Joint Reactions (Continued)

| Joint |  |  | X [k] | LC | $\mathrm{Y}[\mathrm{k}]$ | LC | Moment [k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 |  | min | -. 003 | 2 | -. 916 | 7 | 0 | 1 |
| 7 | N92 | max | . 035 | 3 | . 059 | 8 | 0 | 1 |
| 8 |  | min | -. 025 | 2 | -. 119 | 6 | 0 | 1 |
| 9 | N95 | max | . 133 | 7 | . 007 | 1 | 0 | 1 |
| 10 |  | min | -. 096 | 2 | -1.168 | 7 | 0 | 1 |
| 11 | N93 | max | . 076 | 7 | . 008 | , | 0 | 1 |
| 12 |  | min | -. 106 | 6 | -. 919 | 6 | 0 | 1 |
| 13 | N96 | max | . 079 | 7 | . 007 | 1 | 0 | 1 |
| 14 |  | min | -. 101 | 6 | -1.312 | 9 | 0 | 1 |
| 15 | N1 | max | 0 | 1 | . 921 | 1 | 0 | 1 |
| 16 |  | min | 0 | 1 | . 047 | 7 | 0 | 1 |
| 17 | N2 | max | 0 | 1 | 1.588 | 1 | 0 | 1 |
| 18 |  | min | 0 | 1 | 0 | 6 | 0 | 1 |
| 19 | N3 | max | 0 | 1 | 1.344 | 1 | 0 | 1 |
| 20 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 21 | N4 | max | 0 | 1 | 1.306 | 1 | 0 | 1 |
| 22 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |
| 23 | N5 | max | 0 | 1 | 1.246 | 1 | 0 | 1 |
| 24 |  | min | 0 | 1 | . 117 | 8 | 0 | 1 |
| 25 | N6 | max | 0 | 1 | 1.676 | 3 | 0 | 1 |
| 26 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 27 | N7 | max | 0 | 1 | 1.443 | 2 | 0 | 1 |
| 28 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |
| 29 | N8 | max | 0 | 1 | . 781 | 1 | 0 | 1 |
| 30 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 31 | N9 | max | 0 | 1 | 1.588 | 1 | 0 | 1 |
| 32 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |
| 33 | N10 | max | 0 | 1 | 1.34 | 1 | 0 | 1 |
| 34 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 35 | N11 | max | 0 | 1 | 1.864 | 3 | 0 | 1 |
| 36 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 37 | N12 | max | 0 | 1 | 1.511 | 2 | 0 | 1 |
| 38 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |
| 39 | N13 | max | 0 | 1 | 1.328 | 1 | 0 | 1 |
| 40 |  | min | 0 | 1 | . 087 | 7 | 0 | 1 |
| 41 | N14 | max | 0 | 1 | 1.332 | 1 | 0 | 1 |
| 42 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 43 | N15 | max | 0 | 1 | 1.353 | 1 | 0 | 1 |
| 44 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 45 | N16 | max | 0 | 1 | 1.955 | 3 | 0 | 1 |
| 46 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 47 | N17 | max | 0 | 1 | 1.735 | 2 | 0 | 1 |
| 48 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |
| 49 | N18 | max | 0 | 1 | 1.344 | 1 | 0 | 1 |
| 50 |  | min | 0 | 1 | . 263 | 7 | 0 | 1 |
| 51 | N19 | max | 0 | 1 | 1.621 | 3 |  | 1 |
| 52 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 53 | N20 | max | 0 | 1 | 1.736 | 8 | 0 | 1 |
| 54 |  | min | 0 | 1 | 0 | 3 |  | 1 |
| 55 | N97 | max | 0 | 1 | 2.932 | 1 | 0 | 1 |
| 56 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 57 | N98 | max | 0 | 1 | 776 | 2 |  | 1 |
| 58 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |
| 59 | N99 | max | 0 | 1 | . 753 | 1 | 0 | 1 |
| 60 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 61 | N100 | max | 0 | 1 | 1.559 | 1 | 0 | 1 |
| 62 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |




Envelope Joint Reactions (Continued)

| Joint |  |  | $\mathrm{X}[\mathrm{k}]$0 | LC | Y [k] | LC | Moment [ $k$-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 63 | N101 | max |  | 1 | 1.332 | 1 |  |  |
| 64 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 65 | N102 | max | 0 | 1 | 1.877 | 3 | 0 | 1 |
| 66 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 67 | N103 | max | 0 | 1 | 1.472 | 2 | 0 | 1 |
| 68 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |
| 69 | N104 | max | 0 | 1 | 1.328 | 1 | 0 | 1 |
| 70 |  | min | 0 | 1 | . 082 | 7 | 0 | 1 |
| 71 | N105 | max | 0 | 1 | 1.328 | 1 | 0 | 1 |
| 72 |  | min | 0 | 1 | . 052 | 7 | 0 | 1 |
| 73 | N106 | max | 0 | 1 | 1.344 | 1 | 0 | 1 |
| 74 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 75 | N107 | max | 0 | 1 | 1.961 | 3 | 0 | 1 |
| 76 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 77 | N108 | max | 0 | 1 | 1.729 | 2 | 0 | 1 |
| 78 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |
| 79 | N109 | max | 0 | 1 | 1.344 | 1 | 0 | 1 |
| 80 |  | min | 0 | 1 | . 257 | 7 | 0 | 1 |
| 81 | N110 | max | 0 | 1 | 1.622 | 3 | 0 | 1 |
| 82 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 83 | N111 | max | 0 | 1 | 1.672 | 8 | 0 | 1 |
| 84 |  | min | 0 | 1 | 0 | 3 | 0 | 1 |
| 85 | N172 | max | . 152 | 5 | . 008 | 1 | 0 | 1 |
| 86 |  | min | -. 218 | 6 | -. 464 | 6 | 0 | 1 |
| 87 | N173 | max | . 001 | 2 | . 009 | 1 | 0 | 1 |
| 88 |  | min | 0 | 5 | -. 051 | 6 | 0 | 1 |
| 89 | N174 | max | . 074 | 7 | . 008 | 1 | 0 | 1 |
| 90 |  | min | -. 09 | 6 | -. 833 | 8 | 0 | 1 |
| 91 | N175 | max | . 131 | 6 | . 006 | 1 | 0 | 1 |
| 92 |  | min | -. 044 | 7 | -. 809 | 7 | 0 | 1 |
| 93 | N176 | max | . 105 | 3 | . 006 | 1 | 0 | 1 |
| 94 |  | min | -. 079 | 4 | -1.125 | 7 | 0 | 1 |
| 95 | N177 | max | . 077 | 7 | . 007 | 1 | 0 | 1 |
| 96 |  | min | -. 086 | 6 | -1.316 | 9 | 0 | 1 |
| 97 | N178 | max | . 203 | 7 | . 157 | 7 | 0 | 1 |
| 98 |  | min | -. 215 | 4 | -. 315 | 6 | 0 | 1 |
| 99 | N179 | max | 0 | 2 | 169 | 6 | 0 | 1 |
| 100 |  | min | 0 | 3 | -. 291 | 7 | 0 | 1 |
| 101 | N180 | max | . 126 | 5 | . 035 | 8 | 0 | 1 |
| 102 |  | min | -. 14 | 6 | -. 295 | 7 | 0 | 1 |
| 103 | N181 | max | . 063 | 3 | . 066 | 7 | 0 | 1 |
| 104 |  | min | -. 049 | 4 | -. 368 | 6 |  | 1 |
| 105 | N182 | max | . 129 | 7 | . 008 | 1 | 0 | 1 |
| 106 |  | min | -. 14 | 6 | -. 441 | 6 | 0 | 1 |
| 107 | N183 | max | . 145 | 5 | . 007 | 1 |  | 1 |
| 108 |  | min | -. 14 | 4 | -. 38 | 6 | 0 | 1 |
| 109 | N184 | max | . 13 | 7 | . 009 | 1 | 0 | 1 |
| 110 |  | min | -. 139 | 6 | -. 547 | 7 | 0 | 1 |
| 111 | Totals: | max | 1.769 | 5 | 46.01 | 1 |  |  |
| 112 |  | min | -1.769 | 4 | 2.842 | 7 |  |  |

## Envelope Member Section Forces

$\qquad$
RISA-2D Version 17.0.1 [Z:I.......IProject Docs\Calcs|First Base Frames.r2d]
Page 22
(
Envelope Member Section Forces (Continued)


M A A $\begin{aligned} & \text { Company } \\ & \text { Designer } \\ & \vdots \\ & \text { MK }\end{aligned}$ $\begin{array}{ll}\text { Dempigner } & \vdots \text { MK } \\ \text { Darson Engineering Inc } \\ \text { Job Number } & 21210330.000 \\ \text { Model Name } & \text { Hamlin Middle School }\end{array}$

Envelope Member Section Forces (Continued)


## 

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment\|k-f| | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 117 |  | 4 | max | . 092 | 4 | -. 018 | 7 | -. 014 | 6 |
| 118 |  |  | min | -. 092 | 5 | -. 331 | 1 | -. 248 | 1 |
| 119 |  | 5 | max | . 092 | 4 | -. 037 | 7 | 0 | 1 |
| 120 |  |  | min | -. 092 | 5 | -. 661 | 1 | 0 | 1 |
| 121 | M13 | 1 | max | . 031 | 5 | . 661 | 1 | 0 | 1 |
| 122 |  |  | min | -. 025 | 4 | . 037 | 6 | 0 | 1 |
| 123 |  | 2 | max | . 031 | 5 | . 331 | 1 | -. 014 | 6 |
| 124 |  |  | min | -. 025 | 4 | . 018 | 6 | -. 248 | 1 |
| 125 |  | 3 | max | . 031 | 5 | 0 | 1 | -. 018 | 6 |
| 126 |  |  | min | -. 025 | 4 | 0 | 1 | -. 331 | 1 |
| 127 |  | 4 | max | . 031 | 5 | -. 018 | 6 | -. 014 | 6 |
| 128 |  |  | min | -. 025 | 4 | -. 331 | 1 | -. 248 | 1 |
| 129 |  | 5 | max | . 031 | 5 | -. 037 | 6 | 0 | 1 |
| 130 |  |  | min | -. 025 | 4 | -. 661 | 1 | 0 | 1 |
| 131 | M14 | 1 | max | . 077 | 6 | . 581 | 1 | 0 | 1 |
| 132 |  |  | min | -. 071 | 7 | -. 011 | 6 | 0 | 1 |
| 133 |  | 2 | max | . 077 | 6 | -. 001 | 7 | . 057 | 6 |
| 134 |  |  | min | -. 071 | 7 | -. 411 | 1 | -. 128 | 1 |
| 135 |  | 3 | max | . 078 | 6 | . 254 | 1 | . 013 | 6 |
| 136 |  |  | min | -. 071 | 5 | -. 048 | 7 | -. 076 | 1 |
| 137 |  | 4 | max | . 174 | 7 | . 615 | 1 | 179 | 1 |
| 138 |  |  | min | -. 181 | 6 | -. 043 | 6 | -. 105 | 6 |
| 139 |  | 5 | max | . 174 | 7 | . 035 | 7 | 0 | 1 |
| 140 |  |  | min | -. 181 | 6 | -. 376 | 1 | 0 | 1 |
| 141 | M15 | 1 | max | . 087 | 7 | . 661 | 1 | 0 | 1 |
| 142 |  |  | min | -. 092 | 6 | . 037 | 6 | 0 | 1 |
| 143 |  | 2 | max | . 087 | 7 | . 331 | 1 | -. 014 | 6 |
| 144 |  |  | min | -. 092 | 6 | . 018 | 6 | -. 248 | 1 |
| 145 |  | 3 | max | . 087 | 7 | 0 | 1 | -. 018 | 6 |
| 146 |  |  | min | -. 092 | 6 | 0 | 1 | -. 331 | 1 |
| 147 |  | 4 | max | . 087 | 7 | -. 018 | 7 | -. 014 | 6 |
| 148 |  |  | min | -. 092 | 6 | -. 331 | 1 | -. 248 | 1 |
| 149 |  | 5 | max | . 087 | 7 | -. 037 | 7 | 0 | 1 |
| 150 |  |  | min | -. 092 | 6 | -. 661 | 1 | 0 | 1 |
| 151 | M16 | 1 | max | . 032 | 9 | . 661 | 1 | 0 | 1 |
| 152 |  |  | min | -. 037 | 8 | . 037 | 7 | 0 | 1 |
| 153 |  | 2 | max | . 032 | 9 | . 331 | 1 | -. 014 | 7 |
| 154 |  |  | min | -. 037 | 8 | . 018 | 7 | -. 248 | 1 |
| 155 |  | 3 | max | . 032 | 9 | 0 | 1 | -. 018 | 7 |
| 156 |  |  | min | -. 037 | 8 | 0 | 1 | -. 331 | 1 |
| 157 |  | 4 | max | . 032 | 9 | -. 018 | 6 | -. 014 | 7 |
| 158 |  |  | min | -. 037 | 8 | -. 331 | 1 | -. 248 | 1 |
| 159 |  | 5 | max | . 032 | 9 | -. 037 | 6 | 0 | 1 |
| 160 |  |  | min | -. 037 | 8 | -. 661 | 1 | 0 | 1 |
| 161 | M17 | 1 | max | . 052 | 2 | . 661 | 1 | 0 | 1 |
| 162 |  |  | min | -. 043 | 3 | . 037 | 7 | 0 | 1 |
| 163 |  | 2 | max | . 052 | 2 | . 331 | 1 | -. 014 | 7 |
| 164 |  |  | min | -. 043 | 3 | . 018 | 7 | -. 248 | 1 |
| 165 |  | 3 | max | . 052 | 2 | 0 | 1 | -. 018 | 7 |
| 166 |  |  | min | -. 043 | 3 | 0 | 1 | -. 331 | 1 |
| 167 |  | 4 | max | . 052 | 2 | -. 018 | 6 | -. 014 | 7 |
| 168 |  |  | min | -. 043 | 3 | -. 331 | 1 | -. 248 | 1 |
| 169 |  | 5 | max | . 052 | 2 | -. 037 | 6 | 0 | 1 |
| 170 |  |  | min | -. 043 | 3 | -. 661 | 1 | 0 | 1 |
| 171 | M18 | 1 | max | . 073 | 2 | . 661 | 1 | 0 | 1 |
| 172 |  |  | min | -. 076 | 5 | . 037 | 6 | 0 | 1 |
| 173 |  | 2 | max | . 073 | 2 | . 331 | 1 | -. 014 | 6 |

 $\begin{array}{ll}\text { Designer } & \begin{array}{l}\text { MK } \\ \text { Job Number } \\ \text { Model Name }\end{array} \\ \text { M }\end{array}$

## Envelope Member Section Forces (Continued)



## lirisa <br> Designe Designer Job Number Model Name <br> Larson Engineering Inc <br> MK 21210330.000 Hamlin Middle

 Apr 30, 20214:24PM
Checked By:

Envelope Member Section Forces (Continued)

|  |  | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment[k-ft] LC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 231 | M24 | 1 | max | 259 | 9 | . 661 | 1 | 0 |  |
| 232 |  |  | min | -. 225 | 8 | . 037 | 7 | 0 | 1 |
| 233 |  | 2 | max | . 259 | 9 | . 331 | 1 | -. 014 | 7 |
| 234 |  |  | min | -. 225 | 8 | . 018 | 7 | -. 248 | 1 |
| 235 |  | 3 | max | . 259 | 9 | 0 | 1 | -. 018 | 7 |
| 236 |  |  | min | -. 225 | 8 | 0 | 1 | -. 331 | 1 |
| 237 |  | 4 | max | . 259 | 9 | -. 018 | 6 | -. 014 | 7 |
| 238 |  |  | min | -. 225 | 8 | -. 331 | 1 | -. 248 | 1 |
| 239 |  | 5 | max | . 259 | 9 | -. 037 | 6 | 0 | 1 |
| 240 |  |  | min | -. 225 | 8 | -. 661 | 1 | 0 | 1 |
| 241 | M25 | 1 | max | . 204 | 9 | . 661 | 1 | 0 | 1 |
| 242 |  |  | min | -. 178 | 8 | . 037 | 7 | 0 | 1 |
| 243 |  | 2 | max | . 204 | 9 | . 331 | 1 | -. 014 | 7 |
| 244 |  |  | min | -. 178 | 8 | . 018 | 7 | -. 248 | 1 |
| 245 |  | 3 | max | . 204 | 9 | 0 | 1 | -. 018 | 7 |
| 246 |  |  | min | -. 178 | 8 | 0 | 1 | -. 331 | 1 |
| 247 |  | 4 | max | . 204 | 9 | -. 018 | 6 | -. 014 | 7 |
| 248 |  |  | min | -. 178 | 8 | -. 331 | 1 | -. 248 | 1 |
| 249 |  | 5 | max | . 204 | 9 | -. 037 | 6 | 0 | 1 |
| 250 |  |  | min | -. 178 | 8 | -. 661 | 1 | 0 | 1 |
| 251 | M26 | 1 | max | 2.184 | 9 | . 661 | 1 | 0 | 1 |
| 252 |  |  | min | -2.21 | 8 | . 037 | 6 | 0 | 1 |
| 253 |  | 2 | max | 2.184 | 9 | . 331 | 1 | -. 014 | 6 |
| 254 |  |  | min | -2.21 | 8 | . 018 | 6 | -. 248 | 1 |
| 255 |  | 3 | max | 2.184 | 9 | 0 | 1 | -. 018 | 6 |
| 256 |  |  | min | -2.21 | 8 | 0 | 1 | -. 331 | 1 |
| 257 |  | 4 | max | 2.184 | 9 | -. 018 | 7 | -. 014 | 6 |
| 258 |  |  | min | -2.21 | 8 | -. 331 | 1 | -. 248 | 1 |
| 259 |  | 5 | max | 2.184 | 9 | -. 037 | 7 | 0 | 1 |
| 260 |  |  | min | -2.21 | 8 | -. 661 | 1 | 0 | 1 |
| 261 | M27 | 1 | max | . 922 | 1 | 0 | 1 | 0 | 1 |
| 262 |  |  | min | . 051 | 7 | 0 | 1 | 0 | 1 |
| 263 |  | 2 | max | . 923 | 1 | 0 | 1 | 0 | 1 |
| 264 |  |  | min | . 051 | 7 | 0 | 1 | 0 | 1 |
| 265 |  | 3 | max | . 923 | 1 | 0 | 1 | 0 | 1 |
| 266 |  |  | min | . 052 | 7 | 0 | 1 | 0 | 1 |
| 267 |  | 4 | max | . 924 | 1 | 0 | 1 | 0 | 1 |
| 268 |  |  | min | . 052 | 7 | 0 | 1 | 0 | 1 |
| 269 |  | 5 | max | . 924 | 1 | 0 | 1 | 0 | 1 |
| 270 |  |  | min | . 052 | 7 | 0 | 1 | 0 | 1 |
| 271 | M28 | 1 | max | . 661 | 1 | . 05 | 5 | 0 | 1 |
| 272 |  |  | min | . 037 | 7 | -. 051 | 4 | 0 | 1 |
| 273 |  | 2 | max | 1.584 | 1 | . 007 | 4 | . 014 | 4 |
| 274 |  |  | min | . 088 | 7 | -. 007 | 5 | -. 014 | 5 |
| 275 |  | 3 | max | 1.584 |  | . 007 | 4 | . 01 | 4 |
| 276 |  |  | min | . 088 | 7 | -. 007 | 5 | -. 01 | 5 |
| 277 |  | 4 | max | 1.585 | 1 | . 007 | 4 | . 005 | 4 |
| 278 |  |  | min | . 089 | 7 | -. 007 | 5 | -. 005 | 5 |
| 279 |  | 5 | max | 1.586 | 1 | . 007 | 4 | 0 | 1 |
| 280 |  |  | min | . 089 | 7 | -. 007 | 5 | 0 | 1 |
| 281 | M29 | 1 | max | . 661 | 1 | . 092 | 5 | 0 | 1 |
| 282 |  |  | min | . 036 | 6 | -. 092 | 4 | 0 | 1 |
| 283 |  | 2 | max | 1.323 | 1 | . 016 | 4 | . 04 | 4 |
| 284 |  |  | min | . 074 | 6 | -. 016 | 5 | -. 04 | 5 |
| 285 |  | 3 | max | 1.324 | 1 | . 016 | 4 | . 027 | 4 |
| 286 |  |  | min | . 074 | 6 | -. 016 | 5 | -. 026 | 5 |
| 287 |  | 4 | max | 1.324 | 1 | . 016 | 4 | . 013 | 4 |



Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Momentik- | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 288 |  |  | min | . 074 | 6 | -. 016 | 5 | -. 013 | 5 |
| 289 |  | 5 | max | 1.325 | 1 | . 016 | 4 | 0 | 1 |
| 290 |  |  | min | . 075 | 6 | -. 016 | 5 | 0 | 1 |
| 291 | M30 | 1 | max | . 661 | 1 | . 025 | 4 | 0 | 1 |
| 292 |  |  | min | . 037 | 7 | -. 032 | 5 | 0 | 1 |
| 293 |  | 2 | max | 1.307 | 1 | . 012 | 5 | 036 | 5 |
| 294 |  |  | min | -. 25 | 7 | -. 011 | 4 | -. 032 | 4 |
| 295 |  | 3 | max | 1.308 | 1 | . 012 | 5 | 024 | 5 |
| 296 |  |  | min | -. 249 | 7 | -. 011 | 4 | -. 021 | 4 |
| 297 |  | 4 | max | 1.309 | 1 | . 012 | 5 | . 012 | 5 |
| 298 |  |  | min | -. 249 | 7 | -. 011 | 4 | -. 011 | 4 |
| 299 |  | 5 | max | 1.31 | 1 | . 012 | 5 | 0 | 1 |
| 300 |  |  | min | -. 248 | 7 | -. 011 | 4 | 0 | 1 |
| 301 | M31 | 1 | max | . 581 | 1 | . 071 | 7 | 0 | 1 |
| 302 |  |  | min | -. 011 | 6 | -. 077 | 6 | 0 | 1 |
| 303 |  | 2 | max | . 581 | 1 | . 013 | 7 | . 032 | 6 |
| 304 |  |  | min | -. 01 | 6 | -. 022 | 2 | -. 028 | 7 |
| 305 |  | 3 | max | 1.243 | 1 | . 021 | 2 | 029 | 2 |
| 306 |  |  | min | . 027 | 6 | -. 013 | 7 | -. 019 | 7 |
| 307 |  | 4 | max | 1.244 | 1 | . 022 | 2 | . 014 | 2 |
| 308 |  |  | min | . 027 | 6 | -. 014 | 7 | -. 009 | 7 |
| 309 |  | 5 | max | 1.244 | 1 | . 022 | 2 | 0 | 1 |
| 310 |  |  | min | . 027 | 6 | -. 014 | 7 | 0 | 1 |
| 311 | M32 | 1 | max | 1.656 | 1 | 0 | 1 | 0 | 1 |
| 312 |  |  | min | . 008 | 7 | 0 | 1 | 0 | 1 |
| 313 |  | 2 | max | 1.657 | 1 | 0 | 1 | 0 | 1 |
| 314 |  |  | min | . 009 | 7 | 0 | 1 | 0 | 1 |
| 315 |  | 3 | max | 1.657 | 1 | 0 | 1 | 0 | 1 |
| 316 |  |  | min | . 009 | 7 | 0 | 1 | 0 | 1 |
| 317 |  | 4 | max | 1.658 | 1 | 0 | 1 | 0 | 1 |
| 318 |  |  | min | . 009 | 7 | 0 | 1 | 0 | 1 |
| 319 |  | 5 | max | 1.658 | 1 | 0 | 1 | 0 | 1 |
| 320 |  |  | min | . 01 | 7 | 0 | 1 | 0 | 1 |
| 321 | M33 | 1 | max | 1.352 | 1 | 0 | 1 | 0 | 1 |
| 322 |  |  | min | -. 104 | 7 | 0 | 1 | 0 | 1 |
| 323 |  | 2 | max | 1.352 | 1 | 0 | 1 | 0 | 1 |
| 324 |  |  | min | -. 103 | 7 | 0 | 1 | 0 | 1 |
| 325 |  | 3 | max | 1.353 | 1 | 0 | 1 | 0 | 1 |
| 326 |  |  | min | -. 103 | 7 | 0 | 1 | 0 | 1 |
| 327 |  | 4 | max | 1.354 | 1 | 0 | 1 | 0 | 1 |
| 328 |  |  | min | -. 102 | 7 | 0 | 1 | 0 | 1 |
| 329 |  | 5 | max | 1.354 | 1 | 0 | 1 | 0 | 1 |
| 330 |  |  | min | -. 102 | 7 | 0 | 1 | 0 | 1 |
| 331 | M34 | 1 | max | . 661 | 1 | . 093 | 6 | 0 | 1 |
| 332 |  |  | min | . 037 | 7 | -. 087 | 7 | 0 | 1 |
| 333 |  | 2 | max | 1.038 | 1 | . 03 | 7 | . 072 | 7 |
| 334 |  |  | min | . 003 | 7 | -. 032 | 6 | -. 076 | 6 |
| 335 |  | 3 | max | 1.039 | 1 | . 03 | 7 | . 048 | 7 |
| 336 |  |  | min | . 003 | 7 | -. 032 | 6 | -. 051 | 6 |
| 337 |  | 4 | max | 1.04 | 1 | . 03 | 7 | . 024 | 7 |
| 338 |  |  | min | . 003 | 7 | -. 032 | 6 | -. 025 | 6 |
| 339 |  | 5 | max | 1.04 | 1 | . 03 | 7 | 0 | 1 |
| 340 |  |  | min | . 004 | 7 | -. 032 | 6 | 0 | 1 |
| 341 | M35 | 1 | max | . 661 | 1 | . 037 | 8 | 0 | 1 |
| 342 |  |  | min | . 037 | 6 | -. 032 | 9 | 0 | 1 |
| 343 |  | 2 | max | 1.323 | 1 | . 01 | 7 | . 029 | 7 |
| 344 |  |  | min | . 074 | 6 | -. 011 | 6 | -. 032 | 6 |

##  

Apr 30, 2021
$4: 24 \mathrm{PM}$ ${ }^{4: 24 \mathrm{PM}}$ Checked By:

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axiallk] | LC | Shear[k] | LC | Moment ${ }^{\text {ck-It }}$ | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 345 |  | 3 | max | 1.324 | 1 | . 01 | 7 | . 02 | 7 |
| 346 |  |  | min | . 074 | 6 | -. 011 | 6 | -. 022 | 6 |
| 347 |  | 4 | max | 1.325 | 1 | . 01 | 7 | . 01 | 7 |
| 348 |  |  | min | . 075 | 6 | -. 011 | 6 | -. 011 | 6 |
| 349 |  | 5 | max | 1.326 | 1 | . 01 | 7 | 0 | 1 |
| 350 |  |  | min | . 075 | 6 | -. 011 | 6 | 0 | 1 |
| 351 | M36 | 1 | max | . 661 | 1 | . 043 | 3 | 0 | 1 |
| 352 |  |  | min | . 037 | 6 | -. 053 | 2 | 0 | 1 |
| 353 |  | 2 | max | 1.323 | 1 | . 005 | 2 | . 018 | 2 |
| 354 |  |  | min | . 074 | 7 | -. 005 | 8 | -. 019 | 8 |
| 355 |  | 3 | max | 1.324 | 1 | . 005 | 2 | . 012 | 2 |
| 356 |  |  | min | . 075 | 7 | -. 005 | 8 | -. 012 | 8 |
| 357 |  | 4 | max | 1.325 | 1 | . 005 | 2 | . 006 | 2 |
| 358 |  |  | min | . 075 | 7 | -. 005 | 8 | -. 006 | 8 |
| 359 |  | 5 | max | 1.326 | 1 | . 005 | 2 | 0 | 1 |
| 360 |  |  | min | . 076 | 7 | -. 005 | 8 | 0 | 1 |
| 361 | M37 | 1 | max | . 661 | 1 | . 076 | 5 | 0 | 1 |
| 362 |  |  | min | . 036 | 6 | -. 074 | 2 | 0 | 1 |
| 363 |  | 2 | max | 1.323 | 1 | . 023 | 2 | . 02 | 2 |
| 364 |  |  | min | . 074 | 6 | -. 022 | 5 | -. 017 | 5 |
| 365 |  | 3 | max | 1.324 | 1 | . 023 | 2 | . 011 | 5 |
| 366 |  |  | min | . 074 | 6 | -. 022 | 5 | -. 011 | 2 |
| 367 |  | 4 | max | 1.326 | 3 | . 005 | 5 | . 007 | 5 |
| 368 |  |  | min | -. 367 | 6 | -. 005 | 2 | -. 007 | 2 |
| 369 |  | 5 | max | 1.327 | 3 | . 005 | 5 | 0 | 1 |
| 370 |  |  | min | -. 367 | 6 | -. 005 | 2 | 0 | 1 |
| 371 | M38 | 1 | max | . 661 | 1 | . 168 | 8 | 0 | 1 |
| 372 |  |  | min | . 036 | 7 | -. 155 | 9 | 0 | 1 |
| 373 |  | 2 | max | 1.333 | 1 | . 05 | 5 | . 073 | 5 |
| 374 |  |  | min | -. 346 | 7 | -. 053 | 6 | -. 078 | 6 |
| 375 |  | 3 | max | 1.335 | 1 | . 05 | 5 | . 001 | 8 |
| 376 |  |  | min | -. 345 | 7 | -. 053 | 6 | -. 001 | 9 |
| 377 |  | 4 | max | 1.611 | 2 | . 009 | 8 | . 013 | 8 |
| 378 |  |  | min | -. 694 | 7 | -. 008 | 5 | -. 012 | 5 |
| 379 |  | 5 | max | 1.612 | 2 | . 009 | 8 | 0 | 1 |
| 380 |  |  | min | -. 693 | 7 | -. 008 | 5 | 0 | 1 |
| 381 | M39 | 1 | max | 1.659 | 1 | 0 | 1 | 0 | 1 |
| 382 |  |  | min | -. 016 | 6 | 0 | 1 | 0 | 1 |
| 383 |  | 2 | max | 1.66 | 1 | 0 | 1 | 0 | 1 |
| 384 |  |  | min | -. 015 | 6 | 0 | 1 | 0 | 1 |
| 385 |  | 3 | max | 1.661 | 1 | 0 | 1 | 0 | 1 |
| 386 |  |  | min | -. 015 | 6 | 0 | 1 | 0 | 1 |
| 387 |  | 4 | max | 1.661 | 1 | 0 | 1 | 0 | 1 |
| 388 |  |  | min | -. 015 | 6 | 0 | 1 | 0 | 1 |
| 389 |  | 5 | max | 1.662 | 1 | 0 | 1 | 0 | 1 |
| 390 |  |  | min | -. 014 | 6 | 0 | 1 | 0 | 1 |
| 391 | M40 | 1 | max | 1.444 | 2 | 0 | 1 | 0 | 1 |
| 392 |  |  | min | -. 403 | 7 |  | 1 | 0 | 1 |
| 393 |  | 2 | max | 1.445 | 2 | 0 | 1 | 0 | 1 |
| 394 |  |  | min | -. 403 | 7 | 0 | 1 | 0 | 1 |
| 395 |  | 3 | max | 1.445 | 2 |  | 1 | 0 | 1 |
| 396 |  |  | min | -. 402 | 7 | 0 | 1 | 0 | 1 |
| 397 |  | 4 | max | 1.446 | 2 | 0 | 1 | 0 | 1 |
| 398 |  |  | min | -. 402 | 7 | 0 | 1 | 0 | 1 |
| 399 |  | 5 | max | 1.447 | 2 | 0 | 1 | 0 | 1 |
| 400 |  |  | min | -. 402 | 7 | 0 | 1 | 0 | 1 |
| 401 | M41 | 1 | max | . 782 | 1 | 0 | 1 | 0 | 1 |

 $\begin{array}{l:l}\text { Job Number } & \left.\begin{array}{ll}21210330.000 \\ \text { Model Name } & \text { Hamlin Middle School }\end{array}\right]\end{array}$

## Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 402 |  |  | min | -. 498 | 6 | 0 | 1 | 0 | 1 |
| 403 |  | 2 | max | . 783 | 1 | 0 | 1 | 0 | 1 |
| 404 |  |  | min | -. 498 | 6 | 0 | 1 | 0 | 1 |
| 405 |  | 3 | max | . 783 | 1 | 0 | 1 | 0 | 1 |
| 406 |  |  | min | -. 498 | 6 | 0 | 1 | 0 | 1 |
| 407 |  | 4 | max | . 784 | 1 | 0 | 1 | 0 | 1 |
| 408 |  |  | min | -. 497 | 6 | 0 | 1 | 0 | 1 |
| 409 |  | 5 | max | . 784 | 1 | 0 | 1 | 0 | 1 |
| 410 |  |  | min | -. 497 | 6 | 0 | 1 | 0 | 1 |
| 411 | M42 | 1 | max | 1.322 | 1 | 0 | 1 | 0 | 1 |
| 412 |  |  | min | -. 017 | 6 | 0 | 1 | 0 | 1 |
| 413 |  | 2 | max | 1.323 | 1 | 0 | 1 | 0 | 1 |
| 414 |  |  | min | -. 017 | 6 | 0 | 1 | 0 | 1 |
| 415 |  | 3 | max | 1.323 |  | 0 | 1 | 0 | 1 |
| 416 |  |  | min | -. 016 | 6 | 0 | 1 | 0 | 1 |
| 417 |  | 4 | max | 1.324 | 1 | 0 | 1 | 0 | 1 |
| 418 |  |  | min | -. 016 | 6 | 0 | 1 | 0 | 1 |
| 419 |  | 5 | max | 1.325 | 1 | 0 | 1 | 0 | 1 |
| 420 |  |  | min | -. 016 | 6 | 0 | 1 | 0 | 1 |
| 421 | M43 | 1 | max | 1.334 | 1 | 0 | 1 | 0 | 1 |
| 422 |  |  | min | 08 | 8 | 0 | 1 | 0 | 1 |
| 423 |  | 2 | max | 1.335 | 1 | 0 | 1 | 0 | 1 |
| 424 |  |  | min | . 08 | 8 | 0 | 1 | 0 | 1 |
| 425 |  | 3 | max | 1.336 | 1 | 0 | 1 | 0 | 1 |
| 426 |  |  | min | . 081 | 8 | 0 | 1 | 0 | 1 |
| 427 |  | 4 | max | 1.336 | 1 | 0 | 1 | 0 | 1 |
| 428 |  |  | min | . 081 | 8 | 0 | 1 | 0 | 1 |
| 429 |  | 5 | max | 1.337 | 1 | 0 | 1 | 0 | 1 |
| 430 |  |  | min | . 082 | 8 | 0 | 1 | 0 | 1 |
| 431 | M44 | 1 | max | 1.571 | 3 | 0 | 1 | 0 | 1 |
| 432 |  |  | min | -. 644 | 6 | 0 | 1 | 0 | 1 |
| 433 |  | 2 | max | 1.571 | 3 | 0 | 1 | 0 | 1 |
| 434 |  |  | min | -. 644 | 6 | 0 | 1 | 0 | 1 |
| 435 |  | 3 | max | 1.572 | 3 | 0 | 1 | 0 | 1 |
| 436 |  |  | min | -. 644 | 6 | 0 | 1 | 0 | 1 |
| 437 |  | 4 | max | 1.572 | 3 | 0 | 1 | 0 | 1 |
| 438 |  |  | min | -. 643 | 6 | 0 | 1 | 0 | 1 |
| 439 |  | 5 | max | 1.573 | 3 | 0 | 1 | 0 | 1 |
| 440 |  |  | min | -. 643 | 6 | 0 | 1 |  | 1 |
| 441 | M45 | 1 | max | 1.511 | 2 | 0 | 1 | 0 | 1 |
| 442 |  |  | min | -. 663 | 7 | 0 | 1 | 0 | 1 |
| 443 |  | 2 | max | 1.512 | 2 | 0 | 1 | 0 | 1 |
| 444 |  |  | min | -. 663 | 7 | 0 | 1 | 0 | 1 |
| 445 |  | 3 | max | 1.513 | 2 | 0 | 1 | 0 | 1 |
| 446 |  |  | min | -. 662 | 7 | 0 | 1 | 0 | 1 |
| 447 |  | 4 | max | 1.514 | 2 | 0 | 1 | 0 | 1 |
| 448 |  |  | min | -. 662 | 7 | 0 | 1 | 0 | 1 |
| 449 |  | 5 | max | 1.515 | 2 | 0 |  | 0 | 1 |
| 450 |  |  | min | -. 661 | 7 | 0 | 1 | O | 1 |
| 451 | M46 | 1 | max | . 661 | 1 | . 133 | 8 | 0 | 1 |
| 452 |  |  | min | . 037 | 6 | -. 123 | 9 | 0 | 1 |
| 453 |  | 2 | max | 1.323 | 1 | . 033 | 9 | . 078 | 9 |
| 454 |  |  | min | . 074 | 6 | -. 035 | 8 | -. 085 | 8 |
| 455 |  | 3 | max | 1.324 | 1 | . 033 | 9 | . 052 | 9 |
| 456 |  |  | min | . 074 | 6 | -. 035 | 8 | -. 056 | 8 |
| 457 |  | 4 | max | 1.324 | 1 | . 033 | 9 | . 026 | 9 |
| 458 |  |  | min | . 075 | 6 | -. 035 | 8 | -. 028 | 8 |

## lintisA <br> Company Larson Engineering Inc <br> $\begin{array}{lll}\text { Designer } & \vdots \text { MK } \\ \text { Job Number } \\ & 21210330.000\end{array}$

 Apr 30, 20214:24PM
Checked By:

Envelope Member Section Forces (Continued)

| 459 Member |  | Sec |  | $\begin{gathered} \text { Axial[k] } \\ \hline 1.325 \\ \hline \end{gathered}$ | LC | $\begin{gathered} \text { Shear[k] } \\ .033 \end{gathered}$ | LC | Moment[k-ft] LC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5 | max |  |  |  |  | 0 | 1 |
| 460 |  |  | min | . 075 | 6 | -. 035 | 8 | 0 |  |
| 461 | M47 | 1 | max | . 661 | 1 | . 11 | 8 | 0 | 1 |
| 462 |  |  | min | . 037 | 6 | -. 102 | 9 | 0 | 1 |
| 463 |  | 2 | max | 1.323 | 1 | . 021 | 9 | . 061 | 9 |
| 464 |  |  | min | . 074 | 7 | -. 023 | 8 | -. 066 | 8 |
| 465 |  | 3 | max | 1.324 | 1 | . 021 | 9 | . 041 | 9 |
| 466 |  |  | min | . 074 | 7 | -. 023 | 8 | -. 044 | 8 |
| 467 |  | 4 | max | 1.325 | 1 | . 021 | 9 | . 02 | 9 |
| 468 |  |  | min | . 075 | 7 | -. 023 | 8 | -. 022 | 8 |
| 469 |  | 5 | max | 1.326 | 1 | . 021 | 9 | 0 | 1 |
| 470 |  |  | min | . 075 | 7 | -. 023 | 8 | 0 | 1 |
| 471 | M48 | 1 | max | . 661 | 1 | . 094 | 8 | 0 | 1 |
| 472 |  |  | min | . 037 | 7 | -. 087 | 9 | 0 | 1 |
| 473 |  | 2 | max | 1.323 | 1 | . 015 | 9 | . 051 | 9 |
| 474 |  |  | min | . 074 | 7 | -. 016 | 8 | -. 055 | 8 |
| 475 |  | 3 | max | 1.324 | 1 | . 015 | 9 | . 034 | 9 |
| 476 |  |  | min | . 075 | 7 | -. 016 | 8 | -. 037 | 8 |
| 477 |  | 4 | max | 1.325 | 1 | . 015 | 9 | . 017 | 9 |
| 478 |  |  | min | . 075 | 7 | -. 016 | 8 | -. 018 | 8 |
| 479 |  | 5 | max | 1.326 | 1 | . 015 | 9 | 0 | 1 |
| 480 |  |  | min | . 076 | 7 | -. 016 | 8 | 0 | 1 |
| 481 | M49 | 1 | max | . 661 |  | . 09 | 7 | 0 | 1 |
| 482 |  |  | min | . 036 | 6 | -. 086 | 4 | 0 | 1 |
| 483 |  | 2 | max | 1.323 | 1 | . 026 | 2 | . 024 | 9 |
| 484 |  |  | min | . 074 | 6 | -. 028 | 8 | -. 026 | 8 |
| 485 |  | 3 | max | 1.324 | 1 | . 026 | 2 | . 012 | 7 |
| 486 |  |  | min | . 074 | 6 | -. 028 | 8 | -. 011 | 4 |
| 487 |  | 4 | max | 1.372 | 1 | . 006 | 7 | . 008 | 7 |
| 488 |  |  | min | -. 179 | 8 | -. 006 | 4 | -. 007 | 4 |
| 489 |  | 5 | max | 1.373 | 1 | . 006 | 7 | 0 | 1 |
| 490 |  |  | min | -. 178 | 8 | -. 006 | 4 | 0 | 1 |
| 491 | M50 | 1 | max | . 661 | 1 | . 226 | 8 | 0 | 1 |
| 492 |  |  | min | . 037 | 7 | -. 259 | 9 | 0 | 1 |
| 493 |  | 2 | max | 1.28 | 1 | . 077 | 9 | . 11 | 9 |
| 494 |  |  | min | -. 25 | 9 | -. 067 | 8 | -. 095 | 8 |
| 495 |  | 3 | max | 1.282 | 1 | . 077 | 9 | . 003 | 8 |
| 496 |  |  | min | -. 248 | 9 | -. 067 | 8 | -. 003 | 9 |
| 497 |  | 4 | max | 1.357 | 2 | . 012 | 8 | . 018 | 8 |
| 498 |  |  | min | -. 437 | 9 | -. 014 | 9 | -. 021 | 9 |
| 499 |  | 5 | max | 1.359 | 2 | . 012 | 8 | 0 | 1 |
| 500 |  |  | min | -. 436 | 9 | -. 014 | 9 | 0 | 1 |
| 501 | M51 | 1 | max | 1.326 | 1 | 0 | 1 | 0 | 1 |
| 502 |  |  | min | . 078 | 7 | 0 | 1 | 0 | 1 |
| 503 |  | 2 | max | 1.327 | 1 | 0 | 1 | 0 | 1 |
| 504 |  |  | min | . 078 | 7 | 0 | 1 | 0 | 1 |
| 505 |  | 3 | max | 1.327 | 1 | 0 | 1 | 0 | 1 |
| 506 |  |  | min | . 078 | 7 | 0 | 1 | 0 | 1 |
| 507 |  | 4 | max | 1.328 | 1 | 0 | 1 | 0 | 1 |
| 508 |  |  | min | . 079 | 7 | 0 | 1 | 0 | 1 |
| 509 |  | 5 | max | 1.329 | 1 | 0 | 1 | 0 | 1 |
| 510 |  |  | min | . 079 | 7 | 0 | 1 | 0 | 1 |
| 511 | M52 | 1 | max | 1.326 | 1 | 0 | 1 | 0 | 1 |
| 512 |  |  | min | . 033 | 6 | 0 | 1 | 0 | 1 |
| 513 |  | 2 | max | 1.326 | 1 | 0 | 1 | 0 | 1 |
| 514 |  |  | min | . 033 | 6 | 0 | 1 | 0 | 1 |
| 515 |  | 3 | max | 1.327 | 1 | 0 | 1 | 0 | 1 |

MIRISA $\begin{array}{l:l}\text { Designer } & \text { MK } \\ \text { Job Number } & \begin{array}{ll}21210330.00 \\ \text { Model Name } & : \\ & \text { Hamlin Middle School }\end{array}\end{array}$

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear [k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 516 |  |  | min | . 034 | 6 | 0 | 1 | 0 | 1 |
| 517 |  | 4 | max | 1.328 | 1 | 0 | 1 | 0 | 1 |
| 518 |  |  | min | . 034 | 6 | 0 | 1 | 0 | 1 |
| 519 |  | 5 | max | 1.328 | 1 | 0 | 1 | 0 | 1 |
| 520 |  |  | min | . 034 | 6 | 0 | 1 | 0 | 1 |
| 521 | M53 | 1 | max | 1.337 | 1 | 0 | 1 | 0 | 1 |
| 522 |  |  | min | . 068 | 6 | 0 | 1 | 0 | 1 |
| 523 |  | 2 | max | 1.338 | 1 | 0 | 1 | 0 | 1 |
| 524 |  |  | min | . 068 | 6 | 0 | 1 | 0 | 1 |
| 525 |  | 3 | max | 1.339 | 1 | 0 | 1 | 0 | 1 |
| 526 |  |  | min | . 068 | 6 | 0 | 1 | 0 | 1 |
| 527 |  | 4 | max | 1.339 | 1 | 0 | 1 | 0 | 1 |
| 528 |  |  | min | . 069 | 6 | 0 | 1 | 0 | 1 |
| 529 |  | 5 | max | 1.34 | 1 | 0 | 1 | 0 | 1 |
| 530 |  |  | min | . 069 | 6 | 0 | 1 | 0 | 1 |
| 531 | M54 | 1 | max | 1.45 | 3 | 0 | 1 | 0 | 1 |
| 532 |  |  | min | -. 217 | 8 | 0 | 1 | 0 | 1 |
| 533 |  | 2 | max | 1.451 | 3 | 0 | 1 | 0 | 1 |
| 534 |  |  | min | -. 216 | 8 | 0 | 1 | 0 | 1 |
| 535 |  | 3 | max | 1.452 | 3 | 0 | 1 | 0 | 1 |
| 536 |  |  | min | -. 216 | 8 | 0 | 1 | 0 | 1 |
| 537 |  | 4 | max | 1.452 | 3 | 0 | 1 | 0 | 1 |
| 538 |  |  | min | -. 215 | 8 | 0 | 1 | 0 | 1 |
| 539 |  | 5 | max | 1.453 | 3 | 0 | 1 | 0 | 1 |
| 540 |  |  | min | -. 214 | 8 | 0 | 1 | 0 | 1 |
| 541 | M55 | 1 | max | 1.545 | 2 | 0 | 1 | 0 | 1 |
| 542 |  |  | min | -. 616 | 7 | 0 | 1 | 0 | 1 |
| 543 |  | 2 | max | 1.546 | 2 | 0 | 1 | 0 | 1 |
| 544 |  |  | min | -. 615 | 7 | 0 | 1 | 0 | 1 |
| 545 |  | 3 | max | 1.546 | 2 | 0 | 1 | 0 | 1 |
| 546 |  |  | min | -. 615 | 7 | 0 | 1 | 0 | 1 |
| 547 |  | 4 | max | 1.547 | 2 | 0 |  | 0 | 1 |
| 548 |  |  | min | -. 614 | 7 | 0 | 1 | 0 | 1 |
| 549 |  | 5 | max | 1.548 | 2 | 0 | 1 | 0 | 1 |
| 550 |  |  | min | -. 614 | 7 | 0 | 1 | 0 | 1 |
| 551 | M56 | 1 | max | 1.33 | 1 | 0 | 1 | 0 | 1 |
| 552 |  |  | min | . 081 | 7 | 0 | 1 | 0 | 1 |
| 553 |  | 2 | max | 1.33 | 1 | 0 | 1 | 0 | 1 |
| 554 |  |  | min | . 082 | 7 | 0 |  | 0 | 1 |
| 555 |  | 3 | max | 1.331 | 1 | 0 | 1 | 0 | 1 |
| 556 |  |  | min | . 082 | 7 | 0 | 1 | 0 | 1 |
| 557 |  | 4 | max | 1.332 | 1 | 0 | 1 | 0 | 1 |
| 558 |  |  | min | . 082 | 7 | 0 | 1 | 0 | 1 |
| 559 |  | 5 | max | 1.332 | 1 | 0 | 1 | 0 | 1 |
| 560 |  |  | min | . 083 | 7 | 0 | 1 | 0 | 1 |
| 561 | M57 | 1 | max | 1.329 | 1 | 0 | 1 |  | 1 |
| 562 |  |  | min | -. 012 | 6 | 0 | 1 | 0 | 1 |
| 563 |  | 2 | max | 1.33 | 1 | 0 | 1 | 0 | 1 |
| 564 |  |  | min | -. 012 | 6 | 0 | 1 | 0 | 1 |
| 565 |  | 3 | max | 1.331 | 1 | 0 | 1 | 0 |  |
| 566 |  |  | min | -. 011 | 6 | 0 |  | 0 | 1 |
| 567 |  | 4 | max | 1.331 | 1 | 0 | 1 | 0 | 1 |
| 568 |  |  | min | -. 011 | 6 | 0 | 1 | 0 | 1 |
| 569 |  | 5 | max | 1.332 | 1 | 0 | 1 | 0 |  |
| 570 |  |  | min | -. 01 | 6 | 0 | 1 | 0 | 1 |
| 571 | M58 | 1 | max | 1.347 | 1 | 0 |  | 0 | 1 |
| 572 |  |  | min | . 063 | 8 | 0 | 1 | 0 | 1 |

## 

Envelope Member Section Forces (Continued)



## Envelope Member Section Forces (Continued)



Envelope Member Section Forces (Continued)



Envelope Member Section Forces (Continued)

| Member    <br> 744    |  | Sec |  | $\begin{gathered} \hline \text { Axial[k] } \\ .001 \\ \hline \end{gathered}$ | LC | $\begin{aligned} & \text { Shear[k] } \\ & -.3 \end{aligned}$ | LC | $\frac{\text { Momentik-ft] }}{-.319}$ | LC <br> 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | min |  | 6 |  | 9 |  |  |
| 745 |  | 3 | max | . 004 | 4 | . 3 | 8 | . 638 | 9 |
| 746 |  |  | min | . 002 | 6 | -. 3 | 9 | -. 638 | 8 |
| 747 |  | 4 | max | . 006 | 4 | . 3 | 8 | . 957 | 9 |
| 748 |  |  | min | . 004 | 6 | -. 3 | 9 | -. 957 | 8 |
| 749 |  | 5 | max | . 008 | 4 | . 3 | 8 | 1.276 | 9 |
| 750 |  |  | min | . 005 | 6 | -. 3 | 9 | -1.276 | 8 |
| 751 | M76 | 1 | max | 1.248 | 1 | 0 | 1 | 0 | 1 |
| 752 |  |  | min | -. 002 | 6 | 0 | 1 | 0 | 1 |
| 753 |  | 2 | max | 1.249 | 1 | 0 | 1 | 0 | 1 |
| 754 |  |  | min | -. 002 | 6 | 0 | 1 | 0 | 1 |
| 755 |  | 3 | max | 1.249 | 1 | 0 | 1 | 0 | 1 |
| 756 |  |  | min | -. 002 | 6 | 0 |  | 0 | 1 |
| 757 |  | 4 | max | 1.25 | 1 | 0 | 1 | 0 | 1 |
| 758 |  |  | min | -. 001 | 6 | 0 | 1 | 0 | 1 |
| 759 |  | 5 | max | 1.25 | 1 | 0 | 1 | 0 | 1 |
| 760 |  |  | min | -. 001 | 6 | 0 | 1 | 0 | 1 |
| 761 | M77 | 1 | max | . 376 | 5 | 0 | 7 | 0 | 1 |
| 762 |  |  | min | -. 364 | 4 | 0 | 3 | 0 | 1 |
| 763 |  | 2 | max | . 377 | 5 | 0 | 7 | 0 | 3 |
| 764 |  |  | min | -. 364 | 4 | 0 | 3 | 0 | 7 |
| 765 |  | 3 | max | . 377 | 5 | 0 | 1 | 0 | 3 |
| 766 |  |  | min | -. 363 | 4 | 0 | 1 | 0 | 7 |
| 767 |  | 4 | max | . 378 | 5 | 0 | 5 | 0 | 3 |
| 768 |  |  | min | -. 363 | 4 | 0 | 6 | 0 | 7 |
| 769 |  | 5 | max | . 378 | 5 | 0 | 5 | 0 | 1 |
| 770 |  |  | min | -. 362 | 4 | 0 | 6 | 0 | 1 |
| 771 | M78 | 1 | max | . 83 | 6 | 0 | 4 | 0 | 1 |
| 772 |  |  | min | -. 474 | 5 | 0 | 7 | 0 | 1 |
| 773 |  | 2 | max | . 83 | 6 | 0 | 4 | 0 | 7 |
| 774 |  |  | min | -. 474 | 5 | 0 | 7 | 0 | 4 |
| 775 |  | 3 | max | . 83 | 6 | 0 | 1 | 0 | 7 |
| 776 |  |  | min | -. 473 | 5 | 0 | 1 | 0 | 4 |
| 777 |  | 4 | max | . 83 | 6 | 0 | 6 | 0 | 7 |
| 778 |  |  | min | -. 473 | 5 | 0 | 5 | 0 | 4 |
| 779 |  | 5 | max | . 831 | 6 | 0 | 6 | 0 | 1 |
| 780 |  |  | min | -. 472 | 5 | 0 | 5 | 0 | 1 |
| 781 | M79 | 1 | max | . 39 | 6 | 0 | 6 | 0 | 1 |
| 782 |  |  | min | -. 051 | 9 | 0 | 5 | 0 | 1 |
| 783 |  | 2 | max | . 39 | 6 | 0 | 6 | 0 | 5 |
| 784 |  |  | min | -. 051 | 9 | 0 | 5 | 0 | 6 |
| 785 |  | 3 | max | . 39 | 6 | 0 | 1 | 0 | 5 |
| 786 |  |  | min | -. 051 | 9 | 0 | 1 | 0 | 6 |
| 787 |  | 4 | max | . 39 | 6 | 0 | 4 | 0 | 5 |
| 788 |  |  | min | -. 05 | 9 | 0 | 7 | 0 | 6 |
| 789 |  | 5 | max | . 391 | 6 | 0 | 4 | 0 | 1 |
| 790 |  |  | min | -. 05 | 9 | 0 | 7 | 0 | 1 |
| 791 | M80 | 1 | max | . 536 | 5 | 0 | 7 | 0 | 1 |
| 792 |  |  | min | -. 553 | 6 | 0 | 1 | 0 | 1 |
| 793 |  | 2 | max | . 536 | 5 | 0 | 7 | 0 | 1 |
| 794 |  |  | min | -. 553 | 6 | 0 | 1 | 0 | 7 |
| 795 |  | 3 | max | . 537 | 5 | 0 | 1 | 0 | 1 |
| 796 |  |  | min | -. 553 | 6 | 0 | 1 | 0 | 7 |
| 797 |  | 4 | max | . 537 | 5 | 0 | 3 | 0 | 1 |
| 798 |  |  | min | -. 553 | 6 | 0 | 6 | 0 | 7 |
| 799 |  | 5 | max | . 537 | 5 | 0 | 3 | 0 | 1 |
| 800 |  |  | min | -. 552 | 6 | 0 | 6 | 0 | 1 |

## lirkISA <br> Company Designer Job Number Model Name <br> Larson Engineering Inc <br> MK 21210330.000 Hamlin Middle

 Apr 30, 20214:24PM
Checked By:

Envelope Member Section Forces (Continued)



Envelope Member Section Forces (Continued)


##  $\begin{array}{lll}\text { Job Number } & \begin{array}{ll}21210330.000 \\ \text { Model Name }\end{array} & \begin{array}{ll}\text { Hamlin Middle }\end{array} \\ & \end{array}$

Apr 30, 2021
4:24 PM ${ }^{4: 24 \mathrm{PM}}$ Checked By:

Envelope Member Section Forces (Continued)

| \| Member |  | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment[k-ft] LC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3 | max | . 177 | 6 | . 068 | 8 | . 134 | 8 |
| 916 |  |  | min | -. 151 | 7 | -. 061 | 6 | -. 08 | 9 |
| 917 |  | 4 | max | . 177 | 6 | . 067 | 8 | . 066 | 8 |
| 918 |  |  | min | -. 151 | 7 | -. 04 | 9 | -. 04 | 9 |
| 919 |  | 5 | max | . 177 | 6 | . 066 | 8 | 0 | 1 |
| 920 |  |  | min | -. 151 | 7 | -. 041 | 9 | 0 | 1 |
| 921 | M93 | 1 | max | . 032 | 9 | . 005 | 6 | 0 | 1 |
| 922 |  |  | min | -. 033 | 8 | 0 | 2 | 0 | 1 |
| 923 |  | 2 | max | . 052 | 9 | . 024 | 4 | . 002 | 2 |
| 924 |  |  | min | -. 054 | 8 | -. 013 | 7 | -. 009 | 6 |
| 925 |  | 3 | max | . 067 | 9 | . 055 | 7 | . 025 | 9 |
| 926 |  |  | min | -. 069 | 8 | -. 092 | 6 | -. 053 | 6 |
| 927 |  | 4 | max | . 128 | 4 | . 053 | 7 | . 133 | 6 |
| 928 |  |  | min | -. 17 | 3 | -. 094 | 6 | -. 083 | 7 |
| 929 |  | 5 | max | 128 | 4 | . 066 | 6 | 0 | 1 |
| 930 |  |  | min | -. 17 | 3 | -. 042 | 7 | 0 | 1 |
| 931 | M94 | 1 | max | 0 | 3 | . 052 | 9 | 0 | 1 |
| 932 |  |  | min | 0 | 8 | -. 076 | 8 | 0 | 1 |
| 933 |  | 2 | max | 0 | 3 | . 051 | 9 | . 076 | 8 |
| 934 |  |  | min | 0 | 8 | -. 077 | 8 | -. 051 | 9 |
| 935 |  | 3 | max | 177 | 6 | . 05 | 9 | . 154 | 8 |
| 936 |  |  | min | -. 151 | 7 | -. 078 | 8 | -. 102 | 9 |
| 937 |  | 4 | max | . 177 | 6 | . 077 | 8 | . 076 | 8 |
| 938 |  |  | min | -. 151 | 7 | -. 051 | 9 | -. 051 | 9 |
| 939 |  | 5 | max | . 177 | 6 | . 076 | 8 | 0 | 1 |
| 940 |  |  | min | -. 151 | 7 | -. 052 | 9 | 0 | 1 |
| 941 | M95 | 1 | max | . 053 | 9 | . 063 | 9 | 0 | 1 |
| 942 |  |  | min | -. 049 | 8 | -. 087 | 8 | 0 | 1 |
| 943 |  | 2 | max | . 053 | 9 | . 062 | 9 | . 087 | 8 |
| 944 |  |  | min | -. 049 | 8 | -. 088 | 8 | -. 063 | 9 |
| 945 |  | 3 | max | . 177 | 6 | . 089 | 8 | . 175 | 8 |
| 946 |  |  | min | -. 151 | 7 | -. 04 | 5 | -. 125 | 9 |
| 947 |  | 4 | max | . 177 | 6 | . 088 | 8 | . 087 | 8 |
| 948 |  |  | min | -. 151 | 7 | -. 062 | 9 | -. 063 | 9 |
| 949 |  | 5 | max | . 177 | 6 | . 087 | 8 | 0 | 1 |
| 950 |  |  | min | -. 151 | 7 | -. 063 | 9 | 0 | 1 |
| 951 | M96 | 1 | max | 0 | 1 | 0 | 1 | 0 | 1 |
| 952 |  |  | min | 0 | 1 | 0 | 1 | 0 | 1 |
| 953 |  | 2 | max | 0 | 1 | -. 056 | 6 | 745 | 1 |
| 954 |  |  | min | 0 | 1 | -. 994 | 1 | . 042 | 6 |
| 955 |  | 3 | max | 0 | 6 | . 98 |  | . 992 | 1 |
| 956 |  |  | min | -. 002 | 1 | -. 057 | 7 | -. 049 | 6 |
| 957 |  | 4 | max | . 203 | 7 | . 67 | 1 | 26 | 1 |
| 958 |  |  | min | -. 215 | 4 | -. 186 | 6 | -. 321 | 6 |
| 959 |  | 5 | max | . 203 | 7 | . 143 | 7 | 0 | 1 |
| 960 |  |  | min | -. 215 | 4 | -. 323 | 1 | 0 | 1 |
| 961 | M97 | 1 | max | . 11 | 7 | . 661 | 1 | 0 | 1 |
| 962 |  |  | min | -. 12 | 4 | . 037 | 6 | 0 | 1 |
| 963 |  | 2 | max | . 11 | 7 | . 331 | 1 | -. 014 | 6 |
| 964 |  |  | min | -. 12 | 4 | . 018 | 6 | -. 248 | 1 |
| 965 |  | 3 | max | . 11 | 7 | 0 | 1 | -. 018 | 6 |
| 966 |  |  | min | -. 12 | 4 | 0 | 1 | -. 331 | 1 |
| 967 |  | 4 | max | . 11 | 7 | -. 018 | 7 | -. 014 | 6 |
| 968 |  |  | min | -. 12 | 4 | -. 331 | 1 | -. 248 | 1 |
| 969 |  | 5 | max | . 11 | 7 | -. 037 | 7 | 0 | 1 |
| 970 |  |  | min | -. 12 | 4 | -. 661 | 1 | 0 | 1 |
| 971 | M98 | 1 | max | . 039 | 7 | . 661 | 1 | 0 | 1 |



Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment ${ }^{\text {k }}$ | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 972 |  |  | min | -. 046 | 4 | . 037 | 7 | 0 | 1 |
| 973 |  | 2 | max | . 039 | 7 | . 331 | 1 | -. 014 | 7 |
| 974 |  |  | min | -. 046 | 4 | . 018 | 7 | -. 248 | 1 |
| 975 |  | 3 | max | . 039 | 7 | 0 | 1 | -. 018 | 7 |
| 976 |  |  | min | -. 046 | 4 | 0 | 1 | -. 331 | 1 |
| 977 |  | 4 | max | . 039 | 7 | -. 018 | 6 | -. 014 | 7 |
| 978 |  |  | min | -. 046 | 4 | -. 331 | 1 | -. 248 | 1 |
| 979 |  | 5 | max | . 039 | 7 | -. 037 | 6 | 0 | 1 |
| 980 |  |  | min | -. 046 | 4 | -. 661 | 1 | 0 | 1 |
| 981 | M99 | 1 | max | . 036 | 2 | . 661 | 1 | 0 | 1 |
| 982 |  |  | min | -. 049 | 3 | . 037 | 7 | 0 | 1 |
| 983 |  | 2 | max | . 036 | 2 | . 331 | 1 | -. 014 | 7 |
| 984 |  |  | min | -. 049 | 3 | . 018 | 7 | -. 248 | 1 |
| 985 |  | 3 | max | . 036 | 2 | 0 | 1 | -. 018 | 7 |
| 986 |  |  | min | -. 049 | 3 | 0 | 1 | -. 331 | 1 |
| 987 |  | 4 | max | . 036 | 2 | -. 018 | 6 | -. 014 | 7 |
| 988 |  |  | min | -. 049 | 3 | -. 331 | 1 | -. 248 | 1 |
| 989 |  | 5 | max | . 036 | 2 | -. 037 | 6 | 0 | 1 |
| 990 |  |  | min | -. 049 | 3 | -. 661 | 1 | 0 | 1 |
| 991 | M100 | 1 | max | . 062 | 2 | . 661 | 1 | 0 | 1 |
| 992 |  |  | min | -. 071 | 3 | . 037 | 6 | 0 | 1 |
| 993 |  | 2 | max | . 062 | 2 | . 331 | 1 | -. 014 | 6 |
| 994 |  |  | min | -. 071 | 3 | . 018 | 6 | -. 248 | 1 |
| 995 |  | 3 | max | . 062 | 2 | 0 | 1 | -. 018 | 6 |
| 996 |  |  | min | -. 071 | 3 | 0 | 1 | -. 331 | 1 |
| 997 |  | 4 | max | . 062 | 2 | -. 018 | 7 | -. 014 | 6 |
| 998 |  |  | min | -. 071 | 3 | -. 331 | 1 | -. 248 | 1 |
| 999 |  | 5 | max | . 062 | 2 | -. 037 | 7 | 0 | 1 |
| 1000 |  |  | min | -. 071 | 3 | -. 661 | 1 | 0 | 1 |
| 1001 | M101 | 1 | max | . 154 | 9 | . 661 | 1 | 0 | 1 |
| 1002 |  |  | min | -. 159 | 8 | . 037 | 7 | 0 | 1 |
| 1003 |  | 2 | max | . 154 | 9 | . 331 | 1 | -. 014 | 7 |
| 1004 |  |  | min | -. 159 | 8 | . 018 | 7 | -. 248 | 1 |
| 1005 |  | 3 | max | . 154 | 9 | 0 | 1 | -. 018 | 7 |
| 1006 |  |  | min | -. 159 | 8 | 0 | 1 | -. 331 | 1 |
| 1007 |  | 4 | max | . 154 | 9 | -. 018 | 6 | -. 014 | 7 |
| 1008 |  |  | min | -. 159 | 8 | -. 331 | 1 | -. 248 | 1 |
| 1009 |  | 5 | max | 154 | 9 | -. 037 | 6 | 0 | 1 |
| 1010 |  |  | min | -. 159 | 8 | -. 661 | 1 | 0 | 1 |
| 1011 | M102 | 1 | max | . 122 | 9 | . 661 | 1 | 0 | 1 |
| 1012 |  |  | min | -. 126 | 8 | . 037 | 6 | 0 | 1 |
| 1013 |  | 2 | max | . 122 | 9 | . 331 | 1 | -. 014 | 6 |
| 1014 |  |  | min | -. 126 | 8 | . 018 | 6 | -. 248 | 1 |
| 1015 |  | 3 | max | . 122 | 9 | 0 | 1 | -. 018 | 6 |
| 1016 |  |  | min | -. 126 | 8 | 0 |  | -. 331 | 1 |
| 1017 |  | 4 | max | . 122 | 9 | -. 018 | 6 | -. 014 | 6 |
| 1018 |  |  | min | -. 126 | 8 | -. 331 | 1 | -. 248 | 1 |
| 1019 |  | 5 | max | . 122 | 9 | -. 037 | 6 | 0 | 1 |
| 1020 |  |  | min | -. 126 | 8 | -. 661 | 1 | 0 | 1 |
| 1021 | M103 | 1 | max | . 101 | 9 | . 661 | 1 | 0 | 1 |
| 1022 |  |  | min | -. 104 | 8 | . 037 | 7 | 0 | 1 |
| 1023 |  | 2 | max | . 101 | 9 | . 331 | 1 | -. 014 | 7 |
| 1024 |  |  | min | -. 104 | 8 | . 018 | 7 | -. 248 | 1 |
| 1025 |  | 3 | max | 101 | 9 | 0 | 1 | -. 018 | 7 |
| 1026 |  |  | min | -. 104 | 8 | 0 |  | -. 331 | 1 |
| 1027 |  | 4 | max | 101 | 9 | -. 018 | 6 | -. 014 | 7 |
| 1028 |  |  | min | -. 104 | - | -. 331 | 1 | -. 248 | 1 |

## lirkISA <br> Company Larson Engineering Inc <br> $\begin{array}{lll}\text { Dosigner } & \vdots \text { MK } \\ \text { Job Number } \\ \vdots 21210330.000\end{array}$

 Apr 30, 20214:24PM
Checked By:

Envelope Member Section Forces (Continued)


IIRISA Designer
JobNumber $\begin{array}{l:l}\text { Job Number } & \begin{array}{ll}21210330.000 \\ \text { Model Name }\end{array} \\ & \text { Hamlin Middle School }\end{array}$

## Envelope Member Section Forces (Continued)



## |lirisA <br> Designe Designer Job Number Model Name <br> Larson Engineering Inc MK <br> 21210330.000

 Apr 30, 20214:24PM
Checked By:

Envelope Member Section Forces (Continued)


Company $\quad$ Larson Engineering Inc Designer MK $\begin{array}{l:l}\text { Job Number } & \vdots 21210330.000 \\ \text { Model Name }\end{array}$

Envelope Member Section Forces (Continued)

|IIRAS $=$
Envelope Member Section Forces (Continued)


Checked By:

Envelope Member Section Forces (Continued)


## lirkISA <br> Designe Designer Job Number Model Name <br> Larson Engineering Inc <br> 21210330.000

Apr 30, 2021
$4: 24$ PM Apres
4:24 PM
Checked By:

Envelope Member Section Forces (Continued)

 $\begin{array}{lll}\text { Designer } & \text { MK } \\ \text { Job Number } & \text { M1210330.000 } \\ \text { Model Name } & \\ \text { Hamlin Middle School }\end{array}$

## Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1428 |  |  | min | -. 9 | 9 | 0 | 1 | 0 | 1 |
| 1429 |  | 5 | max | 1.121 | 8 | 0 | 1 | 0 | 1 |
| 1430 |  |  | min | -. 899 | 9 | 0 | 1 | 0 | 1 |
| 1431 | M144 | 1 | max | 1.341 |  | 0 | 1 | 0 | 1 |
| 1432 |  |  | min | -. 056 | 6 | 0 | 1 | 0 | 1 |
| 1433 |  | 2 | max | 1.341 | 1 | 0 | 1 | 0 | 1 |
| 1434 |  |  | min | -. 055 | 6 | 0 | 1 | 0 | 1 |
| 1435 |  | 3 | max | 1.342 | 1 | 0 | 1 | 0 | 1 |
| 1436 |  |  | min | -. 055 | 6 | 0 | 1 | 0 | 1 |
| 1437 |  | 4 | max | 1.343 | 1 | 0 | 1 | 0 | 1 |
| 1438 |  |  | min | -. 054 | 6 | 0 | 1 | 0 | 1 |
| 1439 |  | 5 | max | 1.343 | 1 | 0 | 1 | 0 | 1 |
| 1440 |  |  | min | -. 054 | 6 | 0 | 1 | 0 | 1 |
| 1441 | M145 | 1 | max | 1.303 | 3 | 0 | 1 | 0 | 1 |
| 1442 |  |  | min | -. 655 | 8 | 0 | 1 | 0 | 1 |
| 1443 |  | 2 | max | 1.304 | 3 | 0 | 1 | 0 | 1 |
| 1444 |  |  | min | -. 654 | 8 | 0 | 1 | 0 | 1 |
| 1445 |  | 3 | max | 1.305 | 3 | 0 | 1 | 0 | 1 |
| 1446 |  |  | min | -. 653 | 8 | 0 | 1 | 0 | 1 |
| 1447 |  | 4 | max | 1.305 | 3 | 0 | 1 | 0 | 1 |
| 1448 |  |  | min | -. 652 | 8 | 0 | 1 | 0 | 1 |
| 1449 |  | 5 | max | 1.306 | 3 | 0 | 1 | 0 | 1 |
| 1450 |  |  | min | -. 652 | 8 | 0 | 1 | 0 | 1 |
| 1451 | M146 | 1 | max | 1.222 | 2 | 0 | 1 | 0 | 1 |
| 1452 |  |  | min | -. 914 | 9 | 0 | 1 | 0 | 1 |
| 1453 |  | 2 | max | 1.223 | 2 | 0 | 1 | 0 | 1 |
| 1454 |  |  | min | -. 913 | 9 | 0 | 1 | 0 | 1 |
| 1455 |  | 3 | max | 1.224 | 2 | 0 | 1 | 0 | 1 |
| 1456 |  |  | min | -. 912 | 9 | 0 | 1 | 0 | 1 |
| 1457 |  | 4 | max | 1.225 | 2 | 0 | 1 | 0 | 1 |
| 1458 |  |  | min | -. 911 | 9 | 0 | 1 | 0 | 1 |
| 1459 |  | 5 | max | 1.226 | 2 | 0 | 1 | 0 | 1 |
| 1460 |  |  | min | -. 91 | 9 | 0 | 1 | 0 | 1 |
| 1461 | M147 | 1 | max | 1.346 | 1 | 0 | 1 | 0 | 1 |
| 1462 |  |  | min | -. 114 | 6 | 0 | 1 | 0 | 1 |
| 1463 |  | 2 | max | 1.347 | 1 | 0 | 1 | 0 | 1 |
| 1464 |  |  | min | -. 1113 | 6 | 0 | 1 | 0 | 1 |
| 1465 |  | 3 | max | 1.347 | 1 | 0 | 1 | 0 | 1 |
| 1466 |  |  | min | -. 113 | 6 | 0 | 1 | 0 | 1 |
| 1467 |  | 4 | max | 1.348 | 1 | 0 | 1 | 0 | 1 |
| 1468 |  |  | min | -. 113 | 6 | 0 | 1 | 0 | 1 |
| 1469 |  | 5 | max | 1.349 | 1 | 0 | 1 | 0 | 1 |
| 1470 |  |  | min | -. 112 | 6 | 0 |  | 0 | 1 |
| 1471 | M148 | 1 | max | 1.443 | 3 | 0 | 1 | 0 | 1 |
| 1472 |  |  | min | -. 621 | 8 | 0 | 1 | 0 | 1 |
| 1473 |  | 2 | max | 1.443 | 3 | 0 | 1 | 0 | 1 |
| 1474 |  |  | min | -.621 | 8 | 0 | 1 | O | 1 |
| 1475 |  | 3 | max | 1.444 | 3 | 0 | 1 | 0 | 1 |
| 1476 |  |  | min | -. 62 | 8 | 0 | 1 | 0 | 1 |
| 1477 |  | 4 | max | 1.445 | 3 | 0 | 1 | 0 | 1 |
| 1478 |  |  | min | -. 619 | 8 | 0 | 1 | 0 | 1 |
| 1479 |  | 5 | max | 1.445 | 3 | 0 |  | 0 | 1 |
| 1480 |  |  | min | -. 619 | 8 | 0 | 1 | 0 | 1 |
| 1481 | M149 | 1 | max | 1.446 | 2 | 0 | 1 | 0 | 1 |
| 1482 |  |  | min | -. 936 | 9 | 0 |  | 0 |  |
| 1483 |  | 2 | max | 1.447 | 2 | 0 | 1 | 0 | 1 |
| 1484 |  |  | min | -. 935 | 9 | 0 | 1 | 0 | 1 |

## lirkISA <br> Designe <br> Designer Job Number Model Name <br> Larson Engineering Inc MK <br> MK 21210330.000 Hamlin Middle

 Apr 30, 20214:24 PM
Checked By:

Envelope Member Section Forces (Continued)



## Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear [k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1542 |  |  | min | -. 551 | 6 | 0 | 8 | 0 | 1 |
| 1543 |  | 2 | max | . 544 | 5 | 0 | 7 | 0 | 8 |
| 1544 |  |  | min | -. 551 | 6 | 0 | 8 | 0 | 7 |
| 1545 |  | 3 | max | . 544 | 5 | 0 | 1 | 0 | 8 |
| 1546 |  |  | min | -. 55 | 6 | 0 | 1 | 0 | 7 |
| 1547 |  | 4 | max | . 544 | 5 | 0 | g | 0 | 8 |
| 1548 |  |  | min | -. 55 | 6 | 0 | 6 | 0 | 7 |
| 1549 |  | 5 | max | . 545 | 5 | 0 | 9 | 0 | 1 |
| 1550 |  |  | min | -. 55 | 6 | 0 | 6 | 0 | 1 |
| 1551 | M156 | 1 | max | . 309 | 3 | 0 | 7 | 0 | 1 |
| 1552 |  |  | min | -. 237 | 4 | 0 | 4 | 0 | 1 |
| 1553 |  | 2 | max | . 31 | 3 | 0 | 7 | 0 | 4 |
| 1554 |  |  | min | -. 237 | 4 | 0 | 4 | 0 | 7 |
| 1555 |  | 3 | max | . 31 | 3 | 0 | 1 | 0 | 4 |
| 1556 |  |  | min | -. 236 | 4 | 0 | 1 | 0 | 7 |
| 1557 |  | 4 | max | . 311 | 3 | 0 | 5 | 0 | 4 |
| 1558 |  |  | min | -. 236 | 4 | 0 | 6 | 0 | 7 |
| 1559 |  | 5 | max | . 311 | 3 | 0 | 5 | 0 | 1 |
| 1560 |  |  | min | -. 235 | 4 | 0 | 6 | 0 | 1 |
| 1561 | M157 | 1 | max | . 315 | 3 | 0 | 6 | 0 | 1 |
| 1562 |  |  | min | -. 238 | 4 | 0 | 9 | 0 | 1 |
| 1563 |  | 2 | max | . 315 | 3 | 0 | 6 | 0 | 9 |
| 1564 |  |  | min | -. 237 | 4 | 0 | 9 | 0 | 6 |
| 1565 |  | 3 | max | . 316 | 3 | 0 | 1 | 0 | 9 |
| 1566 |  |  | min | -. 237 | 4 | 0 | 1 | 0 | 6 |
| 1567 |  | 4 | max | . 316 | 3 | 0 | 8 | 0 | 9 |
| 1568 |  |  | min | -. 236 | 4 | 0 | 7 | 0 | 6 |
| 1569 |  | 5 | max | . 317 | 3 | 0 | 8 | 0 | 1 |
| 1570 |  |  | min | -. 236 | 4 | 0 | 7 | 0 | 1 |
| 1571 | M158 | 1 | max | 463 | 9 | 0 | 7 | 0 | 1 |
| 1572 |  |  | min | -. 408 | 8 | 0 | 4 | 0 | 1 |
| 1573 |  | 2 | max | . 463 | 9 | 0 | 7 | 0 | 4 |
| 1574 |  |  | min | -. 407 | 8 | 0 | 4 | 0 | 7 |
| 1575 |  | 3 | max | . 464 | 9 | 0 | 1 | 0 | 4 |
| 1576 |  |  | min | -. 407 | 8 | 0 | 1 | 0 | 7 |
| 1577 |  | 4 | max | . 464 | 9 | 0 | 8 | 0 | 4 |
| 1578 |  |  | min | -. 407 | 8 | 0 | 6 | 0 | 7 |
| 1579 |  | 5 | max | . 465 | 9 | 0 | 8 | 0 | 1 |
| 1580 |  |  | min | -. 406 | 8 | O | 6 | 0 | 1 |
| 1581 | M159 | 1 | max | . 282 | 7 | 0 | 7 | 0 | 1 |
| 1582 |  |  | min | -. 331 | 6 | 0 | 8 | 0 | 1 |
| 1583 |  | 2 | max | . 282 | 7 | 0 | 7 | 0 | 8 |
| 1584 |  |  | min | -. 331 | 6 | 0 | 8 | 0 | 7 |
| 1585 |  | 3 | max | . 282 | 7 | 0 | 1 | 0 | 8 |
| 1586 |  |  | min | -. 331 | 6 | 0 | 1 | 0 | 7 |
| 1587 |  | 4 | max | . 282 | 7 | 0 | 5 | 0 | 8 |
| 1588 |  |  | min | -. 331 | 6 | 0 | 6 | 0 | 7 |
| 1589 |  | 5 | max | . 283 | 7 | 0 | 5 | 0 | 1 |
| 1590 |  |  | min | -. 33 | 6 | 0 | 6 | O | 1 |
| 1591 | M160 | 1 | max | . 282 | 7 | 0 | 6 | 0 | 1 |
| 1592 |  |  | min | -. 332 | 6 | 0 | 5 | 0 | 1 |
| 1593 |  | 2 | max | . 282 | 7 | 0 | 6 | 0 | 5 |
| 1594 |  |  | min | -. 331 | 6 | 0 | 5 | 0 | 6 |
| 1595 |  | 3 | max | . 282 | 7 | 0 | 1 | 0 | 5 |
| 1596 |  |  | min | -. 331 | 6 | 0 | 1 | 0 | 6 |
| 1597 |  | 4 | max | . 283 | 7 | 0 | 9 | 0 | 5 |
| 1598 |  |  | min | -. 331 | 6 | 0 | 7 | 0 | 6 |

## lirkISA <br> Company Larson Engineering Inc <br> $\begin{array}{lll}\text { Designer } & \text { MK } \\ \text { Job Number } \\ \text { 212 } \\ & 2120330.000\end{array}$

 Apr 30, 20214:24PM
Checked By:

Envelope Member Section Forces (Continued)


IIRISA Designer
JobNumber $\begin{array}{lll}\text { Job Number } & \vdots & 21210330.000 \\ \text { Model Name } & : & \text { Hamlin Middle School }\end{array}$

## Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1656 |  |  | min | -. 343 | 4 | 0 | 1 | 0 | 7 |
| 1657 |  | 4 | max | . 324 | 7 | 0 | 5 | 0 | 4 |
| 1658 |  |  | min | -. 343 | 4 | 0 | 6 | 0 | 7 |
| 1659 |  | 5 | max | . 325 | 7 | 0 | 5 | 0 | 1 |
| 1660 |  |  | min | -. 342 | 4 | 0 | 6 | 0 | 1 |
| 1661 | M167 | 1 | max | . 324 | 7 | 0 | 6 | 0 | 1 |
| 1662 |  |  | min | -. 344 | 4 | 0 | 1 | 0 | 1 |
| 1663 |  | 2 | max | . 324 | 7 | 0 | 6 | 0 | 1 |
| 1664 |  |  | min | -. 344 | 4 | 0 | 1 | 0 | 6 |
| 1665 |  | 3 | max | . 324 | 7 | 0 | 1 | 0 | 1 |
| 1666 |  |  | min | -. 343 | 4 | 0 | 1 | 0 | 6 |
| 1667 |  | 4 | max | . 324 | 7 | 0 | 5 | 0 | 1 |
| 1668 |  |  | min | -. 343 | 4 | 0 | 7 | 0 | 6 |
| 1669 |  | 5 | max | . 325 | 7 | 0 | 5 | 0 | 1 |
| 1670 |  |  | min | -. 342 | 4 | 0 | 7 | 0 | 1 |
| 1671 | M168 | 1 | max | . 001 | 6 | . 497 | 6 | 0 | 1 |
| 1672 |  |  | min | 0 | 2 | -. 003 | 1 | 0 | 1 |
| 1673 |  | 2 | max | . 21 | 5 | 0 | 1 | . 103 | 7 |
| 1674 |  |  | min | -. 327 | 6 | -. 168 | 6 | 0 | 1 |
| 1675 |  | 3 | max | . 151 | 6 | . 073 | 5 | 0 | 1 |
| 1676 |  |  | min | -. 063 | 5 | -. 088 | 4 | -. 052 | 5 |
| 1677 |  | 4 | max | . 15 | 6 | . 256 | 7 | 157 | 6 |
| 1678 |  |  | min | -. 157 | 3 | 0 |  | 0 | 1 |
| 1679 |  | 5 | max | . 002 | 4 | . 004 | 1 | 0 | 1 |
| 1680 |  |  | min | 0 | 3 | -. 661 | 7 | 0 | 1 |
| 1681 | M169 | 1 | max | . 302 | 5 | . 042 | 6 | 0 | 1 |
| 1682 |  |  | min | -. 511 | 6 | -. 024 | 5 | 0 | 1 |
| 1683 |  | 2 | max | . 312 | 5 | . 029 | 4 | . 05 | 5 |
| 1684 |  |  | min | -. 522 | 6 | -. 049 | 6 | -. 083 | 6 |
| 1685 |  | 3 | max | . 312 | 5 | . 049 | 7 | . 016 | 6 |
| 1686 |  |  | min | -. 522 | 6 | -. 05 | 6 | -. 027 | 8 |
| 1687 |  | 4 | max | . 31 | 5 | . 048 | 7 | . 092 | 4 |
| 1688 |  |  | min | -. 522 | 6 | -. 049 | 4 | -. 081 | 7 |
| 1689 |  | 5 | max | . 038 | 9 | . 045 | 6 | 0 | 1 |
| 1690 |  |  | min | -. 233 | 6 | -. 041 | 7 | 0 | 1 |
| 1691 | M170 | 1 | max | 0 | 5 | . 266 | 6 | 0 | 1 |
| 1692 |  |  | min | 0 | 2 | -. 005 | 1 | 0 | 1 |
| 1693 |  | 2 | max | . 129 | 7 | . 002 | 1 | . 007 | 7 |
| 1694 |  |  | min | -. 14 | 6 | -. 176 | 6 | -. 027 | 6 |
| 1695 |  | 3 | max | . 129 | 7 | . 147 | 7 | . 167 | 6 |
| 1696 |  |  | min | -. 14 | 6 | -. 176 | 6 | -. 001 | 1 |
| 1697 |  | 4 | max | . 14 | 6 | . 175 | 6 | 0 | 1 |
| 1698 |  |  | min | -. 129 | 7 | -. 003 | 1 | -. 112 | 7 |
| 1699 |  | 5 | max | . 001 | 6 | . 005 | 1 | 0 | 1 |
| 1700 |  |  | min | 0 | 3 | -. 402 | 7 | 0 | 1 |
| 1701 | M171 | 1 | max | . 407 | 7 | 0 | 7 | 0 | 1 |
| 1702 |  |  | min | -. 439 | 6 | 0 | 4 | 0 | 1 |
| 1703 |  | 2 | max | . 407 | 7 | 0 | 7 |  | 4 |
| 1704 |  |  | min | -. 439 | 6 | 0 | 4 | 0 | 7 |
| 1705 |  | 3 | max | . 408 | 7 | 0 | 1 | 0 | 4 |
| 1706 |  |  | min | -. 439 | 6 | 0 | 1 | 0 | 7 |
| 1707 |  | 4 | max | . 408 | 7 | 0 | 5 | 0 | 4 |
| 1708 |  |  | min | -. 439 | 6 | 0 | 6 | 0 | 7 |
| 1709 |  | 5 | max | . 408 | 7 | 0 | 5 | 0 | 1 |
| 1710 |  |  | min | -. 438 | 6 | 0 | 6 | 0 | 1 |
| 1711 | M172 | 1 | max | . 384 | 7 | 0 | 6 | 0 | 1 |
| 1712 |  |  | min | -. 407 | 6 | 0 | 2 | 0 | 1 |

## lirkISA <br> Designe Designer Job Number Model Name <br> Larson Engineering Inc MK <br> 21210330.000

 Apr 30, 20214:24PM
Checked By:

Envelope Member Section Forces (Continued)



## Envelope Member Section Forces (Continued)



## lirkISA <br> Designe Designer Job Number Model Name <br> Larson Engineering Inc <br> 21210330.000

 Apr 30, 20214:24 PM
Checked ——_

Envelope Member Section Forces (Continued)


Envelope Member Section Forces (Continued)


##  $\begin{array}{lll}\begin{array}{ll}\text { Job Number } \\ \text { Model Name }\end{array} & \vdots 21210330.000 \\ : & \text { Hamlin Middle }\end{array}$

Apr 30, 2021
4:24 PM ${ }^{4: 24 \mathrm{PM}}$ Checked By:

Envelope Member Section Forces (Continued)



Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment ${ }^{\text {k }}$ | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1998 |  |  | min | -. 105 | 3 | 0 | 1 | 0 | 3 |
| 1999 |  | 5 | max | . 081 | 4 | . 324 | 7 | . 124 | 6 |
| 2000 |  |  | min | -. 105 | 3 | 0 | 1 | 0 | 3 |
| 2001 | M201 | 1 | max | . 081 | 4 | . 325 | 7 | 124 | 6 |
| 2002 |  |  | min | -. 105 | 3 | 0 | 1 | 0 | 3 |
| 2003 |  | 2 | max | . 081 | 4 | 324 | 7 | 023 | 4 |
| 2004 |  |  | min | -. 105 | 3 | -. 001 | 1 | -. 117 | 7 |
| 2005 |  | 3 | max | . 081 | 4 | . 324 | 7 | . 001 | 2 |
| 2006 |  |  | min | -. 105 | 3 | -. 002 | 1 | -. 239 | 7 |
| 2007 |  | 4 | max | . 081 | 4 | . 324 | 7 | . 002 | 2 |
| 2008 |  |  | min | -. 105 | 3 | -. 002 | 1 | -. 36 | 7 |
| 2009 |  | 5 | max | . 003 | 4 | . 004 | 2 | . 001 | 2 |
| 2010 |  |  | min | 0 | 3 | -. 801 | 7 | -. 2 | 7 |
| 2011 | M202 | 1 | max | . 003 | 4 | . 004 | 2 | . 001 | 2 |
| 2012 |  |  | min | 0 | 3 | -. 801 | 7 | -. 2 | 7 |
| 2013 |  | 2 | max | . 003 | 4 | . 004 | 2 | 0 | 2 |
| 2014 |  |  | min | 0 | 3 | -. 801 | 7 | -. 15 | 7 |
| 2015 |  | 3 | max | . 003 | 4 | . 004 | 2 | 0 | 2 |
| 2016 |  |  | min | 0 | 3 | -. 801 | 7 | -. 1 | 7 |
| 2017 |  | 4 | max | . 003 | 4 | . 004 | 2 | 0 | 2 |
| 2018 |  |  | min | 0 | 3 | -. 801 | 7 | -. 05 | 7 |
| 2019 |  | 5 | max | . 003 | 4 | . 004 | 2 | 0 | 1 |
| 2020 |  |  | min | 0 | 3 | -. 801 | 7 | 0 | 1 |
| 2021 | M203 | 1 | max | 0 | 9 | . 473 | 8 | . 001 | 1 |
| 2022 |  |  | min | 0 | 2 | -. 005 | 1 | -. 118 | 8 |
| 2023 |  | 2 | max | . 074 | 7 | . 003 | 1 | . 002 | 1 |
| 2024 |  |  | min | -. 09 | 6 | -. 361 | 8 | -. 191 | 8 |
| 2025 |  | 3 | max | . 074 | 7 | . 003 | 1 | . 014 | 9 |
| 2026 |  |  | min | -. 09 | 6 | -. 361 | 8 | -. 056 | 8 |
| 2027 |  | 4 | max | . 074 | 7 | . 002 | 1 | . 08 | 8 |
| 2028 |  |  | min | -. 09 | 6 | -. 362 | 8 | 0 | 1 |
| 2029 |  | 5 | max | . 074 | 7 | . 002 | 1 | 215 | 8 |
| 2030 |  |  | min | -. 09 | 6 | -. 362 | 8 | 0 | 1 |
| 2031 | M204 | 1 | max | . 074 | 7 | . 002 | 1 | 215 | 8 |
| 2032 |  |  | min | -. 09 | 6 | -. 362 | 8 | 0 | 1 |
| 2033 |  | 2 | max | . 074 | 7 | . 002 | 1 | . 261 | 8 |
| 2034 |  |  | min | -. 09 | 6 | -. 362 | 8 | -. 001 | 1 |
| 2035 |  | 3 | max | . 09 | 6 | . 386 | 9 | . 306 | 8 |
| 2036 |  |  | min | -. 074 | 7 | -. 362 | 8 | -. 001 | 1 |
| 2037 |  | 4 | max | . 09 | 6 | . 386 | 9 | . 261 | 8 |
| 2038 |  |  | min | -. 074 | 7 | -. 001 | 1 | -. 001 | 1 |
| 2039 |  | 5 | max | . 09 | 6 | . 386 | 9 | 216 | 8 |
| 2040 |  |  | min | -. 074 | 7 | -. 002 | 1 | 0 | 1 |
| 2041 | M205 | 1 | max | . 09 | 6 | . 386 | 9 | 216 | 8 |
| 2042 |  |  | min | -. 074 | 7 | -. 002 | 1 | 0 | 1 |
| 2043 |  | 2 | max | . 09 | 6 | . 385 | 9 | . 08 | 8 |
| 2044 |  |  | min | -. 074 | 7 | -. 002 | 1 | -. 129 | 9 |
| 2045 |  | 3 | max | . 09 | 6 | . 385 | 9 | 0 | 2 |
| 2046 |  |  | min | -. 074 | 7 | -. 002 | 1 | -. 274 | 9 |
| 2047 |  | 4 | max | . 09 | 6 | . 385 | 9 | . 002 | 2 |
| 2048 |  |  | min | -. 074 | 7 | -. 003 | 1 | -. 418 | 9 |
| 2049 |  | 5 | max | . 004 | 8 | . 004 | 2 | 0 | 2 |
| 2050 |  |  | min | 0 | 3 | -. 932 | 9 | -. 233 | 9 |
| 2051 | M206 | 1 | max | . 004 | 8 | . 004 | 2 | 0 | 2 |
| 2052 |  |  | min | 0 | 3 | -. 932 | 9 | -. 233 | 9 |
| 2053 |  | 2 | max | . 004 | 8 | . 004 | 2 | 0 | 2 |
| 2054 |  |  | min | 0 | 3 | -. 932 | 9 | -. 175 | 9 |

##  $\begin{array}{lll}\text { Job Number } & \text { NK } \\ \text { Model Name } \\ & 21210330.000 \\ \text { Hamlin Middle }\end{array}$

Apr 30, 2021
4:24 PM ${ }^{4: 24 \mathrm{PM}}$ Checked By:

Envelope Member Section Forces (Continued)


Envelope Member Section Forces (Continued)


Page 60

## lirkISA <br> $\begin{array}{lll}\text { Company } & \vdots \text { Larson Engineering In }\end{array}$ <br> ${ }_{21210330.000}$ <br> 21210330.000 Hamlin Middle School

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial $[\mathrm{k}]$ | LC | Shear[k] | LC | Moment ${ }^{\text {l } k \text {-fi }}$ | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2169 |  | 5 | max | . 162 | 9 | 0 | 7 | 0 | 1 |
| 2170 |  |  | min | -. 139 | 8 | 0 | 8 | 0 | I |
| 2171 | M218 | 1 | max | 2.42 | 8 | 0 | 4 | 0 | 1 |
| 2172 |  |  | min | -2.399 | 9 | 0 | 6 | 0 | 1 |
| 2173 |  | 2 | max | 2.42 | 8 | 0 | 4 | 0 | 6 |
| 2174 |  |  | min | -2.399 | 9 | 0 | 6 | 0 | 4 |
| 2175 |  | 3 | max | 2.42 | 8 | 0 | 1 | 0 | 6 |
| 2176 |  |  | min | -2.399 | 9 | 0 | 1 | 0 | 4 |
| 2177 |  | 4 | max | 2.42 | 8 | 0 | 7 | 0 | 6 |
| 2178 |  |  | min | -2.399 | 9 | 0 | 1 | 0 | 4 |
| 2179 |  | 5 | max | 2.42 | 8 | 0 | 7 | 0 | 1 |
| 2180 |  |  | min | -2.399 |  | 0 | 1 | 0 | 1 |
| 2181 | M219 | 1 | max | . 663 | 1 | . 763 | 9 | . 19 | 9 |
| 2182 |  |  | min | . 037 | 6 | -. 775 | 8 | -. 188 | 8 |
| 2183 |  | 2 | max | . 663 | 1 | . 763 | 9 | . 094 | 9 |
| 2184 |  |  | min | . 037 | 6 | -. 775 | 8 | -. 091 | 8 |
| 2185 |  | 3 | max | 1.099 | 8 | 1.231 | 8 | . 013 | 1 |
| 2186 |  |  | min | -. 896 | 9 | -1.211 | 9 | -. 001 | 9 |
| 2187 |  | 4 | max | 1.092 | 8 | . 033 | 9 | . 094 | 9 |
| 2188 |  |  | min | -. 903 | 9 | -. 026 | 8 | -. 092 | 8 |
| 2189 |  | 5 | max | 1.092 | 8 | . 033 | 9 | . 09 | 9 |
| 2190 |  |  | min | -. 903 | 9 | -. 026 | 8 | -. 088 | 8 |
| 2191 | M220 | 1 | max | . 008 | 9 | . 3 | 8 | 1.276 | 9 |
| 2192 |  |  | min | . 005 | 6 | -. 3 | 9 | -1.276 | 8 |
| 2193 |  | 2 | max | . 008 | 9 | . 3 | 8 | 1.319 | 9 |
| 2194 |  |  | min | . 005 | 6 | -. 3 | 9 | -1.319 | 8 |
| 2195 |  | 3 | max | . 009 | 5 | 1.245 | 9 | 1.301 | 9 |
| 2196 |  |  | min | -. 01 | 9 | -1.256 | 8 | -1.3 | 8 |
| 2197 |  | 4 | max | . 009 | 5 | 1.245 | 9 | 1.12 | 9 |
| 2198 |  |  | min | -. 009 | 9 | -1.256 | 8 | -1.118 | 8 |
| 2199 |  | 5 | max | . 009 | 5 | 1.245 | 9 | . 94 | 9 |
| 2200 |  |  | min | -. 009 | 9 | -1.256 | 8 | -. 936 | 8 |

## Envelope AA ADM1-15: ASD - Building Aluminum Code Checks

| Member |  | Shape | Code Ch. |  | LC Shear Ch. |  | Loc[ft] | LC | $\begin{array}{\|c} \hline \text { Pnc/Om[k] } \\ \hline 1.186 \\ \hline \end{array}$ | $\frac{\mathrm{Pnt} / \mathrm{Om}[\mathrm{k}]}{8.273}$ | $\begin{gathered} \mathrm{Mn} / \mathrm{Om}[\mathrm{k}-\mathrm{-} \\ \hline .356 \end{gathered}$ | Vn/Om[k] Cb Eqn |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | L3X2X0.188 |  | 6.224 | 6 | . 081 | 6.79 |  |  |  |  | 3.076 | 1 | H.1-1 |
| 2 | M2 | L3X2X0.188 | . 069 | . 25 | 6 | . 032 | 0 | 6 | 7.077 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 3 | M3 | L3X2X0.188 | . 366 | 25 | 6 | . 169 | 0 | 6 | 7.077 | 8.273 | 356 | 3.076 | 1 | H.1- |
| 4 | M4 | L3X2X0.188 | . 275 | 2.21 | 6 | . 010 | 2.21 | 6 | 2.68 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 5 | M5 | L3X2X0.188 | . 397 | 6 | 4 | . 017 | 6 | 4 | . 861 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 6 | M6 | L3X2X0.188 | . 426 | 2 | 6 | . 023 | 2 | 6 | 3.183 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 7 | M7 | L3X2X0.188 | 418 | 6 | 4 | . 018 | 4 | 7 | . 861 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 8 | M8 | L3X2X0.188 | 454 | 2 | 6 | . 026 | 2 | 8 | 3.183 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 9 | M9 | L3X2X0.188 | 503 | 2 | 8 | . 030 | 2 | 8 | 3.183 | 8.273 | . 394 | 3.076 | 1 | H.1- |
| 10 | M10 | L3X2X0.188 | . 533 | 25 | 1 | . 300 | 0 | 1 | 7.077 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 11 | M11 | L3X2X0.188 | . 839 | , | 1 | 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H.1- |
| 12 | M12 | L3X2X0.188 | . 839 | 1 | 1 | . 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 13 | M13 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 2 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 14 | M14 | L3X2X0.188 | . 879 | 2.188 | 1 | . 281 | 2.188 | 1 | 1.506 | 8.273 | . 356 | 3.076 | 1 | H.3-2 |
| 15 | M15 | L3X2X0.188 | . 839 | 1 | 1 | . 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 16 | M16 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 17 | M17 | L3X2X0.188 | 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 18 | M18 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | 394 | 3.076 | 1 | H.1-1 |
| 19 | M19 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 20 | M20 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |

[^12]Apr 30, 2021
$4: 24 \mathrm{PM}$
4:24 PM
Checked By:
listisA $\begin{array}{ll}\text { Company } & \vdots \\ \text { Dosigner } \\ \text { lob }\end{array}$ MK 21210330.000
Hamlin Middle School

Envelope AA ADM1-15: ASD - Building Aluminum Code Checks (Continued)

| Member |  | Shape | $\begin{gathered} \text { Code Ch... } \\ \hline \quad .839 \end{gathered}$ | $\begin{gathered} \text { Loc[ft] } \\ 1 \end{gathered}$ |  | $\begin{gathered} \text { Shear Ch. } \\ \hline .215 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Loc[ft] } \\ \hline 0 \\ \hline \end{gathered}$ | LC | $\begin{gathered} \text { Pnc/Om[k] } \\ \hline 5.25 \end{gathered}$ | $\begin{array}{\|c} \hline \text { Pnt/Om[k] }] \\ \hline 8.273 \\ \hline \end{array}$ | $\begin{gathered} \text { Mn/Om/k-. } \\ \hline .394 \end{gathered}$ | $\begin{gathered} \mathrm{Vn} / \mathrm{Om}[\mathrm{k}] \\ \hline 3.076 \\ \hline \end{gathered}$ | Cb Eqn |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21 | M21 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 22 | M22 | L3X2X0.188 | 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | 394 | 3.076 | 1 | H.1-1 |
| 23 | M23 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H. 1 |
| 24 | M24 | L3X2X0.188 | 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | 394 | 3.076 | 1 | H.1 |
| 25 | M25 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H. |
| 26 | M26 | L3X2X0.188 | . 839 | 1 | 1 | . 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H. 1 |
| 27 | M27 | L2X2X0.188 | 195 | 2.04 | 1 | . 000 | 0 | 1 | 4.728 | 6.573 | 196 | 2.051 | 1 | H.1- |
| 28 | M28 | L2X2X0.188 | 412 | 677 | 1 | 025 | 0 | 4 | 3.876 | 6.573 | 183 | 2.051 | 1 | H.1-1 |
| 29 | M29 | L2X2X0.18 | 521 | 704 | 2 | 045 | 0 | 4 | 3.068 | 6.573 | 183 | 2.051 | 1 | H.1-1 |
| 30 | M30 | L2X2X0.188 | . 627 | 673 | 2 | . 042 | 631 | 5 | 2.315 | 6.573 | . 183 | 2.051 | 1 | H.1-1 |
| 31 | M31 | L2X2X0.188 | . 401 | 1.335 | 2 | . 038 | 0 | 6 | 3.926 | 6.573 | . 183 | 2.051 | 1 | H.1 |
| 32 | M32 | L2X2X0.188 | 422 | 2.67 | 1 | . 000 | 0 | 1 | 3.926 | 6.573 | 196 | 2.051 | 1 | H. 1 |
| 33 | M33 | L3X2X0.188 | . 288 | 2.67 | 1 | 000 | 0 | 1 | 4.705 | 8.273 | . 356 | 3.076 | 1 | H. 1 |
| 34 | M34 | L2X2X0.188 | 493 | . 664 | 3 | . 072 | 631 | 6 | 3.295 | 6.573 | 183 | 2.051 | 1 | H.1-1 |
| 35 | M35 | L2X2X0.188 | 549 | 683 | 1 | . 039 | 643 | 6 | 2.518 | 6.573 | . 183 | 2.051 |  | H. 1 |
| 36 | M36 | L2X2X0.188 | 743 | 707 | 1 | 026 | 0 | 2 | 1.835 | 6.573 | 183 | 2.051 | 1 | H.1- |
| 37 | M37 | L2X2X0.188 | 457 | 703 | 2 | 037 | 0 | 5 | 3.738 | 6.573 | 183 | 2.051 | 1 | H.1-1 |
| 38 | M38 | L3X2X0.188 | . 471 | 671 | 2 | . 066 | 61 | 6 | 4.525 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 39 | M39 | L2X2X0.188 | . 426 | 2.688 | 1 | . 000 | 0 | 1 | 3.903 | 6.573 | 196 | 2.051 | 1 | H.1- |
| 40 | M40 | L3X2X0.188 | 309 | 2.688 | 2 | . 000 | 0 | 1 | 4.687 | 8.273 | 356 | 3.076 | 1 | H.3- |
| 41 | M41 | L2X2X0.188 | . 210 | 2.83 | 1 | 000 | 0 | 1 | 3.728 | 6.573 | 196 | 2.051 | 1 | H.1- |
| 42 | M42 | L2X2X0.188 | 355 | 2.83 | 1 | . 000 | 0 | 1 | 3.728 | 6.573 | 196 | 2.051 | 1 | H.3-2 |
| 43 | M43 | L2X2X0.188 | . 359 | 2.83 | 1 | . 000 | 0 | 1 | 3.728 | 6.573 | . 196 | 2.051 | 1 | H.3- |
| 44 | M44 | L2X2X0.188 | . 422 | 2.83 | 3 | . 000 | 0 | 1 | 3.728 | 6.573 | 196 | 2.051 | 1 | H. 1 |
| 45 | M45 | L3X2X0.188 | . 334 | 2.83 | 2 | . 000 | 0 | 1 | 4.541 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 46 | M46 | L2X2X0.188 | 486 | 7 | 8 | . 065 | 0 | 8 | 3.283 | 6.573 | 196 | 2.051 | 1 | H.1- |
| 47 | M47 | L2X2X0.188 | . 528 | 683 | 1 | . 054 | 0 | 8 | 2.518 | 6.573 | 196 | 2.051 | 1 | H.1- |
| 48 | M48 | L2X2X0.188 | . 724 | 708 | 1 | . 046 | 0 | 8 | 1.835 | 6.573 | 196 | 2.051 |  | H.1- |
| 49 | M49 | L2X2X0.188 | 481 | 704 | 2 | 044 | 0 | 7 | 3.733 | 6.573 | 183 | 2.051 | 1 | H.1-1 |
| 50 | M50 | L3X2X0.188 | 509 | 671 | 9 | 084 | 0 | 9 | 4.519 | 8.273 | 356 | 3.076 | 1 | H.1- |
| 51 | M51 | L2X2X0.188 | . 388 | 3.08 | 1 | . 000 | 0 | 1 | 3.424 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 52 | M52 | L2X2X0.188 | . 388 | 3.08 | 1 | . 000 | 0 | 1 | 3.424 | 6.573 | . 196 | 2.051 | 1 | H.1- |
| 53 | M53 | L2X2X0.188 | . 391 | 3.08 | 1 | . 000 | 0 | 1 | 3.424 | 6.573 | 196 | 2.051 | 1 | H. 1 |
| 54 | M54 | L2X2X0.188 | . 424 | 3.08 | 3 | . 000 | 0 | 1 | 3.424 | 6.573 | 196 | 2.051 | 1 | H. 1 |
| 55 | M55 | L3X2X0.188 | 363 | 3.08 | 2 | . 000 | 0 | 1 | 4.269 | 8.273 | . 356 | 3.076 | 1 | H.1- |
| 56 | M56 | L2X2X0.188 | . 389 | 3.08 | 1 | . 000 | 0 | 1 | 3.424 | 6.573 | . 196 | 2.051 | 1 | H.1 |
| 57 | M57 | L2X2X0.188 | . 389 | 3.08 | 1 | . 000 | 0 | 1 | 3.424 | 6.573 | . 196 | 2.051 | 1 | H.3-2 |
| 58 | M58 | L2X2X0.188 | . 394 | 3.08 | 1 | . 000 | 0 | 1 | 3.424 | 6.573 | . 196 | 2.051 | 1 | H.3-2 |
| 59 | M59 | L2X2X0.188 | . 495 | 3.08 | 3 | . 000 | 0 | 1 | 3.424 | 6.573 | . 196 | 2.051 | 1 | H.1- |
| 60 | M60 | L3X2X0.188 | 407 | 3.08 | 2 | . 000 | 0 | 1 | 4.269 | 8.273 | 356 | 3.076 | 1 | H.1- |
| 61 | M61 | L2X2X0.188 | . 779 | . 702 | , | . 100 | 0 | 9 | 3.271 | 6.573 | 183 | 2.051 |  | H.1-1 |
| 62 | M62 | L2X2X0.188 | . 550 | 687 | 1 | . 017 | 0 | 9 | 2.495 | 6.573 | 183 | 2.051 | 1 | H.1-1 |
| 63 | M63 | L3X2X0.188 | . 008 | 25 | 5 | . 007 | 25 | 4 | 7.077 | 8.273 | 356 | 3.076 | 1 | H.1-1 |
| 64 | M64 | L2X2X0.188 | . 401 | 3.16 | 1 | . 000 | 0 | 1 | 3.328 | 6.573 | . 196 | 2.051 |  | H.1-1 |
| 65 | M65 | L2X2X0.188 | . 387 | 3.16 | 1 | . 000 | 0 | 1 | 3.328 | 6.573 | . 196 | 2.051 | 1 | H.3-2 |
| 66 | M66 | L3X2X0.188 | . 273 | 3.16 | 8 | . 000 | 0 | 1 | 4.178 | 8.273 | 356 | 3.076 | 1 | H.1- |
| 67 | M67 | L2X2X0.188 | 404 | 3.16 | 1 | . 000 | 0 | 1 | 3.328 | 6.573 | 196 | 2.051 | 1 | H.1- |
| 68 | M68 | L2X2X0.188 | . 392 | 3.16 | 3 | . 000 | 0 | 1 | 3.328 | 6.573 | 196 | 2.051 | 1 | H.3-2 |
| 69 | M69 | L3X2X0.188 | . 294 | 3.16 | 2 | . 000 | 0 | 1 | 4.178 | 8.273 | 356 | 3.076 | 1 | H.1- |
| 70 | M70 | L2X2X0.188 | . 405 | 3.16 | 1 | . 000 | 0 | 1 | 3.328 | 6.573 | 196 | 2.051 | 1 | H.1-1 |
| 71 | M71 | L2X2X0.188 | 434 | 3.16 | 3 | . 000 | 0 | 1 | 3.328 | 6.573 | . 196 | 2.051 | 1 | H.3-2 |
| 72 | M72 | L3X2X0.188 | . 348 | 3.16 | 2 | . 000 | 0 | 1 | 4.178 | 8.273 | 356 | 3.076 | 1 | H.1-1 |
| 73 | M73 | USC4X1.85 | . 633 | 0 | 8 | . 184 | 1.174 | 9 | 13.351 | 14.273 | 1.451 | 3.927 | 1... | H.1-1 |
| 74 | M74 | L2X2X0.188 | . 250 | 415 | - | . 000 | , | , | 5.252 | 6.573 | . 183 | 2.051 | 1 | H.1-1 |
| 75 | M75 | USC4X1.85 | . 386 | 4.25 | 9 | 033 | 0 | - | 6.318 | 30.595 | 3.303 | 9.164 | $1 .$. | H.1-1 |
| 76 | M76 | L2 $2 \times 2 \times 0.188$ | 320 | 2.688 | 1 | 000 | 0 | 1 | 3.903 | 6.573 | 196 | 2.051 | 1 | H.1-1 |
| 77 | M77 | L1.5x1.5x.1... | . 366 | 2.127 | 5 | 000 | 3.927 | 5 | 1.049 | 4.794 | . 103 | 1.534 | 1 | H.1-1 |

RISA-2D Version 17.0.1 [Z:I........IProject DocsICalcsIFirst Base Frames.r2d]
Page 62


Envelope AA ADM1-15: ASD - Building Aluminum Code Checks (Continued)




 | 83 | M83 | L1.5x1.5x.1... | .328 | 1.784 | 9 | .000 | 0 | 9 | 1.435 | 4.794 | .103 | 1.534 | 1 | H.1-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 84 | M84 | L1.5x1.5x.1... | .256 | 2.026 | 7 | .000 | 0 | 8 | 1.157 | 4.794 | .103 | 1.534 | 1 | $H .1-1$ |

 | 86 | M 86 | $\mathrm{~L} 1.5 \times 1.5 \times 1 . \ldots$ | .256 | 2.026 | 7 | .000 | 3.74 | 5 | 1.157 | 4.794 | .103 | 1.534 | 1 | H. $.1-1$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 87 | M 87 | $\mathrm{~L} 2 \times 2 \times 0.188$ | .121 | 2.008 | 9 | .000 | 0 | 5 | 2.606 | 6.573 | .183 | 2.051 | 1 | H.1-1 |



 | 90 | M 90 | $\mathrm{~L} 3 \times 2 \times 0.188$ | .550 | 6 | 7 | .024 | 6 | 6 | .861 | 8.273 | .356 | 3.076 | 1 | H.1-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 91 | M 91 | $\mathrm{~L} \times 2 \mathrm{XXO} .188$ | .466 | 6 | 6 | .029 | 6 | 6 | .861 | 8.273 | .394 | 3.076 | 1 | $\mathrm{H} .1-1$ |
| 92 | M 92 | $\mathrm{~L} 3 \times 2 \mathrm{OXO.188}$ | .363 | 2 | 6 | .022 | 2 | 8 | 3.183 | 8.273 | .394 | 3.076 | 1 | $\mathrm{H} .1-1$ |




 \begin{tabular}{|llllllllllllllllll|}
\hline 98 \& M98 \& $\mathrm{L} 3 \times 2 \times 0.188$ \& .839 \& 1 \& 1 \& .215 \& 0 \& 1 \& 5.25 \& 8.273 \& .394 \& 3.076 \& 1 \& H.1-1 <br>
\hline 99 \& M99 \& $\mathrm{L} 3 \times 2 \times 0.188$ \& .839 \& 1 \& 1 \& 215 \& 0 \& 1 \& 5.25 \& 8.273 \& 394 \& 3.076 \& 1 \& H.1-1 <br>
\hline

 

\hline 99 \& M99 \& $\mathrm{L} 3 \times 2 \times 0.188$ \& .839 \& 1 \& 1 \& .215 \& 0 \& 1 \& 5.25 \& 8.273 \& .394 \& 3.076 \& 1 \& H.1-1 <br>
\hline 100 \& M100 \& $\mathrm{L} 3 \times 2 \times 0.188$ \& .839 \& 1 \& 1 \& .215 \& 0 \& 1 \& 5.25 \& 8.273 \& .394 \& 3.076 \& 1 \& H.1-1 <br>
\hline

 

100 \& M 100 \& $\mathrm{~L} \times 2 \times 0.188$ \& .839 \& 1 \& 1 \& .215 \& 0 \& 1 \& 5.25 \& 8.273 \& .394 \& 3.076 \& 1 \& H.1-1 <br>
\hline 101 \& M 101 \& $\mathrm{~L} 3 \times 2 \times 0.188$ \& .839 \& 1 \& 1 \& .215 \& 0 \& 1 \& 5.25 \& 8.273 \& .394 \& 3.076 \& 1 \& H.1-1 <br>
\hline 102 \& M 102 \& $\mathrm{~L} 3 \times 2 \mathrm{XXO.188}$ \& 839 \& 1 \& 1 \& 215 \& 0 \& 1 \& 525 \& 8.273 \& 394 \& 3.076 \& 1 \& H.1-1
\end{tabular}

 \begin{tabular}{llllllllllllllll}
104 \& M104 \& L3X2X0.188 \& .839 \& 1 \& 1 \& .215 \& 0 \& 1 \& 5.25 \& 8.273 \& .394 \& 3.076 \& 1 \& H. $.1-1$ <br>
\hline 105 \& M105 \& L3X2X0.188 \& .839 \& 1 \& 1 \& .215 \& 0 \& 1 \& 5.25 \& 8.273 \& .394 \& 3.076 \& 1 \& H.1-1 <br>
\hline 106 \& M106 \& L

 

\hline 106 \& M 106 \& $\mathrm{~L} 3 \times 2 \times 0.188$ \& .839 \& 1 \& 1 \& .215 \& 0 \& 1 \& 5.25 \& 8.273 \& .394 \& 3.076 \& 1 \& H.1-1 <br>
\hline 107 \& M 107 \& $\mathrm{~L} 3 \times 2 \mathrm{X} 0.188$ \& .839 \& 1 \& 1 \& 215 \& 0 \& 1 \& 525 \& 8.273 \& 394 \& 3.076 \& 1 \& H.1-1 <br>
\hline
\end{tabular}

 | 109 | M 109 | $\mathrm{~L} 2 \times 2 \times 0.188$ | .761 | 2.687 | 1 | .000 | 0 | 1 | 3.905 | 6.573 | .196 | 2.051 | 1 | H.1-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 110 | M 110 | $\mathrm{~L} 3 \times 2 \times 0.188$ | .150 | 2.687 | 1 | 000 | 0 | 1 | 4.688 | 8.273 | 356 | 3.076 | 1 | . 11 |

 | 112 | M 112 | $\mathrm{~L} 2 \times 2 \times 0.188$ | .569 | .688 | 1 | .085 | .636 | 4 | 3.262 | 6.573 | .196 | 2.051 | 1 | $\mathrm{H} .1-1$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 113 | L 13 |  | .648 | 4 | 2.487 | 6.573 | .196 | 2.051 | 1 | $\mathrm{H} .1-1$ |  |  |  |  |

 | 114 | M 114 | $\mathrm{~L} 2 \times 2 \times 0.188$ | .439 | .706 | 3 | .035 | 0 | 3 | 3.723 | 6.573 | .196 | 2.051 | 1 | $\mathrm{H} .1-1$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 115 | M 115 | $\mathrm{~L} 3 \times 2 \mathrm{ZO} .188$ | .474 | .674 | 2 | .068 | .613 | 6 | 4.504 | 8.273 | .394 | 3.076 | 1 | $\mathrm{H} .1-1$ |







 | 125 | M 125 | $\mathrm{~L} 2 \times 2 \times 0.188$ | .734 | .71 | 1 | .044 | 0 | 8 | 1.822 | 6.573 | .196 | 2.051 | 1 | H.1-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 126 | M 126 | $\mathrm{~L} 2 \times 2 \times 0.188$ | .478 | .706 | 2 | .041 | 0 | 5 | 3.724 | 6.573 | .183 | 2.051 | 1 | $\mathrm{H} .1-1$ |





 \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 131 \& M 131 \& $\mathrm{~L} 2 \times 2 \times 0.188$ \& .425 \& 3.08 \& 3 \& .000 \& 0 \& 1 \& 3.424 \& 6.573 \& .196 <br>
\hline 132 \& M 132 \& $\mathrm{~L} 3 \times 2 \mathrm{XXO.188}$ \& .362 \& 3.08 \& 2 \& .000 \& 0 \& 1 \& 4.269 \& 8.273 \& .356 <br>
\hline

 

133 \& M 133 \& $\mathrm{~L} 2 \times 2 \times 0.188$ \& .389 \& 3.08 \& 1 \& .000 \& 0 \& 1 \& 3.424 \& 6.573 \& .196 \& 2.051 \& 1 \& $\mathrm{H} .1-1$ <br>
\hline 134 \& M 134 \& $\mathrm{~L} 2 \times 2 \times 0.188$ \& .389 \& 3.08 \& 1 \& .000 \& 0 \& 1 \& 3.424 \& 6.573 \& .196 \& 2.051 \& 1 \& $\mathrm{H} .1-1$ <br>
\hline
\end{tabular}

RISA-2D Version 17.0.1 [Z:I........IProject DocsICalcs|First Base Frames.r2d]
Page 63
MRISAA $\begin{array}{ll}\text { Company } \\ \text { Designer } \\ \text { JobNumber } \\ \text { Mole }\end{array} \begin{aligned} & \vdots \\ & \vdots \\ & \text { UK } \\ & 21210330.000\end{aligned}$
Apr 30, 2021 $\begin{array}{l:l}\text { Designer } & \text { MK } \\ \text { Job Number } & \\ \text { Model Name } & 21210330.000 \\ \text { : } & \end{array}$
Envelope AA ADM1-15: ASD - Building Aluminum Code Checks (Continued)

| Member |  | ShapeL2X2X0. 188 | Code Ch... | Locfft] | LC Shear Ch |  | $\begin{aligned} & \text { Loc[ft] } \\ & \hline \end{aligned}$ | $$ |  | $\frac{\mathrm{Pnt} / \mathrm{Om}[\mathrm{k}]}{6.573}$ | $\begin{gathered} \text { Mn/Omik- } \\ \hline .196 \\ \hline \end{gathered}$ | Vn/Om[k] Cb Eqn |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 135 | M135 |  |  | 3.08 | 1 | . 000 |  |  |  | 2.051 |  | 1 | H.1-1 |
| 136 | M136 | L2X2X0.188 | 496 | 3.08 | 3 | . 000 | 0 | 1 | 3.424 |  | 6.573 | 196 | 2.051 | 1 | H. |
| 137 | M137 | L3X2X0.1 | 406 | 3.08 | 2 | . 000 | 0 | 1 | 4.269 | 8.273 | 356 | 3.076 | 1 | H. |
| 138 | M138 | L2X2X0.188 | . 789 | . 672 | 9 | . 100 | 0 | 9 | 3.251 | 6.573 | . 183 | 2.051 | 1 | H. |
| 139 | M139 | L2X2X0.188 | . 554 | . 69 | 1 | . 018 | 0 | 9 | 2.477 | 6.573 | 183 | 2.051 | 1 | H.1-1 |
| 140 | M140 | L3X2X0.188 | . 008 | 25 | 5 | . 007 | 25 | 5 | 7.077 | 8.273 | 356 | 3.076 | 1 | H.1-1 |
| 141 | M141 | L2X2X0.188 | . 401 | 3.16 | 1 | . 000 | 0 | 1 | 3.328 | 6.573 | . 196 | 2.051 |  | H. |
| 142 | M142 | L2X2X0.188 | . 387 | 3.16 | 1 | . 000 | 0 | 1 | 3.328 | 6.573 | 196 | 2.051 | 1 | H. 1 |
| 143 | M143 | L3X2X0.188 | . 268 | 3.16 | 8 | . 000 | 0 | 1 | 4.178 | 8.273 | . 356 | 3.076 | 1 | H1 |
| 144 | M144 | L2X2X0.188 | . 404 | 3.16 | 1 | . 000 | 0 | 1 | 3.328 | 6.573 | 196 | 2.051 |  | H.1-1 |
| 145 | M145 | L2X2X0.188 | 392 | 3.16 | 3 | . 000 | 0 | 1 | 3.328 | 6.573 | . 196 | 2.051 | 1 | H.3-2 |
| 146 | M146 | L3X2X0.188 | . 293 | 3.16 | 2 | . 000 | 0 | 1 | 4.178 | 8.273 | . 356 | 3.076 | 1 | H.3 |
| 147 | M147 | L2X2X0.188 | 405 | 3.16 | 1 | . 000 | 0 | 1 | 3.328 | 6.573 | . 196 | 2.051 |  | H. 1 |
| 148 | M148 | L2X2X0.188 | . 434 | 3.16 | 3 | . 000 | 0 | 1 | 3.328 | 6.573 | 196 | 2.051 | 1 | H.3 |
| 149 | M149 | L3X2X0.188 | 347 | 3.16 | 2 | . 000 | 0 | 1 | 4.178 | 8.273 | 356 | 3.076 | 1 | H. |
| 150 | M150 | USC4X1.85 | 714 | 0 | 8 | . 214 | 1.119 | 9 | 13.493 | 14.273 | 1.451 | 3.927 | $1 .$. | H. 1 |
| 151 | M151 | L2X2X0.188 | 295 | 415 | 9 | . 000 | 0 | 9 | 5.252 | 6.573 | 183 | 2.051 | 1 | H. |
| 152 | M152 | USC4X1.85 | . 386 | 4.25 | 9 | . 033 | 0 | 9 | 6.318 | 30.595 | 3.303 | 9.164 |  | H.1-1 |
| 153 | M153 | L1.5x1.5x.1. | . 560 | 1.836 | 6 | . 000 | 3.456 | 4 | 1.355 | 4.794 | 114 | 1.534 | 1 | H. |
| 154 | M154 | L1.5x1.5x.1. | . 268 | 1.836 | 6 | . 000 | 0 | 4 | 1.355 | 4.794 | 103 | 1.534 |  | H.1 |
| 155 | M155 | L1.5x1.5x.1. | 388 | 1.792 | 5 | . 000 | 3.373 | 9 | 1.423 | 4.794 | 103 | 1.534 | 1 | H. 1 |
| 156 | M156 | L1.5x1.5x.1. | 264 | 1.951 | 3 | . 000 | 0 | 4 | 1.2 | 4.794 | 103 | 1.534 | 1 | H.1-1 |
| 157 | M157 | L1.5x1.5x.1. | 269 | 1.951 | 3 | . 000 | 3.672 | 8 | 1.2 | 4.794 | 103 | 1.534 |  | H. 1 |
| 158 | M158 | L1.5x1.5x.1. | 331 | 1.791 | 9 | . 000 | 0 | 4 | 1.424 | 4.794 | 103 | 1.534 |  | H. 1 |
| 159 | M159 | L1.5x1.5x.1. | 249 | 2.026 | 5 | . 000 | 0 | 8 | 1.157 | 4.794 | . 103 | 1.534 | 1 | H.1 |
| 160 | M160 | L1.5x1.5x.1. | 249 | 2.026 | 5 | . 000 | 3.74 | 9 | 1.157 | 4.794 | 103 | 1.534 | 1 | H. 1 |
| 161 | M161 | L1.5x1.5x.1. | 249 | 2.026 | 5 | . 000 | 3.74 | 8 | 1.157 | 4.794 | 103 | 1.534 |  | H.1-1 |
| 162 | M162 | L2X2X0.188 | 114 | 2.016 | 5 | . 000 | 3.794 | 8 | 2.59 | 6.573 | 183 | 2.051 | 1 | H.1 |
| 163 | M163 | L3X2X0.188 | . 044 | 1.08 | 4 | . 000 | 2.16 | 3 | 5.142 | 8.273 | . 356 | 3.076 | 1 | H. 1 |
| 164 | M164 | L3X2X0.188 | . 325 | . 495 | 6 | . 066 | 0 | 6 | 5.142 | 8.273 | . 356 | 3.076 | 1 | H.1 |
| 165 | M165 | L3X2X0.188 | . 864 | 7.5 | 7 | . 188 | 8 | 7 | . 861 | 8.273 | . 356 | 3.076 | 1 | H.1- |
| 166 | M166 | L1.5x1.5x.1. | 242 | 1.832 | 7 | . 000 | 0 | 4 | 1.361 | 4.794 | . 103 | 1.534 |  | H.1 |
| 167 | M167 | L1.5x1.5x.1. | . 242 | 1.832 | 7 | . 000 | 3.448 | 5 | 1.362 | 4.794 | . 103 | 1.534 | 1 | H.1-1 |
| 168 | M168 | L3X2X0.188 | . 931 | 7.5 | 7 | . 215 | 8 | 7 | . 861 | 8.273 | . 356 | 3.076 | 1 | H.3-2 |
| 169 | M169 | L3X2X0.188 | . 548 | 6 | 7 | . 016 | 4 | 6 | . 861 | 8.273 | . 356 | 3.076 | 1 | H.1 |
| 170 | M170 | L3X2X0.188 | . 577 | 3.914 | 7 | . 131 | 4.42 | 7 | 2.68 | 8.273 | . 356 | 3.076 |  | H.1 |
| 171 | M171 | L1.5x1.5x.1. | . 309 | 1.849 | 7 | . 000 | 0 | 4 | 1.336 | 4.794 | . 103 | 1.534 | 1 | H.1-1 |
| 172 | M172 | L1.5x1.5x.1. | 289 | 1.841 | 7 | . 000 | 0 | 2 | 1.347 | 4.794 | 103 | 1.534 | 1 | н. |
| 173 | M173 | L1.5x1.5x.1. | 297 | 1.667 | 5 | . 000 | 0 |  | 1.584 | 4.794 | 103 | 1.534 |  | H.1- |
| 174 | M174 | L1.5x1.5x.1. | . 202 | 1.667 | 5 | . 000 | 3.202 | 8 | 1.584 | 4.794 | . 103 | 1.534 | 1 | H.1- |
| 175 | M175 | L1.5x1.5x.1. | . 289 | 1.667 | 5 | . 000 | 0 | 5 | 1.584 | 4.794 | 103 | 1.534 | 1 | H.1 |
| 176 | M176 | L1.5x1.5x.1. | 198 | 1.667 |  | . 000 | 3.202 | 4 | 1.584 | 4.794 | 103 | 1.534 | 1 | H.1 |
| 177 | M177 | L2X2X0.188 | . 076 | 1 |  | . 000 | 2 | 4 | 4.781 | 6.573 | 196 | 2.051 | 1 | H.1- |
| 178 | M178 | L2X2X0.188 | . 043 | 1 | 8 | . 000 | 2 | 4 | 4.781 | 6.573 | . 196 | 2.051 | 1 | H.1- |
| 179 | M179 | L2X2X0.188 | . 074 | 1 | 4 | . 000 | 2 | 4 | 4.781 | 6.573 | . 196 | 2.051 | 1 | H.1- |
| 180 | M180 | L2X2X0.188 | . 046 | 1 | 8 | . 000 | 2 | 4 | 4.781 | 6.573 | 196 | 2.051 |  | H.1- |
| 181 | M181 | L3X2X0.188 | . 700 | 1.145 | 1 | 106 | 0 | 1 | 6.983 | 17.733 | . 919 | 7.142 | 1 | H.1- |
| 182 | M182 | L3X2X0.188 | . 533 | 0 | 1 | . 300 | 25 | 1 | 7.077 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 183 | M183 | L3X2X0.188 | . 077 | 25 | 6 | . 014 | 0 | 6 | 8.854 | 17.733 | . 634 | 7.142 |  | H.1-1 |
| 184 | M184 | L3X2X0.188 | . 128 | 25 | 4 | . 012 | 0 | 4 | 6.197 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 185 | M185 | L3X2X0.188 | . 065 | 0 | 4 | . 003 | 1.5 | 4 | 8.854 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 186 | M186 | L3X2X0.188 | . 072 | 5 | 6 | . 030 | 5 | 4 | 6.197 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 187 | M187 | L3X2X0.188 | . 170 | 1.5 | 6 | . 013 | 1.5 | 4 | 8.854 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 188 | M188 | L3X2X0.188 | . 469 | 25 | 4 | . 109 | 25 | 7 | 6.197 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 189 | M189 | L3X2X0.188 | 657 | 1.25 | 7 | 117 | 1.5 | 7 | 8.854 | 17.733 | 634 | 7.142 | 1 | H.1-1 |
| 190 | M190 | L3X2X0.188 | . 586 | 0 | 7 | . 271 | 25 | 7 | 7.077 | 8.273 | 356 | 3.076 | 1 | H.1-1 |
| 191 | M191 | L3X2X0.188 | 410 | 25 | 6 | . 073 | 0 | 6 | 8.854 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |

RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcsIFirst Base Frames.r2d]
Page 64

|  | S | Company Job Numb Model Na | Larson Engineering Inc MK 21210330.000 Hamlin Middle School |  |  |  |  |  |  |  |  | Apr 30, 2021 4:24 PM Checked By: |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Envelope AA ADM1-15: ASD - Building Aluminum Code Checks (Continued) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Member |  | Shape | Code Ch... Loc[ft |  | LC Shear Ch |  | Loc[ft LC |  | LC Pnc/Om[k] Pnt/om[k] Mn/Om |  |  | Vn/Om[k] Cb Eqn |  |  |
| 192 | M192 | L3X2X0.188 | . 868 | 25 | 6 | . 130 | . 25 | 6 |  |  |  | 3.076 |  | H.1-1 |
| 193 | M193 | L3X2X0.188 | . 732 | 1.25 | 9 | 130 | 1.5 | 9 | 8.854 | 17.733 | . 634 | 7.142 | 1 | H.1- |
| 194 | M194 | L3X2X0.188 | . 654 |  |  | . 302 | . 25 | 9 | 7.077 | 8.273 | . 356 | 3.076 | 1 | H.1- |
| 195 | M195 | L3X2X0.188 | . 030 | 1.5 | 6 | . 004 | 1.5 | 6 | 9.171 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 196 | M196 | L3X2X0.188 | . 089 | 25 | 6 | . 039 | . 25 | 6 | 6.211 | 8.273 | . 394 | 3.076 |  | H.1-1 |
| 197 | M197 | L3X2X0.188 | . 227 | 1.25 | 6 | 035 | 1.5 | 6 | 9.171 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 198 | M198 | L3X2X0.188 | . 231 | 0 | 6 | . 081 | . 25 | 6 | 6.211 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 199 | M199 | L3X2X0.188 | . 180 | 1.5 | 6 | . 015 | 1.5 | 6 | 8.854 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 200 | M200 | L3X2X0.188 | 499 | . 25 | 6 | . 105 | . 25 | 7 | 6.211 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 201 | M201 | L3X2X0.188 | . 631 | 1.25 | 7 | . 112 | 1.5 | 7 | 9.171 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 202 | M202 | L3X2X0.188 | . 563 | 0 | 7 | . 260 | . 25 | 7 | 7.077 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 203 | M203 | L3X2X0.188 | . 373 | . 25 | 8 | . 066 | 0 | 8 | 9.728 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 204 | M204 | L3X2X0.188 | . 777 | . 25 | 8 | 126 | . 25 | 9 | 6.211 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 205 | M205 | L3X2X0.188 | . 734 | 1.25 | 9 | 130 | 1.5 | 9 | 9.171 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 206 | M206 | L3X2X0.188 | . 655 | 0 | , | . 303 | . 25 | O | 7.077 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 207 | M207 | L3X2X0.188 | . 675 | 415 | 9 | . 185 | . 086 | 8 | 10.772 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 208 | M208 | L3X2X0.188 | . 194 | 0 | 8 | . 019 | 0 | 8 | 7.077 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 209 | M209 | L3X2X0.188 | . 798 | 415 | 9 | . 218 | . 086 | 8 | 10.772 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 210 | M210 | L3X2X0.188 | . 283 |  | 8 | . 004 | 0 |  | 5.844 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 211 | M211 | L3X2X0.188 | . 178 | 0 | 8 | . 010 | 0 | 8 | 6.982 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 212 | M212 | L2X2X0.188 | . 037 | 1 | 9 | . 000 | 0 | 9 | 4.781 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 213 | M213 | L1.5x1.5x.1... | . 824 | 1.077 | 8 | . 000 | 0 | 8 | 2.794 | 4.794 | . 114 | 1.534 | 1 | H.1-1 |
| 214 | M214 | L3X2X0.188 | . 628 | . 25 | 8 | . 316 | . 25 | 8 | 6.197 | 8.273 | 356 | 3.076 | 1 | H.1-1 |
| 215 | M215 | L3X2X0.188 | . 363 | . 085 | 8 | 136 | 0 | 8 | 5.844 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 216 | M216 | USC4X1.85 | . 931 | . 25 | 9 | . 260 | . 25 | 8 | 14.273 | 14.273 | 1.451 | 3.927 | 1... | H.1-1 |
| 217 | M217 | L2X2X0.188 | . 036 | 1 | 9 | . 000 | 0 | 9 | 4.781 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 218 | M218 | L1.5x1.5x.1... | . 869 | 1.077 | 8 | . 000 | 0 | 4 | 2.794 | 4.794 | . 114 | 1.534 | 1 | H.1-1 |
| 219 | M219 | L3X2X0.188 | . 545 | 0 | , | . 400 | . 25 | \% | 6.197 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 220 | M220 | USC4X1.85 | . 931 | . 248 | 9 | . 320 | . 254 | 8 | 14.273 | 14.273 | 1.451 | 3.927 | 1... | H.1-1 |

RISA-2D Version 17.0.1 [Z:I.......|Project DocsICalcslFirst Base Frames.r2d]


| Larson Engineering Inc |  | SK - 1 |
| :--- | :---: | :--- |
| MK |  | Apr 30, 2021 at 4:47 PM |
| 21210330.000 | Hamlin Middle School | Member \& Node Labels |

Attachment 5, Page 87 of 236


| Larson Engineering Inc | Hamlin Middle School Member Shapes | SK - 2 |
| :---: | :---: | :---: |
| MK |  | Apr 30, 2021 at 4:47 PM |
| 21210330.000 |  | Third Base Frames.r2d |

Attachment 5, Page 88 of 236


Loads: BLC 1, DL

| Larson Engineering Inc | Hamlin Middle School Dead Loads | SK - 3 |
| :---: | :---: | :---: |
| MK |  | Apr 30, 2021 at 4:48 PM |
| 21210330.000 |  | Third Base Frames.r2d |

Attachment 5, Page 89 of 236


Loads: BLC 2, LL

| Larson Engineering Inc | Hamlin Middle School Live Loads | SK - 4 |
| :---: | :---: | :---: |
| MK |  | Apr 30, 2021 at 4:48 PM |
| 21210330.000 |  | Third Base Frames.r2d |

Attachment 5, Page 90 of 236


Loads: BLC 3, WL

| Larson Engineering Inc | Hamlin Middle School Wind Loads (Strength) | SK - 5 |
| :---: | :---: | :---: |
| MK |  | Apr 30, 2021 at 4:48 PM |
| 21210330.000 |  | Third Base Frames.r2d |

Attachment 5, Page 91 of 236


| Larson Engineering Inc |  | SK - 6 |  |
| :--- | :---: | :--- | :--- |
| MK |  | Hamlin Middle School | Apr 30, 2021 at 4:48 PM |
| 21210330.000 | Handrail Load | Third Base Frames.r2d |  |



Member Code Checks Displayed (Enveloped)
Envelope Only Solution Envelope Only Solution

| Larson Engineering Inc <br>  <br> $y n n$ <br> MK |  |  |  | Hamlin Middle School <br> Member Envelope Unity |  |
| :--- | :---: | :--- | :---: | :---: | :---: |
| 21210330.000 | Apr 30, 2021 at 4:49 PM |  |  |  |  |

Attachment 5, Page 93 of 236

| RSA | Company Designer <br> Job Number Model Name <br> Model Name | Larson Engineering Inc MK <br> 21210330.000 <br> Hamlin Middle Schoo | Apr 30, 2021 4:49 PM Checked By: |
| :---: | :---: | :---: | :---: |



## Aluminum Section Sets

| Label |  | Shape | Type | Design List AA Channel | $\begin{gathered} \text { Material } \\ \hline 6061-\mathrm{T} 6 \mathrm{~W} \end{gathered}$ | Design Rules | $\begin{gathered} \mathrm{A}[\mathrm{in} 2] \\ \hline .527 \\ \hline \end{gathered}$ | I $(90,270)$ [... $(0,180)[$ [... |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | L1.5x1.5×0.1875 | L1.5x1.5x.188 | Beam |  |  |  |  |  |  |
| 2 | L2 $2 \times 2 \times 0.1875$ | L2X2X0.188 | Beam | AA Channel | 6061-T6 W | Typical | 723 | . 268 | 268 |
| 3 | L3x2x0.1875 | L3X2X0.188 | Beam | AA Channel | 6061-T6 W | Typical | 91 | . 292 | 821 |
| 4 | L3x2x0.1875 UW | L3X2X0.188 | Beam | AA Channel | 6061-T6 | Typical | 91 | . 292 | 821 |
| 5 | C4x1.5 | USC4X1.85 | Beam | AA Channel | 6061-T6 W | Typical | 1.57 | 32 | 3.83 |
| 6 | C4x1.5 UW | USC4X1.85 | Beam | AA Channel | 6061-T6 | Typical | 1.57 | . 32 | 3.83 |
| 7 | AL6 | USC5X2.32 | Beam | AA Channel | 6061-T6 W | Typical | 1.97 | 48 | 7.49 |

Joint Coordinates and Temperatures

|  | Label | X [ft] | Y [ft] | Temp [F] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | N1 | 25 | 0 | 0 |
| 2 | N2 | 27.79 | 0 | 0 |
| 3 | N3 | 29.79 | 0 | 0 |
| 4 | N4 | 31.79 | 0 | 0 |
| 5 | N5 | 33.79 | 0 | 0 |
| 6 | N6 | 36 | 0 | 0 |
| 7 | N7 | 38.21 | 0 | 0 |
| 8 | N8 | 39.79 | 0 | 0 |
| 9 | N9 | 41.79 | 0 | 0 |
| 10 | N10 | 43.79 | 0 | 0 |
| 11 | N11 | 45.79 | 0 | 0 |
| 12 | N12 | 47.79 | 0 | 0 |
| 13 | N13 | 25 | 2.04 | 0 |
| 14 | N14 | 27.79 | 2.04 | 0 |
| 15 | N15 | 27.79 | 2.71 | 0 |
| 16 | N16 | 29.79 | 2.71 | 0 |
| 17 | N17 | 29.79 | 3.38 | 0 |
| 18 | N18 | 31.79 | 3.38 | 0 |
| 19 | N19 | 31.79 | 4.04 | 0 |
| 20 | N20 | 33.79 | 4.04 | 0 |
| 21 | N21 | 33.79 | 5.358 | 0 |
| 22 | N22 | 36 | 5.358 | 0 |
| 23 | N23 | 38.21 | 5.358 | 0 |
| 24 | N24 | 39.79 | 5.358 | 0 |
| 25 | N25 | 39.79 | 6.018 | 0 |
| 26 | N26 | 41.79 | 6.018 | 0 |
| 27 | N27 | 41.79 | 6.688 | 0 |
| 28 | N28 | 43.79 | 6.688 | 0 |
| 29 | N29 | 43.79 | 7.358 | 0 |
| 30 | N30 | 45.79 | 7.358 | 0 |
| 31 | N31 | 45.79 | 8.018 | 0 |
| 32 | N32 | 47.79 | 8.018 | 0 |
| 33 | N33 | 47.79 | 8.688 | 0 |
| 34 | N34 | 33.79 | 2.688 | 0 |



## Joint Coordinates and Temperatures (Continued)



RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcsIThird Base Frames.r2d]

## |lıRISA $\begin{array}{lll}\begin{array}{ll}\text { esigner } \\ \text { ob Number } \\ \text { lodel Name }\end{array} & \begin{array}{ll}\text { M1 } \\ & 21210330.000 \\ : & \text { Hamlin Middle School }\end{array}\end{array}$

Joint Coordinates and Temperatures (Continued)

|  | Label | $\mathrm{X}[\mathrm{ft}]$ | Y [ft] | Temp [F] |
| :---: | :---: | :---: | :---: | :---: |
| 92 | N92 | 47.79 | 32.2945 | 0 |
| 93 | N93 | 48.62 | 33.3745 | 0 |
| 94 | N94 | 48.62 | 33.0445 | 0 |
| 95 | N95 | 48.62 | 37.8745 | 0 |
| 96 | N96 | 40.04 | 0 | 0 |
| 97 | N97 | 41.54 | 0 | 0 |
| 98 | N98 | 42.04 | 0 | 0 |
| 99 | N99 | 43.54 | 0 | 0 |
| 100 | N100 | 44.04 | 0 | 0 |
| 101 | N101 | 45.54 | 0 | 0 |
| 102 | N102 | 46.04 | 0 | 0 |
| 103 | N103 | 47.54 | 0 | 0 |
| 104 | N104 | 40.04 | 25 | 0 |
| 105 | N105 | 41.54 | 25 | 0 |
| 106 | N106 | 42.04 | 25 | 0 |
| 107 | N107 | 43.54 | 25 | 0 |
| 108 | N108 | 44.04 | 25 | 0 |
| 109 | N109 | 45.54 | 25 | 0 |
| 110 | N110 | 46.04 | 25 | 0 |
| 111 | N111 | 47.54 | 25 | 0 |
| 112 | N112 | 47.79 | 7.358 | 0 |
| 113 | N113 | 47.79 | 32.3745 | 0 |
| 114 | N114 | 47.79 | 32.6245 | 0 |
| 115 | N115 | 47.79 | 32.1245 | 0 |
| 116 | N116 | 48.62 | 33.6245 | 0 |
| 117 | N117 | 47.79 | 7.608 | 0 |
| 118 | N118 | 47.79 | 7.108 | 0 |
| 119 | N119 | 48.62 | 8.608 | 0 |
| 120 | N120 | 47.79 | 28.069 | 0 |
| 121 | N121 | 47.79 | 3.0525 | 0 |

## Joint Boundary Conditions

|  | oint Label | X [k/in] | $\mathrm{Y}_{[k / i n]}$ | Rotation[k--t/rad] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | N1 |  | CS10000 |  |
| 2 | N2 |  | CS10000 |  |
| 3 | N3 |  | CS10000 |  |
| 4 | N4 |  | CS10000 |  |
| 5 | N5 |  | CS10000 |  |
| 6 | N6 |  | CS10000 |  |
| 7 | N7 |  | CS10000 |  |
| 8 | N8 |  | CS10000 |  |
| 9 | N9 |  | CS10000 |  |
| 10 | N10 |  | CS10000 |  |
| 11 | N11 |  | CS10000 |  |
| 12 | N12 |  | CS10000 |  |
| 13 | N42 | Reaction | Reaction |  |
| 14 | N43 | Reaction | Reaction |  |
| 15 | N44 | Reaction | Reaction |  |
| 16 | N45 |  | CS10000 |  |
| 17 | N46 |  | CS10000 |  |
| 18 | N47 |  | CS10000 |  |
| 19 | N48 |  | CS10000 |  |
| 20 | N49 |  | CS10000 |  |
| 21 | N50 |  | CS10000 |  |
| 22 | N51 |  | CS10000 |  |

Member Primary Data

|  | Label | I Joint | $J$ Joint | Rotate(deg) | Section/Shape | Type | Design List | Material | Design Rules |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | N1 | N4 |  | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 2 | M2 | N34 | N36 |  | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 3 | M3 | N13 | N84 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 4 | M4 | N15 | N16 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 5 | M5 | N17 | N18 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 6 | M6 | N19 | N20 | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 7 | M7 | N21 | N24 | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 8 | M8 | N25 | N26 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 9 | M9 | N27 | N28 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 10 | M10 | N29 | N30 | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 11 | M11 | N31 | N32 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 12 | M12 | N13 | N1 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 13 | M13 | N15 | N2 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 14 | M14 | N17 | N3 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 15 | M15 | N19 | N4 | 180 | L2 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 16 | M16 | N21 | N34 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 17 | M17 | N22 | N35 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 18 | M18 | N23 | N36 | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 19 | M19 | N25 | N37 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 20 | M20 | N27 | N38 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 21 | M21 | N29 | N39 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 22 | M22 | N31 | N40 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 23 | M23 | N33 | N117 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 24 | M24 | N35 | N6 |  | L2 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 25 | M25 | N36 | N7 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 26 | M26 | N37 | N8 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 27 | M27 | N38 | N9 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 28 | M28 | N39 | N10 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| $\underline{29}$ | M29 | N40 | N11 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 30 | M30 | N41 | N12 | 180 | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 31 | M31 | N34 | N5 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 32 | M32 | N18 | N3 |  | L1.5×1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 33 | M33 | N37 | N9 |  | L1.5×1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 34 | M34 | N41 | N11 |  | L1.5×1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 35 | M35 | N112 | N80 |  | L1.5×1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 36 | M36 | N67 | N71 |  | L3 $\times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 37 | M37 | N52 | N55 | 180 | AL6 | Beam | AA Channel | 6061-T6 W | Typical |
| 38 | M38 | N56 | N57 | 180 | L3x2×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 39 | M39 | N58 | N59 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 40 | M40 | N60 | N61 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 41 | M41 | N62 | N63 | 180 | L3x2×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 42 | M42 | N53 | N65 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 43 | M43 | N54 | N66 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 44 | M44 | N56 | N67 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |

IIIRISA
Company $\quad \vdots$ Larson Engineering Inc
$\begin{array}{lll}\text { Designer } & \text { MK } \\ \text { Job Number } & 21210330.000 \\ \text { Jobe }\end{array}$
MK 12033.000
Hamlin Middle School

Member Primary Data (Continued)

|  | Label | 1 Joint | $J$ Joint | Rotate(deg) | Section/Shape | Type | Design List | Material | Design Rules |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 45 | M45 | N58 | N68 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | $6061-\mathrm{T}$ W | Typical |
| 46 | M46 | N60 | N69 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 47 | M47 | N62 | N70 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 48 | M48 | N64 | N114 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 49 | M49 | N65 | N45 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 50 | M50 | N66 | N46 | 180 | L3 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 51 | M51 | N67 | N47 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 52 | M52 | N68 | N48 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 53 | M53 | N69 | N49 |  | L2 $2 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 54 | M54 | N70 | N50 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 55 | M55 | N71 | N51 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 56 | M56 | N67 | N48 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 57 | M57 | N71 | N50 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 58 | M58 | N113 | N82 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 59 | M59 | N65 | N66 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 60 | M60 | N45 | N46 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 61 | M61 | N47 | N104 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 62 | M62 | N66 | N45 |  | L1.5x1.5x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 63 | M63 | N54 | N65 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 64 | M64 | N8 | N96 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 65 | M65 | N37 | N41 |  | L3 $3 \times \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 66 | M66 | N5 | N7 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 67 | M67 | N36 | N6 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 68 | M68 | N23 | N35 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 69 | M69 | N81 | N40 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 70 | M70 | N83 | N70 |  | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 71 | M71 | N80 | N81 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 72 | M72 | N82 | N83 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 73 | M73 | N84 | N85 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 74 | M74 | N85 | N14 | 180 | L3 3 2 $\times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 75 | M75 | N89 | N87 |  | C4x1.5 | Beam | AA Channel | 6061-T6 W | Typical |
| 76 | M76 | N88 | N86 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 77 | M77 | N90 | N119 |  | C4x1.5 UW | Beam | AA Channel | 6061-T6 | Typical |
| 78 | M78 | N94 | N92 |  | C4×1.5 | Beam | AA Channel | 6061-T6 W | Typical |
| 79 | M79 | N93 | N91 |  | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 80 | M80 | N95 | N116 |  | C4x1.5 UW | Beam | AA Channel | 6061-T6 | Typical |
| 81 | M81 | N96 | N97 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 82 | M82 | N97 | N98 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 83 | M83 | N98 | N99 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 84 | M84 | N99 | N100 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 85 | M85 | N100 | N101 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 86 | M86 | N101 | N102 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 87 | M87 | N102 | N103 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 88 | M88 | N103 | N12 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 89 | M89 | N104 | N105 |  | L3x2×0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 90 | M90 | N105 | N106 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 91 | M91 | N106 | N107 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 92 | M92 | N107 | N108 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 93 | M93 | N108 | N109 |  | L3x2×0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 94 | M94 | N109 | N110 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 95 | M95 | N110 | N111 |  | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 96 | M96 | N111 | N51 |  | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 97 | M97 | N61 | N113 | 180 | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 98 | M98 | N62 | N113 | 180 | L1.5x1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 99 | M99 | N114 | N115 | 180 | L3x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 100 | M100 | N115 | N120 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 101 | M101 | N116 | N94 |  | C4x1.5 | Beam | AA Channel | 6061-T6 W | Typical |

RISA-2D Version 17.0.1 [Z:I........|Project DocsICalcsIThird Base Frames.r2d]
Page 5

|  |  | Company Designer Job Number Model Name | Larson Engineering Inc Apr 30, 2021 <br> MK $4: 4039 \mathrm{PM}$ <br> 21210330.000 Checked By: <br> Hamlin Middle School  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Primary Data (Continued) |  |  |  |  |  |  |  |  |  |
|  | Label | I Joint | $J$ Joint | Rotate(de | Section/Shape | Type | Design List | Material | Design Rules |
| 102 | M102 | N30 | N112 | 180 | L2x2x0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 103 | M103 | N31 | N112 | 180 | L1.5×1.5×0.1875 | Beam | AA Channel | 6061-T6 W | Typical |
| 104 | M104 | N117 | N118 | 180 | L3 $32 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 105 | M105 | N118 | N121 | 180 | L3x2x0.1875 UW | Beam | AA Channel | 6061-T6 | Typical |
| 106 | M106 | N119 | N89 |  | C4x1.5 | Beam | AA Channel | 6061-T6 W | Typical |
| 107 | M107 | N120 | N71 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |
| 108 | M108 | N121 | N41 | 180 | L3 $3 \times 2 \times 0.1875$ | Beam | AA Channel | 6061-T6 W | Typical |


|  | Label | 1 Release | J Release | 1 Offsetin] | J Offsettin] | T/C Only | Physical | том | Inactive |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 |  |  |  |  |  | Yes |  |  |
| 2 | M2 |  |  |  |  |  | Yes |  |  |
| 3 | M3 | PIN |  |  |  |  | Yes |  |  |
| 4 | M4 | PIN | PIN |  |  |  | Yes |  |  |
| 5 | M5 | PIN | PIN |  |  |  | Yes |  |  |
| 6 | M6 | PIN | PIN |  |  |  | Yes |  |  |
| 7 | M7 | PIN | PIN |  |  |  | Yes |  |  |
| 8 | M8 | PIN | PIN |  |  |  | Yes |  |  |
| 9 | M9 | PIN | PIN |  |  |  | Yes |  |  |
| 10 | M10 | PIN | PIN |  |  |  | Yes |  |  |
| 11 | M11 | PIN | PIN |  |  |  | Yes |  |  |
| 12 | M12 | PIN | PIN |  |  |  | Yes |  |  |
| 13 | M13 | PIN | PIN |  |  |  | Yes |  |  |
| 14 | M14 | PIN | PIN |  |  |  | Yes |  |  |
| 15 | M15 | PIN | PIN |  |  |  | Yes |  |  |
| 16 | M16 | PIN | PIN |  |  |  | Yes |  |  |
| 17 | M17 | PIN | PIN |  |  |  | Yes |  |  |
| 18 | M18 | PIN | PIN |  |  |  | Yes |  |  |
| 19 | M19 | PIN | PIN |  |  |  | Yes |  |  |
| 20 | M20 | PIN | PIN |  |  |  | Yes |  |  |
| 21 | M21 | PIN | PIN |  |  |  | Yes |  |  |
| 22 | M22 | PIN | PIN |  |  |  | Yes |  |  |
| 23 | M23 |  |  |  |  |  | Yes |  |  |
| 24 | M24 | PIN | PIN |  |  |  | Yes |  |  |
| 25 | M25 | PIN | PIN |  |  |  | Yes |  |  |
| 26 | M26 | PIN | PIN |  |  |  | Yes |  |  |
| 27 | M27 | PIN | PIN |  |  |  | Yes |  |  |
| 28 | M28 | PIN | PIN |  |  |  | Yes |  |  |
| 29 | M29 | PIN | PIN |  |  |  | Yes |  |  |
| 30 | M30 | PIN | PIN |  |  |  | Yes |  |  |
| 31 | M31 | PIN | PIN |  |  |  | Yes |  |  |
| 32 | M32 | PIN | PIN |  |  |  | Yes |  |  |
| 33 | M33 | PIN | PIN |  |  |  | Yes |  |  |
| 34 | M34 | PIN | PIN |  |  |  | Yes |  |  |
| 35 | M35 | PIN | PIN |  |  |  | Yes |  |  |
| 36 | M36 |  |  |  |  |  | Yes |  |  |
| 37 | M37 |  | PIN |  |  |  | Yes |  |  |
| 38 | M38 | PIN | PIN |  |  |  | Yes |  |  |
| 39 | M39 | PIN | PIN |  |  |  | Yes |  |  |
| 40 | M40 | PIN | PIN |  |  |  | Yes |  |  |
| 41 | M41 | PIN | PIN |  |  |  | Yes |  |  |
| 42 | M42 | PIN | PIN |  |  |  | Yes |  |  |
| 43 | M43 | PIN | PIN |  |  |  | Yes |  |  |
| 44 | M44 | PIN | PIN |  |  |  | Yes |  |  |
| 45 | M45 | PIN | PIN |  |  |  | Yes |  |  |



Apr 30, 2021

Member Advanced Data (Continued)

|  | Label | 1 Release | J Release | 1 Offset[in] | J Offset[in] | T/C Only | Physical | том | Inactive |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 46 | M46 | PIN | PIN |  |  |  | Yes |  |  |
| 47 | M47 | PIN | PIN |  |  |  | Yes |  |  |
| 48 | M48 |  |  |  |  |  | Yes |  |  |
| 49 | M49 | PIN | PIN |  |  |  | Yes |  |  |
| 50 | M50 | PIN | PIN |  |  |  | Yes |  |  |
| 51 | M51 | PIN | PIN |  |  |  | Yes |  |  |
| 52 | M52 | PIN | PIN |  |  |  | Yes |  |  |
| 53 | M53 | PIN | PIN |  |  |  | Yes |  |  |
| 54 | M54 | PIN | PIN |  |  |  | Yes |  |  |
| 55 | M55 | PIN | PIN |  |  |  | Yes |  |  |
| 56 | M56 | PIN | PIN |  |  |  | Yes |  |  |
| 57 | M57 | PIN | PIN |  |  |  | Yes |  |  |
| 58 | M58 | PIN | PIN |  |  |  | Yes |  |  |
| 59 | M59 |  |  |  |  |  | Yes |  |  |
| 60 | M60 |  |  |  |  |  | Yes |  |  |
| 61 | M61 |  |  |  |  |  | Yes |  |  |
| 62 | M62 | PIN | PIN |  |  |  | Yes |  |  |
| 63 | M63 | PIN | PIN |  |  |  | Yes |  |  |
| 64 | M64 |  |  |  |  |  | Yes |  |  |
| 65 | M65 |  |  |  |  |  | Yes |  |  |
| 66 | M66 |  |  |  |  |  | Yes |  |  |
| 67 | M67 | PIN | PIN |  |  |  | Yes |  |  |
| 68 | M68 | PIN | PIN |  |  |  | Yes |  |  |
| 69 | M69 | PIN | PIN |  |  |  | Yes |  |  |
| 70 | M70 | PIN | PIN |  |  |  | Yes |  |  |
| 71 | M71 | PIN | PIN |  |  |  | Yes |  |  |
| 72 | M72 | PIN | PIN |  |  |  | Yes |  |  |
| 73 | M73 |  |  |  |  |  | Yes |  |  |
| 74 | M74 |  | PIN |  |  |  | Yes |  |  |
| 75 | M75 |  | PIN |  |  |  | Yes |  |  |
| 76 | M76 | PIN | PIN |  |  |  | Yes |  |  |
| 77 | M77 |  |  |  |  |  | Yes |  |  |
| 78 | M78 |  | PIN |  |  |  | Yes |  |  |
| 79 | M79 | PIN | PIN |  |  |  | Yes |  |  |
| 80 | M80 |  |  |  |  |  | Yes |  |  |
| 81 | M81 |  |  |  |  |  | Yes |  |  |
| 82 | M82 |  |  |  |  |  | Yes |  |  |
| 83 | M83 |  |  |  |  |  | Yes |  |  |
| 84 | M84 |  |  |  |  |  | Yes |  |  |
| 85 | M85 |  |  |  |  |  | Yes |  |  |
| 86 | M86 |  |  |  |  |  | Yes |  |  |
| 87 | M87 |  |  |  |  |  | Yes |  |  |
| 88 | M88 |  |  |  |  |  | Yes |  |  |
| 89 | M89 |  |  |  |  |  | Yes |  |  |
| 90 | M90 |  |  |  |  |  | Yes |  |  |
| 91 | M91 |  |  |  |  |  | Yes |  |  |
| 92 | M92 |  |  |  |  |  | Yes |  |  |
| 93 | M93 |  |  |  |  |  | Yes |  |  |
| 94 | M94 |  |  |  |  |  | Yes |  |  |
| 95 | M95 |  |  |  |  |  | Yes |  |  |
| 96 | M96 |  |  |  |  |  | Yes |  |  |
| 97 | M97 | PIN | PIN |  |  |  | Yes |  |  |
| 98 | M98 | PIN | PIN |  |  |  | Yes |  |  |
| 99 | M99 |  |  |  |  |  | Yes |  |  |
| 100 | M100 |  |  |  |  |  | Yes |  |  |
| 101 | M101 |  |  |  |  |  | Yes |  |  |
| 102 | M102 | PIN | PIN |  |  |  | Yes |  |  |


|  | S/ | Company Designer Job Number Model Name | Larson Engineering Inc <br> MK <br> 21210330.000 <br> Hamlin Middle School |  |  |  |  | Apr 30, 2021 4:49 PM Checked By: |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Advanced Data (Continued) |  |  |  |  |  |  |  |  |  |
|  | Label | 1 Release | J Release | 1 Offset[in] | J Offsetin] | T/C Only | Physical | том | Inactive |
| 103 | M103 | PIN | PIN |  |  |  | Yes |  |  |
| 104 | M104 |  |  |  |  |  | Yes |  |  |
| 105 | M105 |  |  |  |  |  | Yes |  |  |
| 106 | M106 |  |  |  |  |  | Yes |  |  |
| 107 | M107 |  | PIN |  |  |  | Yes |  |  |
| 108 | M108 |  | PIN |  |  |  | Yes |  |  |


|  | Label | Shape | Length(ft) | Lb-out[ff] | Lb-in [ft] | Lcomp top [ft] | Lcomp bot(ff) L | L-torqu... | K-out | K-in | Cb | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | L3x2×0.1875 | 6.79 |  |  | Lb out |  |  |  |  |  | Lateral |
| 2 | M2 | L3x2×0.1875 | 4.42 |  |  | Lb out |  |  |  |  |  | Lateral |
| 3 | M3 | L3×2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 4 | M4 | L3×2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 5 | M5 | L3×2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 6 | M6 | L3x2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 7 | M7 | L3x2×0.1875 | 6 |  |  | Lb out |  |  |  |  |  | Lateral |
| 8 | M8 | L3×2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 9 | M9 | L3×2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 10 | M10 | L3x2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 11 | M11 | L3x2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 12 | M12 | L2 $\times 2 \times 0.1875$ | 2.04 |  |  | Lb out |  |  |  |  |  | Lateral |
| 13 | M13 | L2×2×0.1875 | 2.71 |  |  | Lb out |  |  |  |  |  | Lateral |
| 14 | M14 | L2 $\times 2 \times 0.1875$ | 3.38 |  |  | Lb out |  |  |  |  |  | Lateral |
| 15 | M15 | L2 $2 \times 2 \times 0.1875$ | 4.04 |  |  | Lb out |  |  |  |  |  | Lateral |
| 16 | M16 | L2x2×0.1875 | 2.67 |  |  | Lb out |  |  |  |  |  | Lateral |
| 17 | M17 | L2×2×0.1875 | 2.67 |  |  | Lb out |  |  |  |  |  | Lateral |
| 18 | M18 | L3x2×0.1875 | 2.67 |  |  | Lb out |  |  |  |  |  | Lateral |
| 19 | M19 | L2 $\times 2 \times 0.1875$ | 3.188 |  |  | Lb out |  |  |  |  |  | Lateral |
| 20 | M20 | L2×2×0.1875 | 3.858 |  |  | Lb out |  |  |  |  |  | Lateral |
| 21 | M21 | L2x2×0.1875 | 4.528 |  |  | Lb out |  |  |  |  |  | Lateral |
| 22 | M22 | L2 $2 \times 2 \times 0.1875$ | 5.188 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 23 | M23 | L3x2×0.187... | 1.08 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 24 | M24 | L2×2×0.1875 | 2.688 |  |  | Lb out |  |  |  |  |  | Lateral |
| 25 | M25 | L3x2×0.1875 | 2.688 |  |  | Lb out |  |  |  |  |  | Lateral |
| 26 | M26 | L2x2×0.1875 | 2.83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 27 | M27 | L2 $2 \times 2 \times 0.1875$ | 2.83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 28 | M28 | L2 $2 \times 2 \times 0.1875$ | 2.83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 29 | M29 | L2×2×0.1875 | 2.83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 30 | M30 | L3x2×0.1875 | 2.83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 31 | M31 | L2 $\times 2 \times 0.1875$ | 2.688 |  |  | Lb out |  |  |  |  |  | Lateral |
| 32 | M32 | L1.5x1.5×0.... | 3.927 |  |  | Lb out |  |  |  |  |  | Lateral |
| 33 | M33 | L1.5x1.5x0... | 3.465 |  |  | Lb out |  |  |  |  |  | Lateral |
| 34 | M34 | L1.5x1.5x0... | 3.465 |  |  | Lb out |  |  |  |  |  | Lateral |
| 35 | M35 | L1.5x1.5x0... | 2.848 |  |  | Lb out |  |  |  |  |  | Lateral |
| 36 | M36 | L3×2×0.1875 | 8 |  |  | Lb out |  |  |  |  |  | Lateral |
| 37 | M37 | AL6 | 6 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 38 | M38 | L3x2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 39 | M39 | L3×2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 40 | M40 | L3×2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 41 | M41 | L3x2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 42 | M42 | L2 $2 \times 2 \times 0.1875$ | 2.687 |  |  | Lb out |  |  |  |  |  | Lateral |
| 43 | M43 | L3x2×0.1875 | 2.687 |  |  | Lb out |  |  |  |  |  | Lateral |
| 44 | M44 | L2×2×0.1875 | 3.216 |  |  | Lb out |  |  |  |  |  | Lateral |
| 45 | M45 | L2 $2 \times 2 \times 0.1875$ | 3.886 |  |  | Lb out |  |  |  |  |  | Lateral |
| 46 | M46 | L2×2×0.1875 | 4.555 |  |  | Lb out |  |  |  |  |  | Lateral |

RISA-2D Version 17.0.1 [Z:1.......IProject DocsICalcsIThird Base Frames.r2d]

|  | IS | Company Job Numb Model Nam |  | rson Engineer <br> 210330.000 <br> amlin Middle S |  |  |  |  |  | Apr 30, 2021 4:49 PM Checked By: |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum Design Parameters (Continued) |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Label | Shape | Length $[$ (ti) | Lb-outffl | Lb-in [ft] | Lcomp top[ft | Lcomp botfft | L-torau... | K-out | K-in | Cb | Function |
| 47 | M47 | L2x2×0.1875 | 5.216 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 48 | M48 | L3x2x0.187... | 1.08 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 49 | M49 | L2x2×0.1875 | 2.688 |  |  | Lb out |  |  |  |  |  | Lateral |
| 50 | M50 | L3x2×0.1875 | 2.688 |  |  | Lb out |  |  |  |  |  | Lateral |
| 51 | M51 | L2 $\times 2 \times 0.1875$ | 2.819 |  |  | Lb out |  |  |  |  |  | Lateral |
| 52 | M52 | L2x2×0.1875 | 2.819 |  |  | Lb out |  |  |  |  |  | Lateral |
| 53 | M53 | L2×2×0.1875 | 2.819 |  |  | Lb out |  |  |  |  |  | Lateral |
| 54 | M54 | L2 $\times 2 \times 0.1875$ | 2.819 |  |  | Lb out |  |  |  |  |  | Lateral |
| 55 | M55 | L3x2×0.1875 | 2.819 |  |  | Lb out |  |  |  |  |  | Lateral |
| 56 | M56 | L1.5x1.5×0... | 3.456 |  |  | Lb out |  |  |  |  |  | Lateral |
| 57 | M57 | L1.5×1.5×0... | 3.456 |  |  | Lb out |  |  |  |  |  | Lateral |
| 58 | M58 | L1.5x1.5x0... | 2.868 |  |  | Lb out |  |  |  |  |  | Lateral |
| 59 | M59 | L3x2×0.1875 | 2.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 60 | M60 | L3x2×0.1875 | 2.16 |  |  | Lb out |  |  |  |  |  | Lateral |
| 61 | M61 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 62 | M62 | L1.5x1.5×0.... | 3.448 |  |  | Lb out |  |  |  |  |  | Lateral |
| 63 | M63 | L1.5x1.5×0.... | 3.448 |  |  | Lb out |  |  |  |  |  | Lateral |
| 64 | M64 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 65 | M65 | L3x2×0.1875 | 8 |  |  | Lb out |  |  |  |  |  | Lateral |
| 66 | M66 | L3x2×0.1875 | 4.42 |  |  | Lb out |  |  |  |  |  | Lateral |
| 67 | M67 | L1.5x1.5×0.... | 3.48 |  |  | Lb out |  |  |  |  |  | Lateral |
| 68 | M68 | L1.5x1.5×0.... | 3.466 |  |  | Lb out |  |  |  |  |  | Lateral |
| 69 | M69 | L1.5x1.5×0.... | 3.202 |  |  | Lb out |  |  |  |  |  | Lateral |
| 70 | M70 | L1.5x1.5×0.... | 3.202 |  |  | Lb out |  |  |  |  |  | Lateral |
| 71 | M71 | L2x2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 72 | M72 | L2x2×0.1875 | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 73 | M73 | L3x2×0.187... | 2.29 |  |  | Lb out |  |  |  |  |  | Lateral |
| 74 | M74 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 75 | M75 | C4x1.5 | 1.119 |  |  | Lb out |  |  |  |  |  | Lateral |
| 76 | M76 | L2x2x0.1875 | . 83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 77 | M77 | C4x1.5 UW | 4.25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 78 | M78 | C4x1.5 | 1.119 |  |  | Lb out |  |  |  |  |  | Lateral |
| 79 | M79 | L2 $\times 2 \times 1.1875$ | . 83 |  |  | Lb out |  |  |  |  |  | Lateral |
| 80 | M80 | C4x1.5 UW | 4.25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 81 | M81 | L3x2x0.187... | 1.5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 82 | M82 | L3x2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 83 | M83 | L3x2×0.187... | 1.5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 84 | M84 | L3x2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 85 | M85 | L3x2×0.187.... | 1.5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 86 | M86 | L3x2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 87 | M87 | L3x2x0.187... | 1.5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 88 | M88 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 89 | M89 | L3x2×0.187... | 1.5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 90 | M90 | L3x2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 91 | M91 | L3x2×0.187... | 1.5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 92 | M92 | L3x2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 93 | M93 | L3x2x0.187... | 1.5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 94 | M94 | L3x2×0.1875 | . 5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 95 | M95 | L3x2x0.187... | 1.5 |  |  | Lb out |  |  |  |  |  | Lateral |
| 96 | M96 | L3x2×0.1875 | . 25 |  |  | Lb out |  |  |  |  |  | Lateral |
| 97 | M97 | L2 $\times 2 \times 0.1875$ | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 98 | M98 | L1.5x1.5x0... | 2.106 |  |  | Lb out |  |  |  |  |  | Lateral |
| 99 | M99 | L3x2×0.1875 | . 5 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 100 | M100 | L3x2×0.187... | 4.056 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 101 | M101 | C4x1.5 | . 58 |  |  | Lb out |  |  |  |  |  | Lateral |
| 102 | M102 | L2 $\times 2 \times 0.1875$ | 2 |  |  | Lb out |  |  |  |  |  | Lateral |
| 103 | M103 | L1.5x1.5x0... | 2.106 |  |  | Lb out |  |  |  |  |  | Lateral |



Aluminum Design Parameters (Continued)

|  | Label | Shape | Length[ft] | Lb-out[ft] | Lb-in[ft] | Lcomp top [ft | Lcomp botffit | -torqu.. | K-out | K-in | Cb | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 104 | M104 | L3x2×0.1875 | . 5 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 105 | M105 | L3x2x0.187... | 4.056 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 106 | M106 | C4x1.5 | . 58 |  |  | Lb out |  |  |  |  |  | Lateral |
| 107 | M107 | L3×2×0.1875 | . 25 | Segment |  | Lb out |  |  |  |  |  | Lateral |
| 108 | M108 | L3×2×0.1875 | 222 | Segment |  | Lb out |  |  |  |  |  | Lateral |


|  | Joint Label | L.D,M | Direction | Magnitude[(k,k-ft), (in,rad), (k*s ${ }^{*}$ 2/ft. |
| :---: | :---: | :---: | :---: | :---: |
| 1 | N90 | L | X |  |

## Member Distributed Loads (BLC 1 : DL)

|  | Member Label | Direction | Start Magnitude[Ib/ft, F., ksf] | End Magnitudelib/tt. | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M3 | Y | -60 | -60 | 0 | 0 |
| 2 | M4 | Y | -60 | -60 | 0 | 0 |
| 3 | M5 | Y | -60 | -60 | 0 | 0 |
| 4 | M6 | Y | -60 | -60 | 0 | 0 |
| 5 | M7 | Y | -60 | -60 | 0 | 0 |
| 6 | M8 | Y | -60 | -60 | 0 | 0 |
| 7 | M9 | Y | -60 | -60 | 0 | 0 |
| 8 | M10 | Y | -60 | -60 | 0 | 0 |
| 9 | M11 | Y | -60 | -60 | 0 | 0 |
| 10 | M37 | Y | -60 | -60 | 0 | 0 |
| 11 | M38 | Y | -60 | -60 | 0 | 0 |
| 12 | M39 | Y | -60 | -60 | 0 | 0 |
| 13 | M40 | Y | -60 | -60 | 0 | 0 |
| 14 | M41 | Y | -60 | -60 | 0 | 0 |
| 15 | M73 | Y | -60 | -60 | 0 | 0 |
| 16 | M74 | Y | -60 | -60 | 0 | 25 |

## Member Distributed Loads (BLC 2 : LL



Member Distributed Loads (BLC 3 : WL)


RISA-2D Version 17.0.1 [Z:I........|Project DocsICalcsIThird Base Frames.r2d]
Page 10

## |lirisA <br> Lempany Larson Engineering Inc <br> $\begin{array}{lll}\text { Desiger } & \text { MK } \\ \text { Job Number } & \vdots 210230.000 \\ \text { Model Name } & & \\ \text { Hamlin Middle }\end{array}$

Apr 30, 2021
4:49 PM
Checked By: , By _—_

Member Distributed Loads (BLC 3 : WL) (Continued)

|  | Member Label | Direction | Start Magnitude[\|b/ft, F., ksf] | End Magnitude[li/ft. | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | M15 | X | 144 | 144 | 0 | . 66 |
| 4 | M16 | X | 144 | 144 | 0 | 1.34 |
| 5 | M19 | X | 144 | 144 | 0 | . 66 |
| 6 | M20 | X | 144 | 144 | 0 | . 66 |
| 7 | M21 | X | 144 | 144 | 0 | . 66 |
| 8 | M22 | X | 144 | 144 | 0 | . 66 |
| 9 | M23 | X | 144 | 144 |  | . 66 |
| 10 | M44 | X | 144 | 144 | 0 | . 66 |
| 11 | M45 | X | 144 | 144 | 0 | . 66 |
| 12 | M46 | X | 144 | 144 | 0 | . 66 |
| 13 | M47 | X | 144 | 144 | 0 | . 66 |
| 14 | M48 | X | 144 | 144 |  | 66 |



## Load Combinations



## Envelope Joint Reactions

| Joint |  |  | X[k] LC |  | $\mathrm{Y}[\mathrm{k}]$ | LC | Moment [ $[$ - -1$]$ | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | N1 | max | 0 | 1 | . 921 | 1 |  |  |
| 2 |  | min | 0 | 1 | . 035 | 6 | 0 | 1 |
| 3 | N2 | max | 0 | 1 | 1.588 | 1 | 0 | 1 |
| 4 |  | min | 0 | 1 | 0 | 6 | 0 | 1 |
| 5 | N3 | max | 0 | 1 | 1.346 | 1 | 0 | 1 |
| 6 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 7 | N4 | max | 0 | 1 | 1.304 | 1 | 0 | 1 |
| 8 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |
| 9 | N5 | max | 0 | 1 | 1.246 | 1 | 0 | 1 |
| 10 |  | min | 0 | 1 | 123 | 7 | 0 | 1 |
| 11 | N6 | max | 0 | 1 | 1.689 | 1 | 0 | 1 |
| 12 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |

[^13]

## Envelope Joint Reactions (Continued)

| Joint |  |  | X[k] | LC Y lk |  | LC | Moment [ $[\mathrm{k}$-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | N7 | max |  | 1 | 1.372 | 2 |  |  |
| 14 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |
| 15 | N8 | max | 0 | 1 | 833 | 1 | 0 | 1 |
| 16 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 17 | N9 | max | 0 | 1 | 1.536 | 1 | 0 | 1 |
| 18 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |
| 19 | N10 | max | 0 | 1 | 1.342 | 1 | 0 | 1 |
| 20 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 21 | N11 | max | 0 | 1 | 1.556 | 3 | 0 | 1 |
| 22 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 23 | N12 | max | 0 | 1 | 1.179 | 8 | 0 | 1 |
| 24 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |
| 25 | N42 | max | . 054 | 5 | . 055 | 4 | 0 | 1 |
| 26 |  | min | -. 052 | 4 | . 003 | 9 | 0 | 1 |
| 27 | N43 | max | . 209 | 9 | . 006 | 1 | 0 | 1 |
| 28 |  | min | -. 332 | 8 | -. 744 | 8 | 0 | 1 |
| 29 | N44 | max | 223 | 8 | . 005 | 1 | 0 | 1 |
| 30 |  | min | -. 08 | 9 | -1.233 | 9 | 0 | 1 |
| 31 | N45 | max | 0 | 1 | 2.962 | 1 | 0 | 1 |
| 32 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 33 | N46 | max | 0 | 1 | . 719 | 2 | 0 | 1 |
| 34 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |
| 35 | N47 | max | 0 | 1 | . 803 | 1 | 0 | 1 |
| 36 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 37 | N48 | max | 0 | 1 | 1.503 | 1 | 0 | 1 |
| 38 |  | min | 0 | 1 | 0 | 5 | 0 | 1 |
| 39 | N49 | max | 0 | 1 | 1.334 | 1 | 0 | 1 |
| 40 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 41 | N50 | max | 0 | 1 | 1.57 | 3 | 0 | 1 |
| 42 |  | min | 0 | 1 | 0 | 4 | 0 | 1 |
| 43 | N51 | max | 0 | 1 | 1.133 | 8 | 0 | 1 |
| 44 |  | min | 0 | 1 | 0 | 3 | 0 | 1 |
| 45 | N72 | max | . 196 | 9 | . 008 | 1 | 0 | 1 |
| 46 |  | min | -. 26 | 8 | -. 587 | 8 | 0 | 1 |
| 47 | N73 | max | 254 | 8 | . 004 | 1 | 0 | 1 |
| 48 |  | min | -. 159 | 9 | -1.144 | 9 | 0 | 1 |
| 49 | N74 | max | . 163 | 9 | . 106 | 7 | 0 | 1 |
| 50 |  | min | -. 186 | 8 | -. 164 | 6 | 0 | 1 |
| 51 | N75 | max | 0 | 2 | . 089 | 6 | 0 | 1 |
| 52 |  | min | 0 | 3 | -. 195 | 7 | 0 | 1 |
| 53 | N76 | max | . 1 | 9 | . 022 | 4 | 0 | 1 |
| 54 |  | min | -. 108 | 8 | -. 352 | 9 | 0 | 1 |
| 55 | N77 | max | . 105 | 7 | . 008 | 1 | 0 | 1 |
| 56 |  | min | -. 108 | 6 | -. 321 | 6 | 0 | 1 |
| 57 | N78 | max | . 138 | 5 | . 007 | 1 | 0 | 1 |
| 58 |  | min | -. 131 | 4 | -. 33 | 6 | 0 | 1 |
| 59 | N79 | max | . 105 | 7 | . 008 | 1 | 0 | 1 |
| 60 |  | min | -. 108 | 6 | -. 418 | 7 | 0 | 1 |
| 61 | Totals: | max | . 857 | 7 | 24.551 | 1 |  |  |
| 62 |  | min | -. 857 | 6 | 1.486 | 6 |  |  |

## Envelope Member Section Forces



RISA-2D Version 17.0.1 [Z:I.......IProject Docs\CalcsIThird Base Frames.r2d]
Page 12
(
Envelope Member Section Forces (Continued)



## Envelope Member Section Forces (Continued)



## lintisA <br> Company Larson Engineering Inc <br> $\begin{array}{lll}\text { Designer } & \text { MK } \\ \text { Job Number } & \\ & 21210330.000\end{array}$

 Apr 30, 20214:49 PM
Checked By:

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Momentik-ft | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 117 |  | 4 | max | . 924 | 1 | 0 | 1 | 0 | 1 |
| 118 |  |  | min | . 052 | 7 |  | 1 | 0 | 1 |
| 119 |  | 5 | max | . 924 | 1 | 0 | 1 | 0 | 1 |
| 120 |  |  | min | . 052 | 7 | 0 |  | 0 | 1 |
| 121 | M13 | 1 | max | . 661 | 1 | 05 | 5 | 0 | 1 |
| 122 |  |  | min | . 037 | 7 | -. 051 | 4 | 0 | 1 |
| 123 |  | 2 | max | 1.584 | 1 | . 007 | 4 | . 014 | 4 |
| 124 |  |  | min | . 088 | 7 | -. 007 | 5 | -. 014 | 5 |
| 125 |  | 3 | max | 1.584 | 1 | . 007 | 4 | . 01 | 4 |
| 126 |  |  | min | . 088 | 7 | -. 007 | 5 | -. 01 | 5 |
| 127 |  | 4 | max | 1.585 | 1 | . 007 | 4 | . 005 | 4 |
| 128 |  |  | min | . 089 | 7 | -. 007 | 5 | -. 005 | 5 |
| 129 |  | 5 | max | 1.586 | 1 | . 007 | 4 | 0 | 1 |
| 130 |  |  | min | . 089 | 7 | -. 007 | 5 | 0 | 1 |
| 131 | M14 | 1 | max | . 661 | 1 | . 092 | 5 | 0 | 1 |
| 132 |  |  | min | . 037 | 6 | -. 092 | 4 | 0 | 1 |
| 133 |  | 2 | max | 1.323 | 1 | . 016 | 4 | . 04 | 4 |
| 134 |  |  | min | . 074 | 6 | -. 016 | 5 | -. 04 | 5 |
| 135 |  | 3 | max | 1.324 | 1 | . 016 | 4 | . 027 | 4 |
| 136 |  |  | min | . 074 | 6 | -. 016 | 5 | -. 026 | 5 |
| 137 |  | 4 | max | 1.324 | 1 | . 016 | 4 | . 013 | 4 |
| 138 |  |  | min | . 074 | 6 | -. 016 | 5 | -. 013 | 5 |
| 139 |  | 5 | max | 1.325 | 1 | . 016 | 4 | 0 | 1 |
| 140 |  |  | min | . 075 | 6 | -. 016 | 5 | 0 | 1 |
| 141 | M15 | 1 | max | . 661 | 1 | . 031 | 8 | 0 | 1 |
| 142 |  |  | min | . 037 | 7 | -. 028 | 9 | 0 | 1 |
| 143 |  | 2 | max | 1.305 | 1 | . 01 | 5 | . 03 | 5 |
| 144 |  |  | min | -. 228 | 7 | -. 008 | 4 | -. 024 | 4 |
| 145 |  | 3 | max | 1.306 | 1 | . 01 | 5 | . 02 | 5 |
| 146 |  |  | min | -. 228 | 7 | -. 008 | 4 | -. 016 | 4 |
| 147 |  | 4 | max | 1.307 | 1 | . 01 | 5 | . 01 | 5 |
| 148 |  |  | min | -. 227 | 7 | -. 008 | 4 | -. 008 | 4 |
| 149 |  | 5 | max | 1.308 | 1 | . 01 | 5 | 0 | 1 |
| 150 |  |  | min | -. 227 | 7 | -. 008 | 4 | 0 | 1 |
| 151 | M16 | 1 | max | . 581 | 1 | . 077 | 7 | 0 | 1 |
| 152 |  |  | min | . 002 | 6 | -. 083 | 6 | 0 | 1 |
| 153 |  | 2 | max | . 582 | 1 | . 019 | 7 | . 036 | 6 |
| 154 |  |  | min | . 002 | 6 | -. 025 | 6 | -. 032 | 7 |
| 155 |  | 3 | max | 1.243 | 1 | . 025 | 6 | . 034 | 6 |
| 156 |  |  | min | . 039 | 6 | -. 019 | 7 | -. 025 | 7 |
| 157 |  | 4 | max | 1.244 | 1 | . 025 | 6 | . 017 | 6 |
| 158 |  |  | min | . 04 | 6 | -. 019 | 7 | -. 013 | 7 |
| 159 |  | 5 | max | 1.245 | 1 | . 025 | 6 | 0 | 1 |
| 160 |  |  | min | . 04 | 6 | -. 019 | 7 | 0 | 1 |
| 161 | M17 | 1 | max | 1.655 | 1 | 0 | 1 | 0 | 1 |
| 162 |  |  | min | . 028 | 7 | 0 | 1 | 0 | 1 |
| 163 |  | 2 | max | 1.655 | 1 | 0 | 1 | 0 | 1 |
| 164 |  |  | min | . 028 | 7 | 0 | 1 | 0 | 1 |
| 165 |  | 3 | max | 1.656 |  | 0 | 1 | 0 | 1 |
| 166 |  |  | min | . 028 | 7 | 0 | 1 | 0 | 1 |
| 167 |  | 4 | max | 1.656 | 1 | 0 | 1 | 0 | 1 |
| 168 |  |  | min | . 029 | 7 | 0 | 1 | 0 | 1 |
| 169 |  | 5 | max | 1.657 | 1 | 0 | 1 | 0 | 1 |
| 170 |  |  | min | . 029 | 7 | 0 | 1 | 0 | 1 |
| 171 | M18 | 1 | max | 1.336 | 1 | 0 | 1 | 0 |  |
| 172 |  |  | min | -. 065 | 7 | 0 | 1 | 0 | 1 |
| 173 |  | 2 | max | 1.337 | 1 | 0 | 1 | 0 | 1 |

P $\wedge \begin{gathered}\text { Company } \\ \text { Designer }\end{gathered} \quad$ Larson Engineering Inc Designer MK $\begin{array}{lll}\text { Job Number } & \vdots & 21210330.000 \\ \text { Model Name } & \vdots & \text { Hamlin Middle School }\end{array}$

## Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear [k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 174 |  |  | min | -. 065 | 7 | 0 | 1 | 0 | 1 |
| 175 |  | 3 | max | 1.338 | 1 | 0 | 1 | 0 | 1 |
| 176 |  |  | min | -. 065 | 7 | 0 | 1 | 0 | 1 |
| 177 |  | 4 | max | 1.338 | 1 | 0 | 1 | 0 | 1 |
| 178 |  |  | min | -. 064 | 7 | 0 | 1 | 0 | 1 |
| 179 |  | 5 | max | 1.339 | 1 | 0 | 1 | 0 | 1 |
| 180 |  |  | min | -. 064 | 7 | 0 | 1 | 0 | 1 |
| 181 | M19 | 1 | max | . 661 | 1 | . 152 | 8 | 0 | 1 |
| 182 |  |  | min | . 037 | 6 | -. 136 | 9 | 0 | 1 |
| 183 |  | 2 | max | 1.037 | 1 | . 036 | 9 | . 085 | 9 |
| 184 |  |  | min | . 015 | 7 | -. 04 | 8 | -. 095 | 8 |
| 185 |  | 3 | max | 1.038 | 1 | . 036 | 9 | . 057 | 9 |
| 186 |  |  | min | . 016 | 7 | -. 04 | 8 | -. 063 | 8 |
| 187 |  | 4 | max | 1.039 | 1 | . 036 | 9 | . 028 | 9 |
| 188 |  |  | min | . 016 | 7 | -. 04 | 8 | -. 032 | 8 |
| 189 |  | 5 | max | 1.039 | 1 | . 036 | 9 | 0 | 1 |
| 190 |  |  | min | . 017 | 7 | -. 04 | 8 | 0 | 1 |
| 191 | M20 | 1 | max | . 661 | 1 | . 126 | 8 | 0 | 1 |
| 192 |  |  | min | . 037 | 7 | -. 113 | 9 | 0 | 1 |
| 193 |  | 2 | max | 1.323 | 1 | . 024 | 9 | . 068 | 9 |
| 194 |  |  | min | . 074 | 7 | -. 026 | 8 | -. 076 | 8 |
| 195 |  | 3 | max | 1.324 | 1 | . 024 | 9 | . 046 | 9 |
| 196 |  |  | min | . 074 | 7 | -. 026 | 8 | -. 051 | 8 |
| 197 |  | 4 | max | 1.325 | 1 | . 024 | 9 | . 023 | 9 |
| 198 |  |  | min | . 075 | 7 | -. 026 | 8 | -. 025 | 8 |
| 199 |  | 5 | max | 1.326 | 1 | . 024 | 9 | 0 | 1 |
| 200 |  |  | min | . 075 | 7 | -. 026 | 8 | 0 | 1 |
| 201 | M21 | 1 | max | . 661 | 1 | . 107 | 8 | 0 | 1 |
| 202 |  |  | min | . 037 | 7 | -. 096 | 9 | 0 | 1 |
| 203 |  | 2 | max | 1.323 | 1 | . 017 | 9 | . 056 | 9 |
| 204 |  |  | min | . 074 | 7 | -. 019 | 8 | -. 063 | 8 |
| 205 |  | 3 | max | 1.324 | 1 | . 017 | 9 | . 038 | 9 |
| 206 |  |  | min | . 075 | 7 | -. 019 | 8 | -. 042 | 8 |
| 207 |  | 4 | max | 1.325 | 1 | . 017 | 9 | . 019 | 9 |
| 208 |  |  | min | . 075 | 7 | -. 019 | 8 | -. 021 | 8 |
| 209 |  | 5 | max | 1.326 | 1 | . 017 | 9 | 0 | 1 |
| 210 |  |  | min | . 076 | 7 | -. 019 | 8 | 0 | 1 |
| 211 | M22 | 1 | max | . 802 | 9 | . 048 | 8 | 0 | 1 |
| 212 |  |  | min | -. 685 | 8 | -. 048 | 9 | 0 | 1 |
| 213 |  | 2 | max | 1.314 | 1 | . 017 | 9 | . 021 | 9 |
| 214 |  |  | min | -. 622 | 8 | -. 017 | 8 | -. 021 | 8 |
| 215 |  | 3 | max | 1.315 | 1 | . 017 | 9 | . 002 | 8 |
| 216 |  |  | min | -. 62 | 8 | -. 017 | 8 | -. 002 | 9 |
| 217 |  | 4 | max | 1.31 | 1 | . 001 | 8 | . 002 | 8 |
| 218 |  |  | min | -. 906 | 8 | -. 001 | 9 | -. 002 | 9 |
| 219 |  | 5 | max | 1.311 | 1 | . 001 | 8 | 0 | 1 |
| 220 |  |  | min | -. 904 | 8 | -. 001 | 9 | 0 | 1 |
| 221 | M23 | 1 | max | 0 | 1 | 0 | 8 | 0 | 1 |
| 222 |  |  | min | 0 | 1 | 0 | 9 | 0 | 1 |
| 223 |  | 2 | max | 0 | 5 | . 023 | 4 | . 003 | 5 |
| 224 |  |  | min | 0 | 6 | -. 023 | 5 | -. 003 | 4 |
| 225 |  | 3 | max | . 019 | 8 | 1.556 | 8 | . 325 | 9 |
| 226 |  |  | min | 0 | 7 | -1.545 | 9 | -. 327 | 8 |
| 227 |  | 4 | max | . 662 | 1 | . 746 | 9 | 421 | 9 |
| 228 |  |  | min | . 037 | 6 | -. 755 | 8 | -. 423 | 8 |
| 229 |  | 5 | max | 663 | 1 | . 746 | 9 | 22 | 9 |
| 230 |  |  | min | . 037 | 6 | -. 755 | 8 | -. 22 | 8 |

## lirkISA <br> Designe Designer Job Number Model Name <br> Larson Engineering Inc <br> M1210330.000 Hamlin Middle Sct

Apr 30, 2021
4:49 PM
4:49 PM Checked By:___

Envelope Member Section Forces (Continued)


RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcsIThird Base Frames.r2d]
(R) $\underset{\text { Company }}{ } \begin{aligned} & \text { Designer } \\ & \text { Job Number }\end{aligned} \begin{aligned} & \vdots \text { Larson Engineering Inc } \\ & \vdots \\ & \text { MK } \\ & 21210330.000\end{aligned}$ $\begin{array}{l:l}\text { Job Number } & \vdots 21210330.000 \\ \text { Model Name } & \text { Hamlin Middle School }\end{array}$

## Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear [k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 288 |  |  | min | -1.012 | 8 | 0 | 1 | 0 | 1 |
| 289 |  | 5 | max | 1.347 | 3 | 0 | 1 | 0 | 1 |
| 290 |  |  | min | -1.012 | 8 | 0 | 1 | 0 | 1 |
| 291 | M30 | 1 | max | . 849 | 2 | 0 | 1 | 0 | 1 |
| 292 |  |  | min | -. 887 | 9 | 0 | 1 | 0 | 1 |
| 293 |  | 2 | max | . 85 | 2 | 0 | 1 | 0 | 1 |
| 294 |  |  | min | -. 886 | 9 | 0 | 1 | 0 | 1 |
| 295 |  | 3 | max | . 85 | 2 | 0 | 1 | 0 | 1 |
| 296 |  |  | min | -. 885 | 9 | 0 | 1 | 0 | 1 |
| 297 |  | 4 | max | . 851 | 2 | 0 | 1 | 0 | 1 |
| 298 |  |  | min | -. 884 | 9 | 0 | 1 | 0 | 1 |
| 299 |  | 5 | max | . 852 | 2 | 0 | 1 | 0 | 1 |
| 300 |  |  | min | -. 884 | 9 | 0 | 1 | 0 | 1 |
| 301 | M31 | 1 | max | 1.249 | 1 | 0 | 1 | 0 | 1 |
| 302 |  |  | min | . 018 | 6 | 0 | 1 | 0 | 1 |
| 303 |  | 2 | max | 1.249 | 1 | 0 | 1 | 0 | 1 |
| 304 |  |  | min | . 019 | 6 | 0 | 1 | 0 | 1 |
| 305 |  | 3 | max | 1.25 | 1 | 0 | 1 | 0 | 1 |
| 306 |  |  | min | . 019 | 6 | 0 | 1 | 0 | 1 |
| 307 |  | 4 | max | 1.25 | 1 | 0 | 1 | 0 | 1 |
| 308 |  |  | min | . 019 | 6 | 0 | 1 | 0 | 1 |
| 309 |  | 5 | max | 1.251 | 1 | 0 | 1 | 0 | 1 |
| 310 |  |  | min | . 02 | 6 | 0 | 1 | 0 | 1 |
| 311 | M32 | 1 | max | . 352 | 5 | 0 | 7 | 0 | 1 |
| 312 |  |  | min | -. 333 | 4 | 0 | 4 | 0 | 1 |
| 313 |  | 2 | max | . 353 | 5 | 0 | 7 | 0 | 4 |
| 314 |  |  | min | -. 333 | 4 | 0 | 4 | 0 | 7 |
| 315 |  | 3 | max | . 354 | 5 | 0 | 1 | 0 | 4 |
| 316 |  |  | min | -. 332 | 4 | 0 | 1 | 0 | 7 |
| 317 |  | 4 | max | . 354 | 5 | 0 | 1 | 0 | 4 |
| 318 |  |  | min | -. 332 | 4 | 0 | 6 | 0 | 7 |
| 319 |  | 5 | max | . 355 | 5 | 0 | 1 | 0 | 1 |
| 320 |  |  | min | -. 331 | 4 | 0 | 6 | 0 | 1 |
| 321 | M33 | 1 | max | . 933 | 8 | 0 | 8 | 0 | 1 |
| 322 |  |  | min | -. 555 | 9 | 0 | 7 | 0 | 1 |
| 323 |  | 2 | max | . 933 | 8 | 0 | 8 | 0 | 7 |
| 324 |  |  | min | -. 555 | 9 | 0 | 7 | 0 | 8 |
| 325 |  | 3 | max | . 934 | 8 | 0 |  | 0 | 7 |
| 326 |  |  | min | -. 554 | 9 | 0 | 1 | O | 8 |
| 327 |  | 4 | max | . 934 | 8 | 0 | 6 | 0 | 7 |
| 328 |  |  | min | -. 554 | 9 | 0 | 5 | 0 | 8 |
| 329 |  | 5 | max | . 934 | 8 | 0 | 6 | 0 | 1 |
| 330 |  |  | min | -. 553 | 9 | 0 | 5 | 0 | 1 |
| 331 | M34 | 1 | max | . 741 | 8 | 0 | 6 | 0 | 1 |
| 332 |  |  | min | -. 329 | 9 | 0 | 9 | 0 | 1 |
| 333 |  | 2 | max | . 741 | 8 | 0 | 6 | 0 | 9 |
| 334 |  |  | min | -. 329 | 9 | 0 | 9 | 0 | 6 |
| 335 |  | 3 | max | . 742 | 8 | 0 | 1 | 0 | 9 |
| 336 |  |  | min | -. 328 | 9 | 0 | 1 | O | 6 |
| 337 |  | 4 | max | . 742 | 8 | 0 | 4 | 0 | 9 |
| 338 |  |  | min | -. 328 | 9 | 0 | 7 | 0 | 6 |
| 339 |  | 5 | max | . 743 | 8 | 0 | 4 | 0 | 1 |
| 340 |  |  | min | -. 328 | 9 | 0 | 7 | 0 | 1 |
| 341 | M35 | 1 | max | . 42 | 9 | 0 | 6 | 0 | 1 |
| 342 |  |  | min | -. 405 | 8 | 0 | 8 | 0 | 1 |
| 343 |  | 2 | max | . 421 | 9 | 0 | 6 | 0 | 8 |
| 344 |  |  | min | -. 405 | 8 | 0 | , | 0 | 6 |

## lintisA <br> Designe Designer Job Number Model Name <br> Larson Engineering Inc <br> M1210330.000 Hamlin Middle Sct

 Apr 30, 20214:49 PM
Checked By:

Envelope Member Section Forces (Continued)


Checked By:___

## Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axialk] | LC | Shear[k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 402 |  |  | min | -2.313 | 8 | . 037 | 6 | 0 | 1 |
| 403 |  | 2 | max | 2.293 | 9 | . 331 | 1 | -. 014 | 6 |
| 404 |  |  | min | -2.313 | 8 | . 018 | 6 | -. 248 | 1 |
| 405 |  | 3 | max | 2.293 | 9 | 0 | 1 | -. 018 | 6 |
| 406 |  |  | min | -2.313 | 8 | 0 | 1 | -. 331 | 1 |
| 407 |  | 4 | max | 2.293 | 9 | -. 018 | 7 | -. 014 | 6 |
| 408 |  |  | min | -2.313 | 8 | -. 331 | 1 | -. 248 | 1 |
| 409 |  | 5 | max | 2.293 | 9 | -. 037 | 7 | 0 | 1 |
| 410 |  |  | min | -2.313 | 8 | -. 661 | 1 | 0 | 1 |
| 411 | M42 | 1 | max | 2.963 | 1 | 0 | 1 | 0 | 1 |
| 412 |  |  | min | . 092 | 7 | 0 | 1 | 0 | 1 |
| 413 |  | 2 | max | 2.964 | 1 | 0 | 1 | 0 | 1 |
| 414 |  |  | min | . 092 | 7 | 0 | 1 | 0 | 1 |
| 415 |  | 3 | max | 2.965 | 1 | 0 | 1 | 0 | 1 |
| 416 |  |  | min | . 093 | 7 | 0 | 1 | 0 | 1 |
| 417 |  | 4 | max | 2.965 | 1 | 0 | 1 | 0 | 1 |
| 418 |  |  | min | . 093 | 7 | 0 | 1 | 0 | 1 |
| 419 |  | 5 | max | 2.966 | 1 | 0 | 1 | 0 | 1 |
| 420 |  |  | min | . 094 | 7 | 0 | 1 | 0 | 1 |
| 421 | M43 | 1 | max | . 694 |  | 0 | 1 | 0 | 1 |
| 422 |  |  | min | -. 067 | 8 | 0 | 1 | 0 | 1 |
| 423 |  | 2 | max | . 694 | 1 | 0 | 1 | 0 | 1 |
| 424 |  |  | min | -. 066 | 8 | 0 | 1 | 0 | 1 |
| 425 |  | 3 | max | . 695 | 1 | 0 | 1 | 0 | 1 |
| 426 |  |  | min | -. 065 | 8 | 0 | 1 | 0 | 1 |
| 427 |  | 4 | max | . 696 | 1 | 0 | 1 | 0 | 1 |
| 428 |  |  | min | -. 064 | 8 | 0 | 1 | 0 | 1 |
| 429 |  | 5 | max | . 697 | 1 | 0 | 1 | 0 | 1 |
| 430 |  |  | min | -. 064 | 8 | 0 | 1 | 0 | 1 |
| 431 | M44 | 1 | max | . 661 | 1 | 149 | 8 | 0 | 1 |
| 432 |  |  | min | . 037 | 6 | -. 13 | 9 | 0 | 1 |
| 433 |  | 2 | max | . 979 | 1 | . 034 | 9 | . 081 | 9 |
| 434 |  |  | min | -. 053 | 7 | -. 038 | 8 | -. 093 | 8 |
| 435 |  | 3 | max | . 98 | 1 | . 034 | 9 | . 054 | 9 |
| 436 |  |  | min | -. 052 | 7 | -. 038 | 8 | -. 062 | 8 |
| 437 |  | 4 | max | . 981 | 1 | . 034 | 9 | . 027 | 9 |
| 438 |  |  | min | -. 052 | 7 | -. 038 | 8 | -. 031 | 8 |
| 439 |  | 5 | max | . 981 | 1 | . 034 | 9 | 0 | 1 |
| 440 |  |  | min | -. 051 | 7 | -. 038 | 8 | 0 | 1 |
| 441 | M45 | 1 | max | . 661 | 1 | . 123 | 8 | 0 | 1 |
| 442 |  |  | min | . 037 | 6 | -. 108 | 9 | 0 | 1 |
| 443 |  | 2 | max | 1.323 | 1 | . 022 | 9 | . 065 | 9 |
| 444 |  |  | min | . 074 | 7 | -. 026 | 8 | -. 075 | 8 |
| 445 |  | 3 | max | 1.324 | 1 | . 022 | 9 | . 044 | 9 |
| 446 |  |  | min | . 074 | 7 | -. 026 | 8 | -. 05 | 8 |
| 447 |  | 4 | max | 1.325 | 1 | . 022 | 9 | . 022 | 9 |
| 448 |  |  | min | . 075 | 7 | -. 026 | 8 | -. 025 | 8 |
| 449 |  | 5 | max | 1.326 | 1 | . 022 | 9 | 0 | 1 |
| 450 |  |  | min | . 075 | 7 | -. 026 | 8 | 0 | 1 |
| 451 | M46 | 1 | max | . 661 | 1 | . 105 | 8 | 0 | 1 |
| 452 |  |  | min | . 037 | 7 | -. 092 | 9 | 0 | 1 |
| 453 |  | 2 | max | 1.323 | 1 | . 016 | 9 | . 054 | 9 |
| 454 |  |  | min | . 074 | 7 | -. 018 | 8 | -. 062 | 8 |
| 455 |  | 3 | max | 1.324 | 1 | . 016 | 9 | . 036 | 9 |
| 456 |  |  | min | . 075 | 7 | -. 018 | 8 | -. 041 | 8 |
| 457 |  | 4 | max | 1.325 | 1 | . 016 | 9 | . 018 | 9 |
| 458 |  |  | min | . 075 | 7 | -. 018 | 8 | -. 021 | 8 |

## lirkISA <br> Company Larson Engineering Inc <br> $\begin{array}{lll}\text { Designer } & \text { MK } \\ \text { Job Number } \\ \text { 212 } \\ & 2120330.000\end{array}$

 Apr 30, 20214:49 PM
Checked By:

Envelope Member Section Forces (Continued)


Checked By:

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear [k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 516 |  |  | min | . 081 | 6 | 0 | 1 | 0 | 1 |
| 517 |  | 4 | max | 1.323 | 1 | 0 | 1 | 0 | 1 |
| 518 |  |  | min | . 081 | 6 |  | 1 | 0 | 1 |
| 519 |  | 5 | max | 1.324 | 1 | 0 | 1 | 0 | 1 |
| 520 |  |  | min | . 081 | 6 | 0 | 1 | 0 | 1 |
| 521 | M53 | 1 | max | 1.338 |  | 0 | 1 | 0 | 1 |
| 522 |  |  | min | . 005 | 8 | 0 | 1 | 0 | 1 |
| 523 |  | 2 | max | 1.338 | 1 | 0 | 1 | 0 | 1 |
| 524 |  |  | min | . 005 | 8 | 0 | 1 | 0 | 1 |
| 525 |  | 3 | max | 1.339 | 1 | 0 | 1 | 0 | 1 |
| 526 |  |  | min | . 006 | 8 | 0 | 1 | 0 | 1 |
| 527 |  | 4 | max | 1.34 | 1 | 0 | 1 | 0 | 1 |
| 528 |  |  | min | . 007 | 8 | 0 | 1 | 0 | 1 |
| 529 |  | 5 | max | 1.34 | 1 | 0 | 1 | 0 | 1 |
| 530 |  |  | min | . 007 | 8 | 0 | 1 | 0 | 1 |
| 531 | M54 | 1 | max | 1.368 | 9 | 0 | 1 | 0 | 1 |
| 532 |  |  | min | -. 966 | 8 | 0 | 1 | 0 | 1 |
| 533 |  | 2 | max | 1.369 | 9 | 0 | 1 | 0 | 1 |
| 534 |  |  | min | -. 966 | 8 | 0 | 1 | 0 | 1 |
| 535 |  | 3 | max | 1.369 | 9 | 0 | 1 | 0 | 1 |
| 536 |  |  | min | -. 965 | 8 | 0 | 1 | 0 | 1 |
| 537 |  | 4 | max | 1.37 | 9 | 0 | 1 | 0 | 1 |
| 538 |  |  | min | -. 964 | 8 | 0 | 1 | 0 | 1 |
| 539 |  | 5 | max | 1.371 | 9 | 0 | 1 | 0 | 1 |
| 540 |  |  | min | -. 964 | 8 | 0 | 1 | 0 | 1 |
| 541 | M55 | 1 | max | . 8 | 2 | 0 | 1 | 0 | 1 |
| 542 |  |  | min | -. 819 | 9 | 0 | 1 | 0 | 1 |
| 543 |  | 2 | max | . 801 | 2 | 0 | 1 | 0 | 1 |
| 544 |  |  | min | -. 818 | 9 | 0 | 1 | 0 | 1 |
| 545 |  | 3 | max | . 802 | 2 | 0 | 1 | 0 | 1 |
| 546 |  |  | min | -. 817 | 9 | 0 | 1 | 0 | 1 |
| 547 |  | 4 | max | . 802 | 2 | 0 | 1 | 0 | 1 |
| 548 |  |  | min | -. 817 | 9 | 0 | 1 | 0 | 1 |
| 549 |  | 5 | max | . 803 | 2 | 0 | 1 | 0 | 1 |
| 550 |  |  | min | -. 816 | 9 | 0 | 1 | 0 | 1 |
| 551 | M56 | 1 | max | . 898 | 8 | 0 | 9 | 0 | 1 |
| 552 |  |  | min | -. 68 | 9 | 0 | 6 | 0 | 1 |
| 553 |  | 2 | max | . 898 | 8 | 0 | 9 | 0 | 6 |
| 554 |  |  | min | -. 679 | 9 | 0 | 6 | 0 | 9 |
| 555 |  | 3 | max | . 898 | 8 | 0 | 1 | 0 | 6 |
| 556 |  |  | min | -. 679 | 9 | 0 | 1 | 0 | 9 |
| 557 |  | 4 | max | . 899 | 8 | 0 | 7 | 0 | 6 |
| 558 |  |  | min | -. 678 | 9 | 0 | 8 | 0 | 9 |
| 559 |  | 5 | max | . 899 | 8 | 0 | 7 | 0 | 1 |
| 560 |  |  | min | -. 678 | 9 | 0 | 8 | 0 | 1 |
| 561 | M57 | 1 | max | . 698 | 8 | 0 | 6 | 0 | 1 |
| 562 |  |  | min | -. 442 | 9 | 0 | 8 | 0 | 1 |
| 563 |  | 2 | max | . 698 | 8 | 0 | 6 |  | 8 |
| 564 |  |  | min | -. 442 | 9 | 0 | 8 | 0 | 6 |
| 565 |  | 3 | max | . 698 | 8 | 0 | 1 | 0 | 8 |
| 566 |  |  | min | -. 441 | 9 |  | 1 |  | 6 |
| 567 |  | 4 | max | . 699 | 8 | 0 | 5 | 0 | 8 |
| 568 |  |  | min | -. 441 | 9 | 0 | 7 | 0 | 6 |
| 569 |  | 5 | max | . 699 | 8 | 0 | 5 | 0 | 1 |
| 570 |  |  | min | -. 44 | 9 | 0 | 7 | 0 | 1 |
| 571 | M58 | 1 | max | 426 | 9 | 0 | 7 | 0 | 1 |
| 572 |  |  | min | -. 408 | 8 | 0 | 3 | 0 | 1 |

## lirkISA <br> Designe Designer Job Number Model Name <br> Larson Engineering Inc <br> M1210330.000 Hamlin Middle Sct

 Apr 30, 20214:49PM
Checked By:

Envelope Member Section Forces (Continued)



Envelope Member Section Forces (Continued)


## lirkISA <br> Designe Designer Job Number Model Name <br> Larson Engineering Inc <br> M1210330.000 Hamlin Middle Sct

Apr 30, 2021
4:49 PM
4:49 PM ———

Envelope Member Section Forces (Continued)



Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear [k] | LC | Moment[k-ftt | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 744 |  |  | min | -. 929 | 9 | -. 837 | 8 | -. 702 | 8 |
| 745 |  | 3 | max | . 926 | 8 | . 84 | 9 | . 47 | 9 |
| 746 |  |  | min | -. 928 | 9 | -. 837 | 8 | -. 468 | 8 |
| 747 |  | 4 | max | . 927 | 8 | . 84 | 9 | . 235 | 9 |
| 748 |  |  | min | -. 928 | 9 | -. 836 | 8 | -. 234 | 8 |
| 749 |  | 5 | max | . 927 | 8 | . 841 | 9 | 0 | 1 |
| 750 |  |  | min | -. 928 | 9 | -. 836 | 8 | 0 | 1 |
| 751 | M76 | 1 | max | 1.545 | 9 | 0 | 6 | 0 | 1 |
| 752 |  |  | min | -1.556 | 8 | 0 | 9 | 0 | 1 |
| 753 |  | 2 | max | 1.545 | 9 | 0 | 6 | 0 | 9 |
| 754 |  |  | min | -1.556 | 8 | 0 | 9 | 0 | 6 |
| 755 |  | 3 | max | 1.545 | 9 | 0 | 1 | 0 | 9 |
| 756 |  |  | min | -1.556 | 8 | 0 | 1 | 0 | 6 |
| 757 |  | 4 | max | 1.545 | 9 | 0 | 8 | 0 | 9 |
| 758 |  |  | min | -1.556 | 8 | 0 | 7 | 0 | 6 |
| 759 |  | 5 | max | 1.545 | 9 | 0 | 8 | 0 | 1 |
| 760 |  |  | min | -1.556 | 8 | 0 | 7 | 0 | 1 |
| 761 | M77 | 1 | max | 0 |  | . 3 | 8 | 0 | 1 |
| 762 |  |  | min | 0 | 1 | -. 3 | 9 | 0 | 1 |
| 763 |  | 2 | max | . 002 | 4 | . 3 | 8 | .319 | 9 |
| 764 |  |  | min | . 001 | 7 | -. 3 | 9 | -. 319 | 8 |
| 765 |  | 3 | max | . 004 | 4 | . 3 | 8 | . 638 | 9 |
| 766 |  |  | min | . 002 | 7 | -. 3 | 9 | -. 638 | 8 |
| 767 |  | 4 | max | . 006 | 4 | . 3 | 8 | . 957 | 9 |
| 768 |  |  | min | . 004 | 7 | -. 3 | 9 | -. 957 | 8 |
| 769 |  | 5 | max | . 008 | 4 | . 3 | 8 | 1.276 | 9 |
| 770 |  |  | min | . 005 | 7 | -. 3 | 9 | -1.276 | 8 |
| 771 | M78 | 1 | max | . 927 | 8 | . 839 | 9 | . 94 | 9 |
| 772 |  |  | min | -. 929 | 9 | -. 838 | 8 | -. 936 | 8 |
| 773 |  | 2 | max | . 927 | 8 | . 84 | 9 | 705 | 9 |
| 774 |  |  | min | -. 928 | 9 | -. 837 | 8 | -. 702 | 8 |
| 775 |  | 3 | max | . 927 | 8 | . 84 | 9 | . 47 | 9 |
| 776 |  |  | min | -. 928 | 9 | -. 837 | 8 | -. 468 | 8 |
| 777 |  | 4 | max | . 928 | 8 | . 84 | 9 | . 235 | 9 |
| 778 |  |  | min | -. 928 | 9 | -. 836 | 8 | -. 234 | 8 |
| 779 |  | 5 | max | . 928 | 8 | . 841 | 9 | 0 | 1 |
| 780 |  |  | min | -. 927 | 9 | -. 836 | 8 | 0 | 1 |
| 781 | M79 | 1 | max | 1.545 | 9 | 0 | 6 | 0 | 1 |
| 782 |  |  | min | -1.556 | 8 | 0 | 9 |  | 1 |
| 783 |  | 2 | max | 1.545 | 9 | 0 | 6 | 0 | 9 |
| 784 |  |  | min | -1.556 | 8 | 0 | 9 | 0 | 6 |
| 785 |  | 3 | max | 1.545 | 9 | 0 | 1 | 0 | 9 |
| 786 |  |  | min | -1.556 | 8 | 0 | 1 | 0 | 6 |
| 787 |  | 4 | max | 1.545 | 9 | 0 | 8 | 0 | 9 |
| 788 |  |  | min | -1.556 | 8 | 0 | 7 | 0 | 6 |
| 789 |  | 5 | max | 1.545 | 9 | 0 | 8 | 0 | 1 |
| 790 |  |  | min | -1.556 | 8 | 0 | 7 | 0 | 1 |
| 791 | M80 | 1 | max | 0 | 1 | . 3 | 8 | 0 | 1 |
| 792 |  |  | min | 0 | 1 | -. 3 | 9 | 0 | 1 |
| 793 |  | 2 | max | . 002 | 8 | . 3 | 8 | . 319 | 9 |
| 794 |  |  | min | . 001 | 6 | -. 3 | 9 | -. 319 | 8 |
| 795 |  | 3 | max | . 004 | 8 | . 3 | 8 | . 638 | 9 |
| 796 |  |  | min | . 002 | 6 | -. 3 | 9 | -. 638 | 8 |
| 797 |  | 4 | max | . 006 | 8 | . 3 | 8 | . 957 | 9 |
| 798 |  |  | min | . 004 | 6 | -. 3 | 9 | -. 957 | 8 |
| 799 |  | 5 | max | . 008 | 8 | . 3 | 8 | 1.276 | 9 |
| 800 |  |  | min | . 005 | 6 | -. 3 | 9 | -1.276 | 8 |

## lintisA <br> Designe <br>  <br> MK 21210330.000 Hamlin Middle School

Envelope Member Section Forces (Continued)

| Member |  | Sec |  | Axialk] | 1 | Shear[k] | LC | Moment[k-ft] LC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 801 | M81 | 1 | max | . 002 | 8 | . 556 | 8 | 0 | 1 |
| 802 |  |  | min | 0 | 2 | -. 004 | 1 | -. 139 | 8 |
| 803 |  | 2 | max | . 21 | 9 | . 002 | 1 | . 001 | 1 |
| 804 |  |  | min | -. 33 | 8 | -. 188 |  | -. 254 | 8 |
| 805 |  | 3 | max | . 21 | 9 | . 002 | 1 | 0 | 1 |
| 806 |  |  | min | -. 33 | 8 | -. 189 | 8 | -. 184 | 8 |
| 807 |  | 4 | max | . 21 | 9 | . 001 | 1 | . 018 | 9 |
| 808 |  |  | min | -. 33 | 8 | -. 189 | 8 | -. 113 | 8 |
| 809 |  | 5 | max | . 21 | 9 | 0 | 1 | . 083 | 9 |
| 810 |  |  | min | -. 33 | 8 | -. 189 | 8 | -. 042 | 8 |
| 811 | M82 | 1 | max | . 21 | 9 | 0 | 1 | . 083 | 9 |
| 812 |  |  | min | -. 33 | 8 | -. 189 | 8 | -. 042 | 8 |
| 813 |  | 2 | max | . 21 | 9 | 0 | 1 | . 104 | 9 |
| 814 |  |  | min | -. 33 | 8 | -. 189 | 8 | -. 018 | 8 |
| 815 |  | 3 | max | . 21 | 9 | 0 | 1 | . 126 | 9 |
| 816 |  |  | min | -. 33 | 8 | -. 189 | 8 | 0 | 1 |
| 817 |  | 4 | max | . 207 | 8 | . 093 | 9 | 114 | 9 |
| 818 |  |  | min | -. 11 | 9 | 0 | 1 | 0 | 1 |
| 819 |  | 5 | max | . 207 | 8 | . 093 | 9 | . 103 | 9 |
| 820 |  |  | min | -. 11 | 9 | 0 | 1 | 0 | 1 |
| 821 | M83 | 1 | max | . 207 | 8 | . 092 | 9 | 103 | 9 |
| 822 |  |  | min | -. 11 | 9 | 0 | 1 | 0 | 1 |
| 823 |  | 2 | max | . 207 | 8 | . 092 | 9 | . 068 | 9 |
| 824 |  |  | min | -. 11 | 9 | 0 | 1 | -. 004 | 8 |
| 825 |  | 3 | max | . 207 | 8 | . 092 | 9 | . 034 | 9 |
| 826 |  |  | min | -. 11 | 9 | 0 | 1 | -. 01 | 8 |
| 827 |  | 4 | max | . 207 | 8 | . 091 | 9 | 0 | 3 |
| 828 |  |  | min | -. 11 | 9 | -. 001 | 1 | -. 018 | 4 |
| 829 |  | 5 | max | . 207 | 8 | . 091 | 9 | 0 | 3 |
| 830 |  |  | min | -. 11 | 9 | -. 001 | 1 | -. 035 | 9 |
| 831 | M84 | 1 | max | . 207 | 8 | . 091 | 9 | 0 | 3 |
| 832 |  |  | min | -. 11 | 9 | -. 001 | 1 | -. 035 | 9 |
| 833 |  | 2 | max | . 207 | 8 | . 091 | 9 | 0 | 1 |
| 834 |  |  | min | -. 11 | 9 | -. 002 | 1 | -. 046 | 9 |
| 835 |  | 3 | max | . 207 | 8 | . 09 | 9 | 0 | 1 |
| 836 |  |  | min | -. 11 | 9 | -. 109 | 8 | -. 057 | 9 |
| 837 |  | 4 | max | . 206 | 8 | . 002 | 1 | 0 | 1 |
| 838 |  |  | min | -. 11 | 9 | -. 109 | 8 | -. 049 | 9 |
| 839 |  | 5 | max | . 206 | 8 | . 001 | 1 | . 003 | 8 |
| 840 |  |  | min | -. 11 | 9 | -. 11 | 8 | -. 04 | 9 |
| 841 | M85 | 1 | max | . 206 | 8 | . 001 | 1 | . 003 | 8 |
| 842 |  |  | min | -. 11 | 9 | -. 109 | 8 | -. 04 | 9 |
| 843 |  | 2 | max | . 206 | 8 | 0 | 1 | . 044 | 8 |
| 844 |  |  | min | -. 11 | 9 | -. 11 | 8 | -. 014 | 9 |
| 845 |  | 3 | max | . 206 | 8 | 0 | 1 | . 086 | 8 |
| 846 |  |  | min | -. 11 | 9 | -. 11 | 8 | 0 | 1 |
| 847 |  | 4 | max | . 206 | 8 | 0 | 1 | . 127 | 8 |
| 848 |  |  | min | -. 11 | 9 | -. 11 | 8 | 0 | 1 |
| 849 |  | 5 | max | . 206 | 8 | 0 | 1 | . 169 | 8 |
| 850 |  |  | min | -. 11 | 9 | -. 111 | 8 | 0 | 1 |
| 851 | M86 | 1 | max | . 206 | 8 | 0 | 1 | 169 | 8 |
| 852 |  |  | min | -. 11 | 9 | -. 11 | 8 | 0 | 1 |
| 853 |  | 2 | max | . 206 | 8 | 0 | 1 | 182 | 8 |
| 854 |  |  | min | -. 11 | 9 | -. 11 | 8 | 0 | 1 |
| 855 |  | 3 | max | . 08 | 6 | . 352 | 9 | . 196 | 8 |
| 856 |  |  | min | -. 221 | 8 | 0 | 2 | 0 | 1 |
| 857 |  | 4 | max | . 083 |  | . 352 | 9 | 159 | 8 |



Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear [k] | LC | Moment[k-ti] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 858 |  |  | min | -. 221 | 8 | 0 | 1 | 0 | 3 |
| 859 |  | 5 | max | . 083 | 9 | . 351 | 9 | 123 | 8 |
| 860 |  |  | min | -. 221 | 8 | 0 | 1 | -. 004 | 9 |
| 861 | M87 | 1 | max | . 083 | 9 | . 351 |  | 123 | 8 |
| 862 |  |  | min | -. 221 | 8 | 0 | 1 | -. 004 | 9 |
| 863 |  | 2 | max | . 083 | 9 | . 351 | 9 | . 013 | 4 |
| 864 |  |  | min | -. 221 | 8 | -. 001 | 1 | -. 135 | 9 |
| 865 |  | 3 | max | . 083 | 9 | . 35 | 9 | 0 | 2 |
| 866 |  |  | min | -. 221 | 8 | -. 001 | 1 | -. 267 | 9 |
| 867 |  | 4 | max | . 083 | 9 | . 35 | 9 | . 001 | 1 |
| 868 |  |  | min | -. 221 | 8 | -. 002 | 1 | -. 398 | 9 |
| 869 |  | 5 | max | . 002 | 9 | . 003 | 1 | 0 | 1 |
| 870 |  |  | min | 0 | 1 | -. 883 | 9 | -. 221 | 9 |
| 871 | M88 | 1 | max | . 002 | 9 | . 003 | 1 | 0 | 1 |
| 872 |  |  | min | 0 | 1 | -. 883 | 9 | -. 221 | 9 |
| 873 |  | 2 | max | . 002 | 9 | . 003 | 1 | 0 | 1 |
| 874 |  |  | min | 0 | 1 | -. 883 | 9 | -. 166 | 9 |
| 875 |  | 3 | max | . 002 | 9 | . 003 | 1 | 0 | 1 |
| 876 |  |  | min | 0 | 1 | -. 883 | 9 | -. 11 | 9 |
| 877 |  | 4 | max | . 002 | 9 | . 003 | 1 | 0 | 1 |
| 878 |  |  | min | 0 | 1 | -. 883 | 9 | -. 055 | 9 |
| 879 |  | 5 | max | . 002 | 9 | . 003 | 1 | 0 | 1 |
| 880 |  |  | min | 0 | 1 | -. 884 | 9 | 0 | 1 |
| 881 | M89 | 1 | max | . 001 | 9 | . 406 | 8 | 0 | 1 |
| 882 |  |  | min | 0 | 2 | -. 004 | 1 | -. 101 | 8 |
| 883 |  | 2 | max | . 197 | 9 | . 003 | 1 | . 002 | 1 |
| 884 |  |  | min | -. 259 | 8 | -. 182 | 8 | -. 18 | 8 |
| 885 |  | 3 | max | . 197 | 9 | . 003 | 1 | 0 | 1 |
| 886 |  |  | min | -. 259 | 8 | -. 182 | 8 | -. 112 | 8 |
| 887 |  | 4 | max | . 197 | 9 | . 002 | 1 | . 039 | 9 |
| 888 |  |  | min | -. 259 | 8 | -. 183 | 8 | -. 043 | 8 |
| 889 |  | 5 | max | . 197 | 9 | . 002 | 1 | . 106 | 9 |
| 890 |  |  | min | -. 259 | 8 | -. 183 | 8 | -. 001 | 1 |
| 891 | M90 | 1 | max | . 197 | 9 | . 002 | 1 | 106 | 9 |
| 892 |  |  | min | -. 259 | 8 | -. 183 | 8 | -. 001 | 1 |
| 893 |  | 2 | max | . 197 | 9 | . 002 | 1 | . 128 | 9 |
| 894 |  |  | min | -. 259 | 8 | -. 183 | 8 | -. 001 | 1 |
| 895 |  | 3 | max | . 259 | 8 | -. 001 | 3 | . 15 | 9 |
| 896 |  |  | min | -. 116 | 6 | -. 183 | 8 | -. 002 | 1 |
| 897 |  | 4 | max | . 259 | 8 | . 177 | 9 | . 128 | 9 |
| 898 |  |  | min | -. 197 | 9 | -. 002 | 1 | -. 001 | 1 |
| 899 |  | 5 | max | . 259 | 8 | . 177 | 9 | . 106 | 9 |
| 900 |  |  | min | -. 197 | 9 | -. 002 | 1 | 0 | 1 |
| 901 | M91 | 1 | max | . 259 | 8 | . 177 | 9 | 106 | 9 |
| 902 |  |  | min | -. 197 | 9 | -. 002 | 1 | 0 | 1 |
| 903 |  | 2 | max | . 259 | 8 | . 177 | 9 | . 039 | 9 |
| 904 |  |  | min | -. 197 | 9 | -. 003 | 1 | -. 007 | 8 |
| 905 |  | 3 | max | . 259 | 8 | . 176 | 9 | 0 | 1 |
| 906 |  |  | min | -. 197 | 9 | -. 003 | 1 | -. 053 | 8 |
| 907 |  | 4 | max | . 259 | 8 | . 176 | 9 | . 002 | 1 |
| 908 |  |  | min | -. 197 | 9 | -. 003 | 1 | -. 099 | 8 |
| 909 |  | 5 | max | . 151 | 8 | . 041 | 4 | 0 | 1 |
| 910 |  |  | min | -. 097 | 9 | -. 177 | 9 | -. 085 | 8 |
| 911 | M92 | 1 | max | . 151 | 8 | . 041 | 4 | 0 | 1 |
| 912 |  |  | min | -. 097 | 9 | -. 177 | 9 | -. 085 | 8 |
| 913 |  | 2 | max | . 151 | 8 | . 04 | 4 | 0 | 3 |
| 914 |  |  | min | -. 097 | 9 | -. 177 | 9 | -. 071 | 8 |

## lintisA <br> Designe Designer Job Number Model Name <br> Larson Engineering Inc <br> M1210330.000 Hamlin Middle Sct

Apr 30,
4.49 PM
4:49 PM -

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment ${ }^{\text {k }}$ | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 915 |  | 3 | max | . 151 | 8 | . 007 | 1 | 0 | 3 |
| 916 |  |  | min | -. 097 | 9 | -. 177 | 9 | -. 056 | 8 |
| 917 |  | 4 | max | . 151 | 8 | 0 | 8 | 0 | 3 |
| 918 |  |  | min | -. 097 |  | -. 125 | 8 | -. 041 | 8 |
| 919 |  | 5 | max | . 151 | 8 | 0 | 1 | 0 | 3 |
| 920 |  |  | min | -. 097 | 9 | -. 125 | 8 | -. 025 | 8 |
| 921 | M93 | 1 | max | . 151 | 8 | 0 | 1 | 0 | 3 |
| 922 |  |  | min | -. 097 | 9 | -. 125 | 8 | -. 025 | 8 |
| 923 |  | 2 | max | . 151 | 8 | 0 | 1 | . 022 | 8 |
| 924 |  |  | min | -. 097 | 9 | -. 125 | 8 | -. 005 | 4 |
| 925 |  | 3 | max | . 151 | 8 | 0 | 1 | . 069 | 8 |
| 926 |  |  | min | -. 097 | 9 | -. 126 | 8 | 0 | 1 |
| 927 |  | 4 | max | . 151 | 8 | 0 | 1 | . 116 | 8 |
| 928 |  |  | min | -. 097 | 9 | -. 126 | 8 | 0 | 1 |
| 929 |  | 5 | max | . 151 | 8 | -. 001 | 1 | . 164 | 8 |
| 930 |  |  | min | -. 097 | 9 | -. 126 | 8 | 0 | 1 |
| 931 | M94 | 1 | max | . 151 | 8 | -. 001 | 1 | 164 | 8 |
| 932 |  |  | min | -. 097 | 9 | -. 126 | 8 | 0 | 1 |
| 933 |  | 2 | max | 151 | 8 | -. 001 | 1 | . 179 | 8 |
| 934 |  |  | min | -. 097 | 9 | -. 126 | 8 | 0 | 1 |
| 935 |  | 3 | max | . 161 | 9 | . 331 | 9 | 195 | 8 |
| 936 |  |  | min | -. 252 | 8 | -. 002 | 2 | 0 | 1 |
| 937 |  | 4 | max | . 161 | 9 | . 331 | 9 | . 162 | 8 |
| 938 |  |  | min | -. 252 | 8 | 0 | 1 | 0 | 1 |
| 939 |  | 5 | max | . 161 | 9 | . 33 | 9 | . 128 | 8 |
| 940 |  |  | min | -. 252 | 8 | 0 | 1 | 0 | 3 |
| 941 | M95 | 1 | max | . 161 | 9 | 33 | 9 | 128 | 8 |
| 942 |  |  | min | -. 252 | 8 | 0 | 1 | 0 | 3 |
| 943 |  | 2 | max | . 161 | 9 | . 33 | 9 | . 028 | 8 |
| 944 |  |  | min | -. 252 | 8 | 0 | 1 | -. 12 | 9 |
| 945 |  | 3 | max | . 161 | 9 | . 329 | 9 | 0 | 2 |
| 946 |  |  | min | -. 252 | 8 | -. 001 | 1 | -. 243 | 9 |
| 947 |  | 4 | max | . 161 | 9 | . 329 | 9 | . 001 | 2 |
| 948 |  |  | min | -. 252 | 8 | -. 001 | 1 | -. 367 | 9 |
| 949 |  | 5 | max | . 002 | 9 | . 003 | 1 | 0 | 1 |
| 950 |  |  | min | 0 | 1 | -. 816 | 9 | -. 204 | 9 |
| 951 | M96 | 1 | max | . 002 | 9 | . 003 | 1 | 0 | 1 |
| 952 |  |  | min | 0 | 1 | -. 816 | 9 | -. 204 | 9 |
| 953 |  | 2 | max | . 002 | 9 | . 002 | 1 | 0 | 1 |
| 954 |  |  | min | 0 | 1 | -. 816 | 9 | -. 153 | 9 |
| 955 |  | 3 | max | . 002 | 9 | . 002 | 1 | 0 | 1 |
| 956 |  |  | min | 0 | 1 | -. 816 | 9 | -. 102 | 9 |
| 957 |  | 4 | max | . 002 | 9 | . 002 | 1 | 0 | 1 |
| 958 |  |  | min | 0 | 1 | -. 816 | 9 | -. 051 | 9 |
| 959 |  | 5 | max | . 002 | 9 | . 002 | 1 | 0 | 1 |
| 960 |  |  | min | 0 | 1 | -. 816 | 9 | 0 | 1 |
| 961 | M97 | 1 | max | . 081 | 6 | 0 | 9 | 0 | 1 |
| 962 |  |  | min | -. 085 | 5 | 0 | 6 | 0 | 1 |
| 963 |  | 2 | max | . 081 | 6 | 0 | 9 | 0 | 6 |
| 964 |  |  | min | -. 085 | 5 | 0 | 6 | 0 | 9 |
| 965 |  | 3 | max | . 081 | 6 | 0 | 1 | 0 | 6 |
| 966 |  |  | min | -. 085 | 5 | 0 | 1 | 0 | 9 |
| 967 |  | 4 | max | . 081 | 6 | 0 | 7 | 0 | 6 |
| 968 |  |  | min | -. 085 | 5 |  | 8 | 0 | 9 |
| 969 |  | 5 | max | . 081 | 6 | 0 | 7 | 0 | 1 |
| 970 |  |  | min | -. 085 | 5 | 0 | 8 | 0 | 1 |
| 971 | M98 | 1 | max | 2.384 | 8 | 0 | 9 | 0 | 1 |

(RIS $\wedge \begin{aligned} & \text { Company } \\ & \text { Designer } \\ & \text { JobNumber }\end{aligned} \begin{aligned} & \text { (Larson Engineering Inc } \\ & \begin{array}{ll}\text { MK } \\ 21210330.000\end{array}\end{aligned}$ $\begin{array}{l:l}\text { Job Number } & \vdots 21210330.000 \\ \text { Model Name }\end{array}$

## Envelope Member Section Forces (Continued)




Company $\quad \vdots$ Larson Engineering Inc
$\begin{array}{ll:l} & & \\ \text { Jobigner } & \text { MK } \\ \text { Jobumber } & 21210330.000 \\ \text { Model Name } & \text { Hamlin Middle }\end{array}$
Apr 30, 2021
4:49 PM
Checked By:

Envelope Member Section Forces (Continued)

|  | Member | Sec |  | Axial[k] | LC | Shear[k] | LC | Moment[k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1029 |  | 5 | max | 2.382 | 8 | 0 | 7 | 0 | 1 |
| 1030 |  |  | min | -2.364 | 9 | 0 | 3 | 0 | 1 |
| 1031 | M104 | 1 | max | . 663 | 1 | . 746 | 9 | 22 | 9 |
| 1032 |  |  | min | . 037 | 6 | -. 755 | 8 | -. 22 | 8 |
| 1033 |  | 2 | max | . 663 |  | . 746 | 9 | . 126 | 9 |
| 1034 |  |  | min | . 037 | 6 | -. 755 | 8 | -. 125 | 8 |
| 1035 |  | 3 | max | 1.117 | 8 | 1.188 | 8 | . 033 | 9 |
| 1036 |  |  | min | -. 959 | 9 | -1.169 | 9 | -. 031 | 8 |
| 1037 |  | 4 | max | 1.11 | 8 | . 075 | 9 | 123 | 9 |
| 1038 |  |  | min | -. 965 | 9 | -. 069 | 8 | -. 123 | 8 |
| 1039 |  | 5 | max | 1.111 | 8 | . 075 | 9 | 114 | 9 |
| 1040 |  |  | min | -. 965 | 9 | -. 069 | 8 | -. 114 | 8 |
| 1041 | M105 | 1 | max | 1.111 | 8 | . 072 | 9 | . 114 | 9 |
| 1042 |  |  | min | -. 965 | 9 | -. 072 | 8 | -. 114 | 8 |
| 1043 |  | 2 | max | 1.112 | 8 | . 072 | 9 | . 041 | 9 |
| 1044 |  |  | min | -. 964 | 9 | -. 072 | 8 | -. 041 | 8 |
| 1045 |  | 3 | max | 1.35 | 8 | . 006 | 8 | . 013 | 8 |
| 1046 |  |  | min | -1.209 | 9 | -. 006 | 9 | -. 013 | 9 |
| 1047 |  | 4 | max | 1.351 | 8 | . 006 | 8 | . 007 | 8 |
| 1048 |  |  | min | -1.208 | 9 | -. 006 | 9 | -. 007 | 9 |
| 1049 |  | 5 | max | 1.352 | 8 | . 006 | 8 | . 001 | 8 |
| 1050 |  |  | min | -1.207 | 9 | -. 006 | 9 | -. 001 | 9 |
| 1051 | M106 | 1 | max | . 008 | 5 | . 3 | 8 | 1.276 | 9 |
| 1052 |  |  | min | . 005 | 6 | -. 3 | 9 | -1.276 | 8 |
| 1053 |  | 2 | max | . 008 | 5 | . 3 | 8 | 1.319 | 9 |
| 1054 |  |  | min | . 005 | 6 | -. 3 | 9 | -1.319 | 8 |
| 1055 |  | 3 | max | . 009 | 5 | 1.245 | 9 | 1.301 | 9 |
| 1056 |  |  | min | -. 009 | 8 | -1.256 | 8 | -1.3 | 8 |
| 1057 |  | 4 | max | . 009 | 5 | 1.245 | 9 | 1.12 | 9 |
| 1058 |  |  | min | -. 009 | 8 | -1.256 | 8 | -1.118 | 8 |
| 1059 |  | 5 | max | . 009 | 5 | 1.245 | 9 | . 94 | 9 |
| 1060 |  |  | min | -. 009 | 8 | -1.256 | 8 | -. 936 | 8 |
| 1061 | M107 | 1 | max | 1.359 | 8 | . 006 | 8 | . 002 | 8 |
| 1062 |  |  | min | -1.218 | 9 | -. 005 | 9 | -. 001 | 9 |
| 1063 |  | 2 | max | 1.359 | 8 | . 006 | 8 | . 001 | 8 |
| 1064 |  |  | min | -1.218 | 9 | -. 005 | 9 | 0 | 9 |
| 1065 |  | 3 | max | 1.359 | 8 | . 006 | 8 | 0 | 8 |
| 1066 |  |  | min | -1.218 | 9 | -. 005 | 9 | 0 | 9 |
| 1067 |  | 4 | max | 1.36 | 8 | . 006 | 8 | 0 | 8 |
| 1068 |  |  | min | -1.218 | 9 | -. 005 | 9 | 0 | 9 |
| 1069 |  | 5 | max | 1.36 | 8 | . 006 | 8 | 0 | 1 |
| 1070 |  |  | min | -1.218 | 9 | -. 005 | 9 | 0 | 1 |
| 1071 | M108 | 1 | max | 1.352 | 8 | . 006 | 8 | . 001 | 8 |
| 1072 |  |  | min | -1.207 | 9 | -. 005 | 9 | -. 001 | 9 |
| 1073 |  | 2 | max | 1.352 | 8 | . 006 | 8 | 0 | 8 |
| 1074 |  |  | min | -1.207 | 9 | -. 005 | 9 | 0 | 9 |
| 1075 |  | 3 | max | 1.352 | 8 | . 006 | 8 | 0 | 8 |
| 1076 |  |  | min | -1.207 | 9 | -. 005 | 9 | 0 | 9 |
| 1077 |  | 4 | max | 1.352 | 8 | . 006 | 8 | 0 | 8 |
| 1078 |  |  | min | -1.207 | 9 | -. 005 | 9 | 0 | 9 |
| 1079 |  | 5 | max | 1.352 | 8 | . 006 | 8 | 0 | 1 |
| 1080 |  |  | min | -1.207 | 9 | -. 005 | 9 | 0 | 1 |

Envelope AA ADM1-15: ASD - Building Aluminum Code Checks

| Member |  | Shape | Code Ch... Loc[ft] LC Shear Ch... Loc[ft] LC Pnc/Om[k] Pnt/Om[k] Mn/Om[k...Vn/Om[k] Cb Eqn |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | L3X2X0.188 |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | M2 | L3X2X0.188 | . 206 | 2.21 | 6 | . 008 | 2.21 | 6 | 2.68 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 3 | M3 | L3X2X0.188 | . 533 | . 25 | 1 | .300 | 0 | 1 | 7.077 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 4 | M4 | L3X2X0.188 | . 839 | 1 | 1 | . 215 | 0 | 1 | 5.25 | 8.273 | 394 | 3.076 | 1 | H. |
| 5 | M5 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | 394 | 3.076 | 1 | H.1-1 |
| 6 | M6 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | 394 | 3.076 | 1 | H.1- |
| 7 | M7 | L3X2X0.188 | . 875 | 2.188 | 1 | 281 | 2.188 | 1 | 1.506 | 8.273 | 356 | 3.076 | 1 | H.3-2 |
| 8 | M8 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H. 1 |
| 9 | M9 | L3X2X0.18 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H.1- |
| 10 | M10 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H.1 |
| 11 | M11 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | 394 | 3.076 | 1 | H. 1 |
| 12 | M12 | L2X2X0.188 | . 195 | 2.04 | 1 | 000 | 0 | 1 | 4.728 | 6.573 | . 196 | 2.051 | 1 | H.1- |
| 13 | M13 | L2X2X0.188 | 412 | . 677 | 1 | . 025 | 0 | 4 | 3.876 | 6.573 | 183 | 2.051 | 1 | H. 1 |
| 14 | M14 | L2X2X0.188 | . 521 | . 704 | 2 | . 045 | 0 | 4 | 3.068 | 6.573 | . 183 | 2.051 |  | H.1-1 |
| 15 | M15 | L2X2X0.188 | . 617 | 673 | 2 | 037 | 631 | 5 | 2.315 | 6.573 | 183 | 2.051 |  | H.1-1 |
| 16 | M16 | L2X2X0.188 | 409 | 1.335 | 2 | . 040 | , | 6 | 3.926 | 6.573 | 183 | 2.051 | 1 | H.1- |
| 17 | M17 | L2X2X0.188 | . 422 | 2.67 | 1 | 000 | 0 | 1 | 3.926 | 6.573 | 196 | 2.051 | 1 | H.1-1 |
| 18 | M18 | L3X2X0.188 | 285 | 2.67 | 1 | . 000 | 0 |  | 4.705 | 8.273 | 356 | 3.076 |  | H.1-1 |
| 19 | M19 | L2X2X0.188 | . 557 | . 664 | 8 | . 074 | 0 | 8 | 3.295 | 6.573 | 196 | 2.051 | 1 | H.1- |
| 20 | M20 | L2X2X0.188 | . 586 | 683 | 1 | 061 | 0 | 8 | 2.518 | 6.573 | 183 | 2.051 | 1 | H.1 |
| 21 | M21 | L2X2X0.188 | . 773 | . 707 | 1 | . 052 | 0 | 8 | 1.835 | 6.573 | . 183 | 2.051 | 1 | H.1- |
| 22 | M22 | L2X2X0.188 | . 401 | 703 | 9 | . 024 | 0 | 9 | 3.738 | 6.573 | . 183 | 2.051 |  | H.1- |
| 23 | M23 | L3X2X0.188 | . 822 | 675 | 9 | 218 | 338 | 8 | 10.165 | 17.733 | . 634 | 7.142 | 1 | H.1 |
| 24 | M24 | L2X2X0.188 | . 430 | 2.688 |  | 000 | 0 | 1 | 3.903 | 6.573 | 196 | 2.051 | 1 | H.1-1 |
| 25 | M25 | L3X2X0.188 | . 294 | 2.688 | 2 | . 000 | 0 | 1 | 4.687 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 26 | M26 | L2X2X0.188 | . 224 | 2.83 | 1 | . 000 | 0 | 1 | 3.728 | 6.573 | 196 | 2.051 | 1 | H.3-2 |
| 27 | M27 | L2X2X0.188 | . 355 | 2.83 | 1 | . 000 | 0 | 1 | 3.728 | 6.573 | . 196 | 2.051 | 1 | H.1- |
| 28 | M28 | L2X2X0.188 | . 359 | 2.83 | 1 | . 000 | 0 | 1 | 3.728 | 6.573 | . 196 | 2.051 | 1 | H.1- |
| 29 | M29 | L2X2X0.188 | . 361 | 2.83 | 3 | 000 | 0 | 1 | 3.728 | 6.573 | . 196 | 2.051 | 1 | H.3-2 |
| 30 | M30 | L3X2X0.188 | . 188 | 2.83 | - | 000 | 0 | 1 | 4.541 | 8.273 | 356 | 3.076 | 1 | H.1 |
| 31 | M31 | L2X2X0.188 | . 320 | 2.688 | 1 | . 000 | 0 | 1 | 3.903 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 32 | M32 | L1.5x1.5x.1... | . 343 | 2.127 | 5 | . 000 | 0 | 4 | 1.049 | 4.794 | . 103 | 1.534 | 1 | H.1- |
| 33 | M33 | L1.5x1.5x.1. | . 698 | 1.841 | 8 | 000 | 3.465 | 5 | 1.348 | 4.794 | 114 | 1.534 | 1 | H.1- |
| 34 | M34 | L1.5x1.5x.1. | . 556 | 1.841 | 8 | . 000 | 0 |  | 1.348 | 4.794 | 103 | 1.534 | 1 | H.1- |
| 35 | M35 | L1.5x1.5x.1... | . 219 | 1.483 | 9 | . 000 | 0 | 8 | 1.96 | 4.794 | . 103 | 1.534 | 1 | H.1- |
| 36 | M36 | L3X2X0.188 | . 750 | 6 | - | . 034 | 6 | 8 | . 861 | 8.273 | . 356 | 3.076 | 1 | H.1- |
| 37 | M37 | USC5X2.32 | . 780 | 2.313 | 1 | 296 | 2.313 | 1 | 12.726 | 17.909 | 2.27 | 5.182 |  | H.1-1 |
| 38 | M38 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 39 | M39 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 40 | M40 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H.1- |
| 41 | M41 | L3X2X0.188 | . 839 | 1 | 1 | 215 | 0 | 1 | 5.25 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 42 | M42 | L2X2X0.188 | . 760 | 2.687 | 1 | . 000 | 0 | 1 | 3.905 | 6.573 | 196 | 2.051 | 1 | H.1-1 |
| 43 | M43 | L3X2X0.188 | . 149 | 2.687 | 1 | . 000 | 0 | 1 | 4.688 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 44 | M44 | L2X2X0.188 | . 592 | . 67 | 8 | . 073 | 0 | 8 | 3.262 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 45 | M45 | L2X2X0.188 | . 537 | 688 | 1 | . 060 | 0 | 8 | 2.487 | 6.573 | 196 | 2.051 | 1 | H.1- |
| 46 | M46 | L2X2X0.188 | . 736 | 712 | 1 | . 051 | 0 | 8 | 1.813 | 6.573 | 196 | 2.051 | 1 | H.1-1 |
| 47 | M47 | L2X2X0.188 | . 401 | . 706 | 9 | . 023 | 0 | 9 | 3.723 | 6.573 | . 183 | 2.051 | 1 | H.1-1 |
| 48 | M48 | L3X2X0.188 | . 822 | 675 | 9 | . 218 | . 338 | 8 | 10.165 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 49 | M49 | L2X2X0.188 | . 761 | 2.688 | 1 | . 000 | 0 | 1 | 3.904 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 50 | M50 | L3X2X0.188 | . 153 | 2.688 | 2 | . 000 | 0 | 1 | 4.687 | 8.273 | 356 | 3.076 | 1 | H.1-1 |
| 51 | M51 | L2X2X0.188 | . 216 | 2.819 | 1 | . 000 | 0 | 1 | 3.742 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 52 | M52 | L2X2X0.188 | . 354 | 2.819 | 1 | . 000 | 0 | 1 | 3.742 | 6.573 | 196 | 2.051 | 1 | H.1-1 |
| 53 | M53 | L2X2X0.188 | . 358 | 2.819 | 1 | . 000 | 0 | 1 | 3.742 | 6.573 | 196 | 2.051 | 1 | H.1-1 |
| 54 | M54 | L2X2X0.188 | . 366 | 2.819 | 9 | . 000 | 0 | 1 | 3.742 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 55 | M55 | L3X2X0.188 | . 176 | 2.819 | 2 | . 000 | 0 | 1 | 4.553 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 56 | M56 | L1.5x1.5x.1... | 668 | 1.836 | 8 | . 000 | 3.456 | 8 | 1.355 | 4.794 | . 114 | 1.534 | 1 | H.1-1 |

RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcsIThird Base Frames.r2d]
Page 32


Envelope AA ADM1-15: ASD - Building Aluminum Code Checks (Continued)

| Member |  | Shape | $\begin{gathered} \text { Code Ch. } \\ . \quad .521 \\ \hline \end{gathered}$ | $\frac{\text { Loc[ft] }}{} 1.836$ | $$ |  |  | LC Pnc/Om[k] Pnt/Om[k] Mn/Om[k-... Vn/Om[k] Cb Eqn |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 57 | M57 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 58 | M58 | L1.5x1.5x.1. | 224 | 1.494 | - | . 000 | 2.868 | 8 | 1.939 | 4.794 | 103 | 1.534 | 1 | H.1-1 |
| 59 | M59 | L3X2X0.188 | . 038 | 1.08 | 8 | . 000 | 2.16 | 3 | 5.142 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 60 | M60 | L3X2X0.188 | . 176 | . 495 | 6 | . 041 | 2.16 | 7 | 5.142 | 8.273 | . 356 | 3.076 | 1 | H. |
| 61 | M61 | L3X2X0.188 | . 285 | 25 | 8 | 132 | 0 | 8 | 7.077 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 62 | M62 | L1.5x1.5x.1... | 198 | 1.832 | - | . 000 | 3.448 | 4 | 1.361 | 4.794 | . 103 | 1.534 | 1 | H.1-1 |
| 63 | M63 | L1.5x1.5x.1. | 198 | 1.832 | 9 | . 000 | 0 | 1 | 1.362 | 4.794 | 103 | 1.534 | 1 | H.1-1 |
| 64 | M64 | L3X2X0.188 | . 391 | 25 | 8 | 181 | 0 | 8 | 7.077 | 8.273 | 356 | 3.076 | 1 | H. |
| 65 | M65 | L3X2X0.188 | . 739 | 0 | 9 | . 020 | 6 | 8 | . 861 | 8.273 | . 356 | 3.076 | 1 | H.1 |
| 66 | M66 | L3X2X0.188 | . 442 | 3.914 | 7 | . 100 | 4.42 | 7 | 2.68 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 67 | M67 | L1.5x1.5x.1... | 251 | 1.849 | 7 | . 000 | 0 | 4 | 1.336 | 4.794 | . 103 | 1.534 | 1 | H.1-1 |
| 68 | M68 | L1.5x1.5x.1. | 226 | 1.841 | 7 | . 000 | 0 | 5 | 1.347 | 4.794 | . 103 | 1.534 | 1 | H.1-1 |
| 69 | M69 | L1.5x1.5x.1. | . 206 | 1.667 | 9 | . 000 | 0 | 8 | 1.584 | 4.794 | . 103 | 1.534 | 1 | H.1-1 |
| 70 | M70 | L1.5x1.5x.1. | 210 | 1.667 | 9 | . 000 | 0 | 8 | 1.584 | 4.794 | . 103 | 1.534 | 1 | -1 |
| 71 | M71 | L2X2X0.188 | . 058 | 1 | 8 | . 000 | 2 | 8 | 4.781 | 6.573 | . 196 | 2.051 | 1 | H.1 |
| 72 | M72 | L2X2X0.188 | . 058 | 1 | 8 | . 000 | 2 | 8 | 4.781 | 6.573 | . 196 | 2.051 | 1 | H.1-1 |
| 73 | M73 | L3X2X0.188 | . 700 | 1.145 | 1 | 106 | 0 | 1 | 6.983 | 17.733 | 919 | 7.142 | 1 | 1 |
| 74 | M74 | L3X2X0.188 | . 533 | 0 | 1 | . 300 | 25 | 1 | 7.077 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 75 | M75 | USC4X1.85 | . 714 | 0 | 8 | 214 | 1.119 | 9 | 13.493 | 14.273 | 1.451 | 3.927 | $1 .$. | H.1-1 |
| 76 | M76 | L2X2X0.188 | 295 | 415 | 9 | . 000 | . 83 | 8 | 5.252 | 6.573 | 183 | 2.051 | 1 | H.1- |
| 77 | M77 | USC4X1.85 | . 386 | 4.25 | 8 | . 033 | 0 | 8 | 6.318 | 30.595 | 3.303 | 9.164 | 1... | H.1-1 |
| 78 | M78 | USC4X1.85 | 714 | 0 | 8 | 214 | 1.119 | 9 | 13.493 | 14.273 | 1.451 | 3.927 | 1. | H.1-1 |
| 79 | M79 | L2X2X0.188 | 295 | 415 | 9 | . 000 | . 83 | 8 | 5.252 | 6.573 | . 183 | 2.051 | 1 | H.1- |
| 80 | M80 | USC4X1.85 | . 386 | 4.25 | 8 | . 033 | 0 | 8 | 6.318 | 30.595 | 3.303 | 9.164 | $1 .$. | H.1-1 |
| 81 | M81 | L3X2X0.188 | . 457 | . 25 | 8 | . 078 | 0 | 8 | 8.854 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 82 | M82 | L3X2X0.188 | . 353 | 25 | 9 | . 061 | 25 | 8 | 6.197 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 83 | M83 | L3X2X0.188 | . 112 | 0 | 9 | . 013 | 0 | 9 | 8.854 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 84 | M84 | L3X2X0.188 | . 175 | 25 | 9 | . 036 | . 5 | 8 | 6.197 | 8.273 | . 356 | 3.076 | 1 | H.1- |
| 85 | M85 | L3X2X0.188 | . 207 | 1.5 | 8 | . 016 | 1.5 | 8 | 8.854 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 86 | M86 | L3X2X0.188 | . 530 | 245 | 8 | 114 | 25 | 9 | 6.197 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 87 | M87 | L3X2X0.188 | . 705 | 1.25 | 9 | 124 | 1.5 | 9 | 8.854 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 88 | M88 | L3X2X0.188 | . 621 | 0 | 9 | 287 | . 25 | 9 | 7.077 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 89 | M89 | L3X2X0.188 | . 334 | . 25 | 8 | . 057 | 0 | 8 | 8.854 | 17.733 | . 634 | 7.142 | 1 | H. 1 |
| 90 | M90 | L3X2X0.188 | 413 | 25 | 9 | . 060 | 25 | 8 | 6.197 | 8.273 | . 394 | 3.076 | 1 | H.1-1 |
| 91 | M91 | L3×2X0.188 | 210 | 1.25 | 8 | . 025 | 0 | 9 | 8.854 | 17.733 | 634 | 7.142 | 1 | H.1-1 |
| 92 | M92 | L3X2X0.188 | . 265 | 0 | 8 | . 058 | . 25 | 9 | 6.197 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 93 | M93 | L3X2X0.188 | . 195 | 1.5 | 8 | . 018 | 1.5 | 8 | 8.854 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 94 | M94 | L3X2X0.188 | . 526 | 25 | 8 | . 107 | 25 | 9 | 6.197 | 8.273 | 394 | 3.076 | 1 | H.1-1 |
| 95 | M95 | L3X2X0.188 | . 661 | 1.25 | 9 | 114 | 1.5 | 9 | 8.854 | 17.733 | . 634 | 7.142 | 1 | H.1-1 |
| 96 | M96 | L3X2X0.188 | . 574 | 0 | 9 | . 265 | 25 | 9 | 7.077 | 8.273 | 356 | 3.076 | 1 | H.1-1 |
| 97 | M97 | L2X2X0.188 | . 019 | , | 4 | . 000 | 2 | 8 | 4.781 | 6.573 | . 183 | 2.051 | 1 | H.1-1 |
| 98 | M98 | L1.5x1.5x.1. | . 855 | 1.075 | 8 | . 000 | 2.106 | 8 | 2.798 | 4.794 | . 103 | 1.534 | 1 | H.1-1 |
| 99 | M99 | L3X2X0.188 | . 627 | 0 | 9 | . 387 | . 25 | 8 | 6.211 | 8.273 | 356 | 3.076 | 1 | H.1-1 |
| 100 | M100 | L3X2X0.188 | . 272 | 0 | 8 | . 010 | 0 | 8 | 7.483 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 101 | M101 | USC4X1.85 | . 930 | 248 | 8 | . 320 | . 254 | 8 | 14.273 | 14.273 | 1.451 | 3.927 | 1. | H.1-1 |
| 102 | M102 | L2 $2 \times 2 \times 0.188$ | . 024 | 1 | 4 | . 000 |  | 8 | 4.781 | 6.573 | . 183 | 2.051 | 1 | H.1-1 |
| 103 | M103 | L1.5x1.5x.1. | . 855 | 1.075 | 8 | . 000 | 0 | 8 | 2.798 | 4.794 | . 103 | 1.534 | 1 | H.1-1 |
| 104 | M104 | L3X2X0.188 | . 629 | 0 | O | . 386 | 25 | 8 | 6.211 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 105 | M105 | L3X2X0.188 | . 272 | 0 | 8 | . 010 | 0 | 8 | 7.516 | 17.733 | . 919 | 7.142 | 1 | H.1-1 |
| 106 | M106 | USC4X1.85 | . 930 | 248 | 8 | . 320 | 254 | 8 | 14.273 | 14.273 | 1.451 | 3.927 | 1... | H.1-1 |
| 107 | M107 | L3X2X0.188 | . 196 |  | 8 | . 002 | 0 | 8 | 7.077 | 8.273 | . 356 | 3.076 | 1 | H.1-1 |
| 108 | M108 | L3X2X0.188 | 190 | 0 | 8 | . 002 | , | 8 | 7.251 | 8.273 | 356 | 3.076 | 1 | H.1-1 |

RISA-2D Version 17.0.1 [Z:I.......|Project DocsICalcsIThird Base Frames.r2d]

Larson Engineering, Inc. 1488 Bond Street, Suite 100

Hamlin Middle School
Springfield, OR
Longitudinal Brace Analysis

Sheet No.
Project No. 21210330.000
By MK Date 04/30/2021

Longitudinal Bracing Analysis
Brace Properties - L1.5×1.5×3/16

$$
\begin{aligned}
& \mathrm{A}:=0.527 \mathrm{in}^{2} \\
& \mathrm{~F}_{\mathrm{ty}}:=30 \cdot \mathrm{ksi}
\end{aligned}
$$

Loading - Sway

$$
\begin{array}{ll}
\mathrm{S}:=24 \mathrm{plf} & \text { sway load } \\
\mathrm{L}:=12 \mathrm{ft} & \text { tributary area to frame } \\
\mathrm{R}:=13 & \text { total number of rows (footboards) } \\
\mathrm{B}:=6 & \text { number of cross braces } \\
& \mathrm{V}_{\text {Sway }}:=\frac{\mathrm{S} \cdot \mathrm{R} \cdot \mathrm{~L}}{\mathrm{~B}}=0.624 \cdot \mathrm{kip}
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{w}:=6 \mathrm{ft} & \begin{array}{l}
\text { width of frame } \\
\mathrm{h}:=48 \mathrm{in}
\end{array} \\
\mathrm{~T}:=\mathrm{V}_{\text {sway }} \cdot\left[\sqrt{\left(\frac{\mathrm{h}}{\mathrm{w}}\right)^{2}+1}\right]=0.75 \cdot \mathrm{kip} \\
\mathrm{f}_{\mathrm{t}}:=\frac{\mathrm{T}}{\mathrm{~A}}=1.423 \cdot \mathrm{ksi}
\end{array}
$$

Interaction Equation

$$
\left(\frac{\mathrm{f}_{\mathrm{t}}}{\mathrm{~F}_{\mathrm{ty}}}\right)=0.047
$$

Verfyupift on anchors

$$
\begin{aligned}
& \mathrm{h}_{\text {bleacher }}:=14 \mathrm{ft}=168 \cdot \mathrm{in} \\
& \mathrm{Z}:=\mathrm{V}_{\text {sway }}\left(\frac{\mathrm{h}_{\text {bleacher }}}{\mathrm{w}}\right)=1.456 \cdot \mathrm{kip} \\
& \mathrm{DL}:=0.2 \mathrm{kip} \\
& \mathrm{LL}:=2.1 \mathrm{kip}
\end{aligned}
$$

$$
\mathrm{LC}:=1.2 \mathrm{DL}+1.0 \mathrm{LL}-1.6 \mathrm{Z}=0.01 \cdot \mathrm{kip} \quad \text { No net uplift at anchor }
$$

## Larson Engineering, Inc. <br> 1488 Bond Street, Suite 100 <br> Naperville, IL 60563 <br> 630.357.0540

$\qquad$
Springfield, OR
Longitudinal Brace Analysis

Sheet No.
Project No. 21210330.000
By MK Date 04/30/2021

## ELarson

## Anchors - Ultimate Forces (LRFD)

Third Base Line
Reactions at N44
Dead Load

$$
\mathrm{P}_{\mathrm{DL}}:=0.002 \mathrm{kip}
$$

Wind Load

$$
\mathrm{P}_{\mathrm{WL}}:=-1.072 \mathrm{kip}
$$

$$
\mathrm{V}_{\mathrm{WL}}:=0.102 \mathrm{kip}
$$

Guard Load
$\mathrm{P}_{\text {Guard }}:=-1.411 \mathrm{kip}$
$\mathrm{V}_{\text {Guard }}:=0.04 \mathrm{kip}$
0.9DL+1.0 WL
$\mathrm{P}_{\text {ult }}:=0.9 \mathrm{P}_{\mathrm{DL}}+1.0 \mathrm{P}_{\mathrm{WL}}=-1.07 \cdot \mathrm{kip}$
$\mathrm{V}_{\mathrm{ult}}:=\mathrm{V}_{\mathrm{WL}}=0.102 \cdot \mathrm{kip}$
1.2DL+1.6Guard

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{ult}}:=1.2 \mathrm{P}_{\mathrm{DL}}+1.6 \mathrm{P}_{\text {Guard }}=-2.255 \cdot \mathrm{kip} \\
& \mathrm{~V}_{\mathrm{ult}}:=1.6 \cdot \mathrm{~V}_{\text {Guard }}=0.064 \cdot \mathrm{kip}
\end{aligned}
$$

Larson Engineering, Inc.<br>1488 Bond Street, Suite 100<br>Naperville, IL 60563

$\qquad$
Springfield, OR
Longitudinal Brace Analysis

Sheet No.
Project No. 21210330.000
By MK Date 04/30/2021

First Base Line
Reactions at N96
Dead Load

$$
\mathrm{P}_{\mathrm{DL}}:=0.002 \mathrm{kip}
$$

Wind Load
$P_{\text {WL }}:=-2.166 \mathrm{kip}$
$\mathrm{V}_{\mathrm{WL}}:=0.138 \mathrm{kip}$
Guard Load
$\mathrm{P}_{\text {Guard }}:=-1.476$ kip
$\mathrm{V}_{\text {Guard }}:=0.025 \mathrm{kip}$
0.9DL+1.0 WL

$$
\mathrm{P}_{\mathrm{ult}}:=0.9 \mathrm{P}_{\mathrm{DL}}+1.0 \mathrm{P}_{\mathrm{WL}}=-2.164 \cdot \mathrm{kip}
$$

$$
\mathrm{V}_{\mathrm{ult}}:=\mathrm{V}_{\mathrm{WL}}=0.138 \cdot \mathrm{kip}
$$

1.2DL+1.6Guard

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{ult}}:=1.2 \mathrm{P}_{\mathrm{DL}}+1.6 \mathrm{P}_{\text {Guard }}=-2.359 \cdot \mathrm{kip} \\
& \mathrm{~V}_{\mathrm{ult}}:=1.6 \cdot \mathrm{~V}_{\text {Guard }}=0.04 \cdot \mathrm{kip}
\end{aligned}
$$

www.hilti.us
Profis Anchor 2.9.2

| Company: | LEI | Page: | 1 |
| :--- | :--- | :--- | :--- |
| Specifier: | MK | Project: | Hamilin MS |
| Address: |  | Sub-Project I Pos. No.: | 21210330.000 |
| Phone I Fax: | I |  | Date: |

E-Mail:

Specifier's comments: Typical Anchor

## 1 Input data

Anchor type and diameter:
Effective embedment depth:
Material:
Evaluation Service Report:
Issued I Valid:
Proof:
Stand-off installation:
Anchor plate:
Profile:
Base material:

## Installation:

Reinforcement:

Kwik Bolt TZ - CS $\mathbf{3 / 8} \mathbf{( 2 3 / 4 )}$
$h_{\text {ef,act }}=2.750 \mathrm{in} ., h_{\text {nom }}=3.063 \mathrm{in}$.
Carbon Steel
ESR-1917
1/1/2020 | 5/1/2021
Design method ACI 318-14 / Mech.
$\mathrm{e}_{\mathrm{b}}=0.000 \mathrm{in}$. (no stand-off); $\mathrm{t}=0.187 \mathrm{in}$.
$\mathrm{I}_{\mathrm{x}} \times \mathrm{I}_{\mathrm{y}} \times \mathrm{t}=2.000$ in. $\times 12.000$ in. $\times 0.187$ in.; (Recommended plate thickness: not calculated
no profile
cracked concrete, , $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=3,500 \mathrm{psi} ; \mathrm{h}=6.000 \mathrm{in}$.
hammer drilled hole, Installation condition: Dry
tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar
${ }^{R}$ - The anchor calculation is based on a rigid anchor plate assumption.
Geometry [in.] \& Loading [lb, in.Ib]

www.hilti.us
Profis Anchor 2.9.2

| Company: | LEI | Page: | 2 |
| :--- | :--- | :--- | :--- |
| Specifier: | MK | Project: | Hamilin MS |
| Address: |  | Sub-Project I Pos. No.: | 21210330.000 |
| Phone I Fax: | I | Date: | $5 / 4 / 2021$ |

Phone IFax:
E-Mail:


## 3 Tension load

|  | Load $\mathrm{N}_{\text {ua }}$ [lb] | Capacity $\boldsymbol{\phi} \mathrm{N}_{\mathrm{n}}$ [lb] | Utilization $\beta_{\mathrm{N}}=\mathrm{N}_{\mathrm{ua}} / \boldsymbol{\phi} \mathbf{N}_{\mathrm{n}}$ | Status |
| :---: | :---: | :---: | :---: | :---: |
| Steel Strength* | 2,359 | 4,875 | 49 | OK |
| Pullout Strength* | 2,359 | 2,426 | 98 | OK |
| Concrete Breakout Strength** | 2,359 | 2,981 | 80 | OK |
| * anchor having the highest loading | **anchor group (anchors in tension) |  |  |  |

### 3.1 Steel Strength

$\mathrm{N}_{\mathrm{sa}}=\mathrm{ESR}$ value refer to ICC-ES ESR-1917
$\phi \mathrm{N}_{\mathrm{sa}} \geq \mathrm{N}_{\mathrm{ua}} \quad$ ACl 318-14 Table 17.3.1.1

## Variables

| $\mathrm{A}_{\text {se, } \mathrm{N}}\left[\mathrm{in} .{ }^{2}\right]$ | $\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$ |
| :---: | :---: |
| 0.05 | 125,000 |

## Calculations

$\frac{\mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]}{6,500}$

## Results

| $\mathrm{N}_{\text {sa }}[\mathrm{Ib}]$ | $\phi_{\text {steel }}$ | $\phi \mathrm{N}_{\text {sa }}[\mathrm{lb}]$ | $\mathrm{N}_{\mathrm{ua}}[\mathrm{Ib}]$ |
| :---: | :---: | :---: | :---: |
| 6,500 | 0.750 | 4,875 | 2,359 |

### 3.2 Pullout Strength

$N_{\text {pn, } f_{c}}=N_{p, 2500} \lambda_{a}\left(f_{c}^{\prime} / 2500\right)^{0.5} \quad$ refer to ICC-ES ESR-1917
$\phi \mathrm{N}_{\mathrm{pn}, f_{\mathrm{c}}} \geq \mathrm{N}_{\mathrm{ua}} \quad$ ACl 318-14 Table 17.3.1.1
Variables

| $\mathrm{f}_{\mathrm{c}}[\mathrm{psi}]$ | $\lambda_{\mathrm{a}}$ | $\mathrm{N}_{\mathrm{p}, 2500}[\mathrm{lb}]$ |
| :---: | :---: | :---: |
| 3,500 | 1.000 | 3,155 |

## Calculations

$\square$
1.183

Results

| $\mathrm{N}_{\text {pn.t } t_{0}}[\mathrm{lb}]$ | $\phi_{\text {concrete }}$ | $\phi \mathrm{N}_{\mathrm{pm}, f_{\text {c }}}[\mathrm{lb}]$ | $\mathrm{N}_{\mathrm{ua}}$ [lb] |
| :---: | :---: | :---: | :---: |
| , 33 | 0.650 | 2,42 | 2359 |

www.hilti.us
Profis Anchor 2.9.2

| Company: | LEI | Page: | 3 |
| :--- | :--- | :--- | :--- |
| Specifier: | MK | Project: | Hamilin MS |
| Address: |  | Sub-Project I Pos. No.: | 21210330.000 |
| Phone I Fax: | E-Mail: |  |  |
|  |  |  | $5 / 4 / 2021$ |

E-Mail:

### 3.3 Concrete Breakout Strength

$\mathrm{N}_{\mathrm{cb}}=\left(\frac{\mathrm{A}_{\mathrm{Nc}}}{\mathrm{A}_{\mathrm{Nc} 0}}\right) \psi_{\text {ed,N }} \psi_{\mathrm{c}, \mathrm{N}} \psi_{\mathrm{cp,N}} \mathrm{~N}_{\mathrm{b}} \quad \quad$ ACI 318-14 Eq. (17.4.2.1a)
$\phi \mathrm{N}_{\mathrm{cb}} \geq \mathrm{N}_{\mathrm{ua}}$
$A_{\text {Nc }} \quad$ see ACl 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)
$A_{\mathrm{Nc} 0}=9 \mathrm{hef}_{\mathrm{ef}}^{2}$
$\psi_{\mathrm{ec}, \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0$
ACI 318-14 Table 17.3.1.1

ACI 318-14 Eq. (17.4.2.1c)
$\psi_{\text {ed, }, \mathrm{N}}=0.7+0.3\left(\frac{\mathrm{c}_{\mathrm{a}, \min }}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0$
$\psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \text { min }}}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0 \quad \quad$ ACI 318-14 Eq. (17.4.2.7b)
$\mathrm{N}_{\mathrm{b}}=\mathrm{k}_{\mathrm{c}} \lambda_{\mathrm{a}} \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \mathrm{h}_{\mathrm{ef}}^{1.5} \quad$ ACI 318-14 Eq. (17.4.2.2a)

## Variables

| $\mathrm{h}_{\mathrm{ef}}$ [in.] | $\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}$ [in.] | $\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}[\mathrm{in}]$. | $\mathrm{c}_{\mathrm{a}, \min }[\mathrm{in}]$. | $\psi_{\mathrm{c}, \mathrm{N}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2.750 | 0.000 | 0.000 | 12.000 | 1.000 |
|  |  |  |  |  |
| $\mathrm{c}_{\mathrm{ac}}[\mathrm{in}]$. | $\mathrm{k}_{\mathrm{c}}$ | $\lambda_{\mathrm{a}}$ | $\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$ |  |
| 4.125 | 17 | 1.000 | 3,500 |  |

## Calculations

| $\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in}.{ }^{2}\right]$ | $\mathrm{A}_{\mathrm{Nc} 0}\left[\mathrm{in.}^{2}\right]$ | $\psi_{\mathrm{ec} 1, \mathrm{~N}}$ | $\psi_{\mathrm{ec} 2, \mathrm{~N}}$ | $\psi_{\mathrm{ed}, \mathrm{N}}$ | $\psi_{\mathrm{cp}, \mathrm{N}}$ | $\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 68.06 | 68.06 | 1.000 | 1.000 | 1.000 | 4,587 |  |

## Results

| $\mathrm{N}_{\mathrm{cb}}[\mathrm{lb}]$ | $\phi_{\text {concrete }}$ | $\phi \mathrm{N}_{\mathrm{cb}}[\mathrm{lb}]$ | $\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$ |
| :---: | :---: | :---: | :---: |
| 4,587 | 0.650 | 2,981 | 2,359 |


| Company: | LEI | Page: | 4 |
| :--- | :--- | :--- | :--- |
| Specifier: | MK | Project: | Hamilin MS |
| Address: |  | Sub-Project I Pos. No.: | 21210330.000 |
| Phone I Fax: |  |  |  |
| E-Mail: |  |  | $5 / 4 / 2021$ |

## 4 Shear load

|  | Load $\mathrm{V}_{\mathrm{ua}}$ [lb] | Capacity $\phi$ V $\mathbf{V}_{\text {[ }}$ [lb] | Utilization $\beta_{\mathrm{V}}=\mathrm{V}_{\mathrm{ua}} / \boldsymbol{\phi} \mathrm{V}_{\mathrm{n}}$ | Status |
| :---: | :---: | :---: | :---: | :---: |
| Steel Strength* | 40 | 2,337 | 2 | OK |
| Steel failure (with lever arm)* | N/A | N/A | N/A | N/A |
| Pryout Strength** | 40 | 6,421 | 1 | OK |
| Concrete edge failure in direction $\mathrm{y}+{ }^{* *}$ | 40 | 4,231 | 1 | OK |
| * anchor having the highest loading **anchor group (relevant anchors) |  |  |  |  |

### 4.1 Steel Strength

$V_{\text {sa }} \quad=$ ESR value refer to ICC-ES ESR-1917
$\phi \mathrm{V}_{\text {steel }} \geq \mathrm{V}_{\text {ua }} \quad$ ACI 318-14 Table 17.3.1.1

## Variables

| $\mathrm{A}_{\text {se, }, ~}\left[\mathrm{in}.{ }^{2}\right]$ | $\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$ |
| :---: | :---: |
| 0.05 | 125,000 |

## Calculations

$\frac{\mathrm{V}_{\mathrm{sa}}[\mathrm{lb}]}{3,595}$

## Results

| $\mathrm{V}_{\text {sa }}[\mathrm{lb}]$ | $\phi_{\text {steel }}$ | $\phi \mathrm{V}_{\text {sa }}[\mathrm{lb}]$ | $\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$ |
| :---: | :---: | :---: | :---: |
| 3,595 | 0.650 | 2,337 | 40 |

### 4.2 Pryout Strength

| $V_{c p}=k_{c p}\left[\left(\frac{A_{\text {Nc }}}{A_{N c q}}\right) \psi_{e d, N} \psi_{c, N} \psi_{c p, N} N_{b}\right]$ | ACI 318-14 Eq. (17.5.3.1a) |
| :---: | :---: |
| $\phi \mathrm{V}_{\mathrm{cp}} \geq \mathrm{V}_{\mathrm{ua}}$ <br> $\mathrm{A}_{\mathrm{Nc}} \quad$ see $\mathrm{ACl} 318-14$, Section 17.4.2.1, Fig. R 17.4.2.1(b) | ACl 318-14 Table 17.3.1.1 |
| $A_{\text {Nco }}=9 h_{\text {ef }}^{2}$ | ACl 318-14 Eq. (17.4.2.1c) |
| $\psi_{\mathrm{ec}, \mathrm{~N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0$ | ACI 318-14 Eq. (17.4.2.4) |
| $\psi_{\text {ed, }}=0.7+0.3\left(\frac{\mathrm{C}_{\text {a,min }}}{1.5 \mathrm{hef}_{\text {ef }}}\right) \leq 1.0$ | ACI 318-14 Eq. (17.4.2.5b) |
| $\psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \mathrm{min}}}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0$ | ACI 318-14 Eq. (17.4.2.7b) |
| $\mathrm{N}_{\mathrm{b}} \quad=\mathrm{k}_{\mathrm{c}} \lambda_{\mathrm{a}} \sqrt{\mathrm{f}_{\mathrm{c}}{ }_{\mathrm{c}}^{\text {ef }}}{ }^{1.5}$ | ACI 318-14 Eq. (17.4.2.2a) |

## Variables

| $\mathrm{k}_{\mathrm{cp}}$ | $\mathrm{h}_{\mathrm{ef}}$ [in.] | $\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}$ [in.] | $\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}$ [in.] | $\mathrm{c}_{\mathrm{a}, \min }$ [in.] |
| :---: | :--- | :---: | :---: | :---: |
| 2 | 2.750 | 0.000 | 0.000 | 12.000 |
|  |  |  |  |  |
| $\psi_{\mathrm{c}, \mathrm{N}}$ | $\mathrm{c}_{\mathrm{ac}}$ [in.] | $\mathrm{k}_{\mathrm{c}}$ | $\lambda_{\mathrm{a}}$ | $\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$ |
| 1.000 | 4.125 | 17 | 1.000 | 3,500 |

## Calculations

| $\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in}.{ }^{2}\right]$ | $\mathrm{A}_{\mathrm{Nc}[ }\left[\mathrm{in}.{ }^{2}\right]$ | $\psi_{\text {ec } 1, \mathrm{~N}}$ | $\psi_{\text {ec2,N }}$ | $\psi_{\text {ed }, \mathrm{N}}$ | $\psi_{\mathrm{cp}, \mathrm{N}}$ | $\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 68.06 | 68.06 | 1.000 | 1.000 | 1.000 | 4,587 |  |

## Results

| $\mathrm{V}_{\mathrm{cp}}[\mathrm{lb}]$ | $\phi_{\text {concrete }}$ | $\phi \mathrm{V}_{\mathrm{cp}}[\mathrm{bb}]$ | $\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$ |
| :---: | :---: | :---: | :---: |
| 9,173 | 0.700 | 6,421 | 40 |

www.hilti.us
Profis Anchor 2.9.2

| Company: | LEI | Page: | 5 |
| :--- | :--- | :--- | :--- |
| Specifier: | MK | Project: | Hamilin MS |
| Address: |  | Sub-Project I Pos. No.: | 21210330.000 |
| Phone I Fax: | E-Mail: |  | Date: |

### 4.3 Concrete edge failure in direction $\mathrm{y}+$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{cb}}=\left(\frac{\mathrm{A}_{\mathrm{Vc}}}{\mathrm{~A}_{\mathrm{Vco}}}\right) \psi_{\mathrm{ed}, \mathrm{~V}} \psi_{\mathrm{c}, \mathrm{~V}} \psi_{\mathrm{h}, \mathrm{~V}} \psi_{\text {parallel, }, ~} \mathrm{~V}_{\mathrm{b}} \quad \text { ACI 318-14 Eq. (17.5.2.1a) } \\
& \phi V_{\text {cb }} \geq V_{\text {ua }} \\
& A_{V_{c}} \quad \text { see } A C l \text { 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b) } \\
& \mathrm{A}_{\mathrm{Vc} 0}=4.5 \mathrm{c}_{\mathrm{a} 1}^{2} \\
& \psi_{e, v}=\left(\frac{1}{1+\frac{2 e_{v}^{\prime}}{3 \mathrm{c}_{\mathrm{a} 1}}}\right) \leq 1.0 \\
& \psi_{\text {ed, },}=0.7+0.3\left(\frac{\mathrm{c}_{\mathrm{a} 2}}{1.5 \mathrm{c}_{\mathrm{a} 1}}\right) \leq 1.0 \quad \quad \text { ACI 318-14 Eq. (17.5.2.6b) } \\
& \psi_{h, v}=\sqrt{\frac{1.5 \mathrm{c}_{\mathrm{a} 1}}{\mathrm{~h}_{\mathrm{a}}}} \geq 1.0 \quad \quad \text { ACl 318-14 Eq. (17.5.2.8) } \\
& V_{b}=\left(7\left(\frac{l_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a 1}^{1.5} \quad \text { ACI 318-14 Eq. (17.5.2.2a) }
\end{aligned}
$$

## Variables

| $\mathrm{c}_{\mathrm{a} 1}$ [in.] | $\mathrm{c}_{\mathrm{a} 2}$ [in.] | $\mathrm{e}_{\mathrm{cv}}$ [in.] | $\psi_{\mathrm{c}, \mathrm{V}}$ | $\mathrm{h}_{\mathrm{a}}$ [in.] |
| :---: | :---: | :---: | :---: | :---: |
| 8.000 | 12.000 | 0.000 | 1.000 | 6.000 |
|  |  |  |  |  |
| $\mathrm{I}_{\mathrm{e}}$ [in.] | $\lambda_{\mathrm{a}}$ | $\mathrm{d}_{\mathrm{a}}$ [in.] | $\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$ | $\psi_{\text {parallel, } \mathrm{V}}$ |
| 2.750 | 1.000 | 0.375 | 3,500 | 1.000 |

## Calculations

| $\mathrm{A}_{\mathrm{Vc}}\left[\mathrm{in} .{ }^{2}\right]$ | $\mathrm{A}_{\mathrm{Vc} 0}\left[\mathrm{in} .{ }^{2}\right]$ | $\psi_{\mathrm{ec}, \mathrm{V}}$ | $\psi_{\mathrm{ed}, \mathrm{V}}$ | $\psi_{\mathrm{h}, \mathrm{V}}$ | $\mathrm{V}_{\mathrm{b}}[\mathrm{lb}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 144.00 | 288.00 | 1.000 | 1.000 | 1.414 | 8,548 |
| Results |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{cb}}[\mathrm{lb}]$ | $\phi$ concrete | $\phi \mathrm{V}_{\mathrm{cb}}[\mathrm{lb}]$ | $\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$ |  |  |
| 6,044 | 0.700 | 4,231 | 40 |  |  |

## 5 Combined tension and shear loads

| $\beta_{N}$ | $\beta_{V}$ | $\zeta$ | Utilization $\beta_{N, V}[\%]$ | Status |
| :---: | :---: | :---: | :---: | :---: |
| 0.972 | 0.017 | 1.000 | 83 | OK |

$\beta_{\mathrm{NV}}=\left(\beta_{\mathrm{N}}+\beta_{\mathrm{V}}\right) / 1.2<=1$

## 6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The $\Phi$ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-14, Section 17.8.1.

Fastening meets the design criteria!
www.hilti.us
Profis Anchor 2.9.2

| Company: | LEI | Page: | 6 |
| :--- | :---: | :--- | :--- |
| Specifier: | MK | Project: | Hamilin MS |
| Address: |  | Sub-Project I Pos. No.: | 21210330.000 |
| Phone I Fax: | I | Date: | $5 / 4 / 2021$ |

E-Mail:

## 7 Installation data

Anchor plate, steel: -
Profile: no profile
Hole diameter in the fixture: $d_{f}=0.438$ in.
Plate thickness (input): 0.187 in.
Recommended plate thickness: not calculated
Drilling method: Hammer drilled
Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

Anchor type and diameter: Kwik Bolt TZ - CS 3/8 (2 3/4)
Installation torque: 300.000 in.lb
Hole diameter in the base material: 0.375 in.
Hole depth in the base material: 3.375 in.
Minimum thickness of the base material: 5.000 in.

### 7.1 Recommended accessories

Drilling

- Suitable Rotary Hammer
- Properly sized drill bit

Cleaning

- Manual blow-out pump

Setting

- Torque controlled cordless impact tool (Hilti Safeset System)
- Torque wrench
- Hammer


Coordinates Anchor in.

| Anchor | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{c}_{-\mathbf{x}}$ | $\mathbf{c}_{+\mathrm{x}}$ | $\mathbf{c}_{-\mathrm{y}}$ | $\mathbf{c}_{+\mathrm{y}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.000 | 0.000 | 12.000 | 12.000 | 12.000 | 12.000 |

www.hilti.us

| Company: | LEI | Page: | 7 |
| :--- | :--- | :--- | :--- |
| Specifier: | MK | Project: | Hamilin MS |
| Address: |  | Sub-Project I Pos. No.: | 21210330.000 |
| Phone I Fax: | I | Date: | $5 / 4 / 2021$ |

E-Mail:

## 8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

| Hamlin Middle School |
| :--- |
| Springfield, OR |
| Longitudinal Brace Analysis |

Springfield, OR
Longitudinal Brace Analysis
$\qquad$

## Press Box Frame

Reactions at N124
Dead Load

$$
\mathrm{P}_{\mathrm{DL}}:=0.509 \mathrm{kip} \quad \text { Dead load from adjacent post }
$$

Wind Load
$\mathrm{P}_{\mathrm{WL}}:=-3.549 \mathrm{kip}$
$\mathrm{V}_{\mathrm{WL}}:=0.937 \mathrm{kip}$
0.9DL+1.0 WL

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{ult}}:=0.9 \mathrm{P}_{\mathrm{DL}}+1.0 \mathrm{P}_{\mathrm{WL}}=-3.091 \cdot \mathrm{kip} & \\
\mathrm{~V}_{\mathrm{ult}}:=\mathrm{V}_{\mathrm{WL}}=0.937 \cdot \mathrm{kip} & \text { Wind load cases control }
\end{array}
$$

## Bleacher Frame

Reactions at N155
Dead Load

$$
\mathrm{P}_{\mathrm{DL}}:=0.128 \mathrm{kip} \quad \text { Dead load from adjacent post }
$$

Wind Load

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{WL}}:=-2.497 \mathrm{kip} \\
& \mathrm{~V}_{\mathrm{WL}}:=0.099 \mathrm{kip}
\end{aligned}
$$

Guard Load

$$
\mathrm{P}_{\text {Guard }}:=-1.725 \mathrm{kip}
$$

$$
\mathrm{V}_{\text {Guard }}:=0.032 \mathrm{kip}
$$

0.9DL+1.0 WL

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{ult}}:=0.9 \mathrm{P}_{\mathrm{DL}}+1.0 \mathrm{P}_{\mathrm{WL}}=-2.382 \cdot \mathrm{kip} \\
& \mathrm{~V}_{\mathrm{ult}}:=\mathrm{V}_{\mathrm{WL}}=0.099 \cdot \mathrm{kip}
\end{aligned}
$$

1.2DL+1.6Guard

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{ult}}:=1.2 \mathrm{P}_{\mathrm{DL}}+1.6 \mathrm{P}_{\text {Guard }}=-2.606 \cdot \mathrm{kip} \\
& \mathrm{~V}_{\mathrm{ult}}:=1.6 \cdot \mathrm{~V}_{\text {Guard }}=0.051 \cdot \mathrm{kip}
\end{aligned}
$$

www.hilti.us
Profis Anchor 2.9.2

| Company: | LEI | Page: | 1 |
| :--- | :--- | :--- | :--- |
| Specifier: | MK | Project: | Hamilin MS |
| Address: |  | Sub-Project I Pos. No.: | 21210330.000 |
| Phone I Fax: | I | Date: | $5 / 5 / 2021$ |

E-Mail:

Specifier's comments: Press Box Anchor

## 1 Input data

Anchor type and diameter:
Effective embedment depth:
Material:
Evaluation Service Report:
Issued I Valid:
Proof:
Stand-off installation:
Anchor plate:
Profile:
Base material:
Installation:
Reinforcement:

Kwik Bolt TZ - CS $\mathbf{1 / 2} \mathbf{( 3 1 / 4 )}$
$h_{\text {ef,act }}=3.250$ in., $h_{\text {nom }}=3.625 \mathrm{in}$.
Carbon Steel
ESR-1917
1/1/2020 | 5/1/2021
Design method ACI 318-14 / Mech.
$\mathrm{e}_{\mathrm{b}}=0.000 \mathrm{in}$. (no stand-off); $\mathrm{t}=0.187 \mathrm{in}$.
$\mathrm{I}_{\mathrm{x}} \times \mathrm{I}_{\mathrm{y}} \times \mathrm{t}=2.000$ in. $\times 12.000$ in. $\times 0.187$ in.; (Recommended plate thickness: not calculated
no profile
cracked concrete, , $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=3,500 \mathrm{psi} ; \mathrm{h}=6.000 \mathrm{in}$.
hammer drilled hole, Installation condition: Dry
tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar
${ }^{R}$ - The anchor calculation is based on a rigid anchor plate assumption.
Geometry [in.] \& Loading [lb, in.Ib]

www.hilti.us
Profis Anchor 2.9.2

| Company: | LEI | Page: | 2 |
| :--- | :--- | :--- | :--- |
| Specifier: | MK | Project: | Hamilin MS |
| Address: |  | Sub-Project I Pos. No.: | 21210330.000 |
| Phone I Fax: | I | Date: | $5 / 5 / 2021$ |

Phone IFax:
E-Mail:

## 2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]
Tension force: (+Tension, -Compression)

| Anchor | Tension force | Shear force | Shear force x | Shear force y |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 3,091 | 937 | 0 | 937 |


| max. concrete compressive strain: | $-[\%]$ |
| :--- | :--- |
| max. concrete compressive stress: | $-[p \mathrm{psi}]$ |
| resulting tension force in $(\mathrm{x} / \mathrm{y})=(0.000 / 0.000):$ | $3,01 \mathrm{lb}]$ |
| resulting compression force in $(\mathrm{x} / \mathrm{y})=(0.000 / 0.000): 0[\mathrm{lb}]$ |  |

Anchor forces are calculated based on the assumption of a rigid anchor plate.


## 3 Tension load

|  | Load $\mathbf{N a a}[\mathbf{l b}]$ | Capacity $\boldsymbol{\phi} \mathbf{N}_{\mathbf{n}}[\mathbf{l b} \mathbf{]}$ | Utilization $\boldsymbol{\beta}_{\mathbf{N}}=\mathbf{N}_{\mathrm{ua}} / \boldsymbol{\phi} \mathbf{N}_{\mathbf{n}}$ | Status |
| :--- | :---: | :---: | :---: | :---: |
| Steel Strength* | 3,091 | 8,029 | 39 | OK |
| Pullout Strength* | 3,091 | 3,780 | 82 | OK |
| Concrete Breakout Strength** | 3,091 | 3,830 | 81 | OK |
| * anchor having the highest loading | ${ }^{* *}$ anchor group (anchors in tension) |  |  |  |

### 3.1 Steel Strength

$\mathrm{N}_{\mathrm{sa}}=\mathrm{ESR}$ value refer to ICC-ES ESR-1917
$\phi \mathrm{N}_{\mathrm{sa}} \geq \mathrm{N}_{\mathrm{ua}} \quad$ ACl 318-14 Table 17.3.1.1

## Variables

| $\mathrm{A}_{\text {se, } \mathrm{N}}\left[\right.$ in. $\left.{ }^{2}\right]$ | $\mathrm{f}_{\text {uta }}[\mathrm{psi}]$ |
| :---: | :---: |
| 0.10 | 106,000 |

## Calculations

$\mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$
10,705

## Results

| $\mathrm{N}_{\mathrm{sa}}[\mathrm{Ib}]$ | $\phi_{\text {steel }}$ | $\phi \mathrm{N}_{\text {sa }}[\mathrm{lb}]$ | $\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$ |
| :---: | :---: | :---: | :---: |
| 10,705 | 0.750 | 8,029 | 3,091 |

### 3.2 Pullout Strength

$N_{\mathrm{pn}, \mathrm{f}_{\mathrm{c}}}=\mathrm{N}_{\mathrm{p}, 2500} \lambda_{\mathrm{a}}\left(\mathrm{f}_{\mathrm{c}} / 2500\right)^{0.5} \quad$ refer to ICC-ES ESR-1917
$\phi \mathrm{N}_{\mathrm{pn}, f_{\mathrm{c}}} \geq \mathrm{N}_{\mathrm{ua}} \quad$ ACl 318-14 Table 17.3.1.1
Variables

| $\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$ | $\lambda_{\mathrm{a}}$ | $\mathrm{N}_{\mathrm{p}, 2500}[\mathrm{lb}]$ |
| :---: | :---: | :---: |
| 3,500 | 1.000 | 4,915 |

## Calculations

$\square$

$$
1.183
$$

## Results

| $\mathrm{N}_{\mathrm{pn}, \mathrm{f}_{0}}[\mathrm{lb}]$ | $\phi_{\text {concrete }}$ | $\phi \mathrm{N}_{\mathrm{pm}, \mathrm{f}_{0}}[\mathrm{lb}]$ | $\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$ |
| :---: | :---: | :---: | :---: |
| 5,8 | 0.6 | 3,7 | 3,091 |

www.hilti.us
Profis Anchor 2.9.2

| Company: | LEI | Page: | 3 |
| :--- | :--- | :--- | :--- |
| Specifier: | MK | Project: | Hamilin MS |
| Address: |  | Sub-Project I Pos. No.: | 21210330.000 |
| Phone I Fax: | E-Mail: |  |  |
|  |  |  | $5 / 5 / 2021$ |

E-Mail:

### 3.3 Concrete Breakout Strength

$\mathrm{N}_{\mathrm{cb}}=\left(\frac{\mathrm{A}_{\mathrm{Nc}}}{\mathrm{A}_{\mathrm{Nc} 0}}\right) \psi_{\text {ed,N }} \psi_{\mathrm{c}, \mathrm{N}} \psi_{\mathrm{cp,N}} \mathrm{~N}_{\mathrm{b}} \quad \quad$ ACI 318-14 Eq. (17.4.2.1a)
$\phi \mathrm{N}_{\mathrm{cb}} \geq \mathrm{N}_{\mathrm{ua}}$
$A_{\text {Nc }} \quad$ see ACl 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)
$A_{\mathrm{Nc} 0}=9 \mathrm{hef}_{\mathrm{ef}}^{2}$
$\psi_{\mathrm{ec}, \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0$
ACI 318-14 Table 17.3.1.1

ACI 318-14 Eq. (17.4.2.1c)
$\psi_{\text {ed, }, \mathrm{N}}=0.7+0.3\left(\frac{\mathrm{c}_{\mathrm{a}, \min }}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0$
$\psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \text { min }}}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0 \quad \quad$ ACI 318-14 Eq. (17.4.2.7b)
$N_{b}=k_{c} \lambda_{a} \sqrt{f_{c}^{\prime}} h_{\text {ef }}^{1.5} \quad$ ACI 318-14 Eq. (17.4.2.2a)

## Variables

| $\mathrm{h}_{\mathrm{ef}}[\mathrm{in}]$. | $\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}[\mathrm{in}]$. | $\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}[\mathrm{in}]$. | $\mathrm{c}_{\mathrm{a}, \min }[\mathrm{in}]$. | $\psi_{\mathrm{c}, \mathrm{N}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 3.250 | 0.000 | 0.000 | 12.000 | 1.000 |
|  |  |  |  |  |
| $\mathrm{c}_{\mathrm{ac}}[\mathrm{in}]$. | $\mathrm{k}_{\mathrm{c}}$ | $\lambda_{\mathrm{a}}$ | $\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$ |  |
| 7.500 | 17 | 1.000 | 3,500 |  |

## Calculations

| $\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in}.{ }^{2}\right]$ | $\mathrm{A}_{\mathrm{Nc} 0}\left[\mathrm{in}.{ }^{2}\right]$ | $\psi_{\mathrm{ec} 1, \mathrm{~N}}$ | $\psi_{\mathrm{ec} 2, \mathrm{~N}}$ | $\psi_{\mathrm{ed}, \mathrm{N}}$ | $\psi_{\mathrm{cp}, \mathrm{N}}$ | $\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95.06 | 95.06 | 1.000 | 1.000 | 1.000 | 1.000 |  |

## Results

| $\mathrm{N}_{\mathrm{cb}}[\mathrm{lb}]$ | $\phi_{\text {concrete }}$ | $\phi \mathrm{N}_{\mathrm{cb}}[\mathrm{lb}]$ | $\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$ |
| :---: | :---: | :---: | :---: |
| 5,893 | 0.650 | 3,830 | 3,091 |


| Company: | LEI | Page: | 4 |
| :--- | :--- | :--- | :--- |
| Specifier: | MK | Project: | Hamilin MS |
| Address: |  | Sub-Project I Pos. No.: | 21210330.000 |
| Phone I Fax: | I | Date: | $5 / 5 / 2021$ |
| E-Mail: |  |  |  |

## 4 Shear load

|  | Load $\mathrm{V}_{\text {ua }}$ [lb] | Capacity $\phi$ V $\mathbf{V}_{\text {[ }}$ [lb] | Utilization $\beta_{\mathrm{V}}=\mathrm{V}_{\mathrm{ua}} / \boldsymbol{\phi} \mathrm{V}_{\mathrm{n}}$ | Status |
| :---: | :---: | :---: | :---: | :---: |
| Steel Strength* | 937 | 3,572 | 27 | OK |
| Steel failure (with lever arm)* | N/A | N/A | N/A | N/A |
| Pryout Strength** | 937 | 8,250 | 12 | OK |
| Concrete edge failure in direction $\mathrm{y} \mathrm{+}^{* *}$ | 937 | 4,769 | 20 | OK |

### 4.1 Steel Strength

$\mathrm{V}_{\mathrm{sa}} \quad=\mathrm{ESR}$ value refer to ICC-ES ESR-1917
$\phi \mathrm{V}_{\text {steel }} \geq \mathrm{V}_{\text {ua }} \quad$ ACl 318-14 Table 17.3.1.1

## Variables

| $\mathrm{A}_{\mathrm{se}, \mathrm{V}}\left[\mathrm{in} .{ }^{2}\right]$ | $\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$ |
| :---: | :---: |
| 0.10 | 106,000 |

## Calculations

$\frac{\mathrm{V}_{\mathrm{sa}}[\mathrm{lb}]}{5,495}$

## Results

| $\mathrm{V}_{\mathrm{sa}}[\mathrm{lb}]$ | $\phi$ steel | $\phi \mathrm{V}_{\text {sa }}[\mathrm{lb}]$ | $\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$ |
| :---: | :---: | :---: | :---: |
| 5,495 | 0.650 | 3,572 | 937 |

### 4.2 Pryout Strength

| $\mathrm{V}_{\mathrm{cp}}=\mathrm{k}_{\mathrm{cp}}\left[\left(\frac{\mathrm{A}_{\mathrm{Nc}}}{\mathrm{A}_{\mathrm{Nc} 0}}\right) \psi_{\text {ed, }, \mathrm{N}} \psi_{\mathrm{c}, \mathrm{N}} \psi_{\mathrm{cp,N}} \mathrm{~N}_{\mathrm{b}}\right]$ | ACI 318-14 Eq. (17.5.3.1a) |
| :---: | :---: |
| $\phi \mathrm{V}_{\mathrm{cp}} \geq \mathrm{V}_{\text {ua }}$ | ACI 318-14 Table 17.3.1.1 |
| $\mathrm{A}_{N c}$ see $\mathrm{ACl} 318-14$, Section 17.4.2.1, Fig. R 17.4.2.1(b) |  |
| $\mathrm{A}_{\mathrm{NcO}}=9 \mathrm{~h}_{\text {ef }}^{2}$ | ACI 318-14 Eq. (17.4.2.1c) |
| $\psi e \mathrm{ec}, \mathrm{N}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\text {ef }}}}\right) \leq 1.0$ | ACI 318-14 Eq. (17.4.2.4) |
| $\psi_{\mathrm{ed}, \mathrm{N}}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a}, \mathrm{min}}}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0$ | ACI 318-14 Eq. (17.4.2.5b) |
| $\psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \min }}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{Caca}}\right) \leq 1.0$ | ACI 318-14 Eq. (17.4.2.7b) |
| $\mathrm{N}_{\mathrm{b}} \quad=\mathrm{k}_{\mathrm{c}} \lambda_{\mathrm{a}} \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \mathrm{h}_{\mathrm{ef}}^{1.5}$ | ACI 318-14 Eq. (17.4.2.2a) |

## Variables

| $\mathrm{k}_{\mathrm{cp}}$ | $\mathrm{h}_{\mathrm{ef}}$ [in.] | $\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}$ [in.] | $\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}$ [in.] | $\mathrm{c}_{\mathrm{a}, \min }$ [in.] |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 3.250 | 0.000 | 0.000 | 12.000 |
|  |  |  |  |  |
| $\psi_{\mathrm{c}, \mathrm{N}}$ | $\mathrm{c}_{\mathrm{ac}}$ [in.] | $\mathrm{k}_{\mathrm{c}}$ | $\lambda_{\mathrm{a}}$ | $\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$ |
| 1.000 | 7.500 | 17 | 1.000 | 3,500 |

## Calculations

| $\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in.}^{2}\right]$ | $\mathrm{A}_{\mathrm{Nc} 0}\left[\mathrm{in} .{ }^{2}\right]$ | $\psi_{\mathrm{ec} 1, \mathrm{~N}}$ | $\psi_{\text {ec2,N}}$ | $\psi_{\text {ed,N }}$ | $\psi_{\mathrm{cp}, \mathrm{N}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 95.06 | 95.06 | 1.000 | 1.000 | 1.000 | 1.000 |

## Results

| $\mathrm{V}_{\mathrm{cp}}[\mathrm{lb}]$ | $\phi$ concrete | $\phi \mathrm{V}_{\mathrm{cp}}[\mathrm{lb}]$ | $\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$ |
| :---: | :---: | :---: | :---: |
| 11,785 | 0.700 | 8,250 | 937 |

www.hilti.us
Profis Anchor 2.9.2

| Company: | LEI | Page: | 5 |
| :--- | :--- | :--- | :--- |
| Specifier: | MK | Project: | Hamilin MS |
| Address: |  | Sub-Project I Pos. No.: | 21210330.000 |
| Phone I Fax: | E-Mail: |  |  |
|  |  |  | $5 / 5 / 2021$ |

4.3 Concrete edge failure in direction $\mathrm{y}+$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{cb}}=\left(\frac{\mathrm{A}_{\mathrm{Vc}}}{\mathrm{~A}_{\mathrm{Vco}}}\right) \psi_{\mathrm{ed}, \mathrm{~V}} \psi_{\mathrm{c}, \mathrm{~V}} \psi_{\mathrm{h}, \mathrm{~V}} \psi_{\text {parallel, }, ~} \mathrm{~V}_{\mathrm{b}} \quad \text { ACI 318-14 Eq. (17.5.2.1a) } \\
& \phi V_{\text {cb }} \geq V_{\text {ua }} \\
& A_{V_{c}} \quad \text { see } A C l \text { 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b) } \\
& \mathrm{A}_{\mathrm{v} c} 0=4.5 \mathrm{c}_{\mathrm{a} 1}^{2} \\
& \psi_{\mathrm{ec}, \mathrm{v}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{v}}^{\prime}}{3 \mathrm{c}_{\mathrm{a} 1}}}\right) \leq 1.0 \\
& \psi_{\text {ed, },}=0.7+0.3\left(\frac{\mathrm{c}_{\mathrm{a} 2}}{1.5 \mathrm{c}_{\mathrm{a} 1}}\right) \leq 1.0 \quad \quad \text { ACI 318-14 Eq. (17.5.2.6b) } \\
& \psi_{\mathrm{h}, \mathrm{~V}}=\sqrt{\frac{1.5 \mathrm{C}_{\mathrm{a} 1}}{\mathrm{~h}_{\mathrm{a}}}} \geq 1.0 \quad \quad \text { ACI 318-14 Eq. (17.5.2.8) } \\
& V_{b}=\left(7\left(\frac{l_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a 1}^{1.5} \quad \text { ACI 318-14 Eq. (17.5.2.2a) }
\end{aligned}
$$

## Variables

| $\mathrm{c}_{\mathrm{a} 1}$ [in.] | $\mathrm{c}_{\mathrm{a} 2}$ [in.] | $\mathrm{e}_{\mathrm{cv}}$ [in.] | $\psi_{\mathrm{c}, \mathrm{V}}$ | $\mathrm{h}_{\mathrm{a}}$ [in.] |
| :---: | :---: | :---: | :---: | :---: |
| 8.000 | 12.000 | 0.000 | 1.000 | 6.000 |
|  |  |  |  |  |
| $\mathrm{I}_{\mathrm{e}}$ [in.] | $\lambda_{\mathrm{a}}$ | $\mathrm{d}_{\mathrm{a}}$ [in.] | $\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$ | $\psi_{\text {parallel, } \mathrm{V}}$ |
| 3.250 | 1.000 | 0.500 | 3,500 | 1.000 |

## Calculations

| $\mathrm{A}_{\mathrm{Vc}}\left[\mathrm{in} .{ }^{2}\right]$ | $\mathrm{A}_{\mathrm{Vc} 0}\left[\mathrm{in} .{ }^{2}\right]$ | $\psi_{\mathrm{ec}, \mathrm{V}}$ | $\psi_{\mathrm{ed}, \mathrm{V}}$ | $\psi_{\mathrm{h}, \mathrm{V}}$ | $\mathrm{V}_{\mathrm{b}}[\mathrm{lb}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 144.00 | 288.00 | 1.000 | 1.000 | 1.414 | 9,635 |
| Results |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{cb}}[\mathrm{lb}]$ |  |  |  |  |  |
| 6,813 | 0.700 | $\phi \mathrm{~V}_{\mathrm{cb}}[\mathrm{lb}]$ | $\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$ |  |  |

## 5 Combined tension and shear loads

| $\beta_{\mathrm{N}}$ | $\beta_{\mathrm{V}}$ | $\zeta$ | Utilization $\beta_{\mathrm{N}, \mathrm{V}}[\%]$ | Status |
| :---: | :---: | :---: | :---: | :---: |
| 0.818 | 0.262 | $5 / 3$ | 83 | OK |

$\beta_{N V}=\beta_{N}^{\zeta}+\beta_{V}^{\zeta}<=1$

## 6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The $\Phi$ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-14, Section 17.8.1.

Fastening meets the design criteria!
www.hilti.us

| Company: | LEI | Page: | 6 |
| :--- | :--- | :--- | :--- |
| Specifier: | MK | Project: | Hamilin MS |
| Address: |  | Sub-Project I Pos. No.: | 21210330.000 |
| Phone I Fax: | D |  |  |

Phone I Fax: Sub-Project I Pos. No.: 21210330.000
Date: 5/5/2021
E-Mail:

Anchor type and diameter: Kwik Bolt TZ - CS 1/2 (3 1/4) Installation torque: 480.001 in.lb

Hole diameter in the base material: 0.500 in .
Hole depth in the base material: 4.000 in.
Minimum thickness of the base material: 6.000 in.

## 7 Installation data

Anchor plate, steel: -
Profile: no profile
Hole diameter in the fixture: $d_{\mathrm{f}}=0.563$ in.
Plate thickness (input): 0.187 in.
Recommended plate thickness: not calculated
Drilling method: Hammer drilled
Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

Profis Anchor 2.9.2
6

### 7.1 Recommended accessories

Drilling

- Suitable Rotary Hammer
- Properly sized drill bit

Cleaning

- Manual blow-out pump

Setting

- Torque controlled cordless impact tool (Hilti Safeset System)
- Torque wrench
- Hammer


Coordinates Anchor in.

| Anchor | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{c}_{-\mathbf{x}}$ | $\mathbf{c}_{+\mathbf{x}}$ | $\mathbf{c}_{-\mathbf{y}}$ | $\mathbf{c}_{+\mathbf{y}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.000 | 0.000 | 12.000 | 12.000 | 12.000 | 12.000 |

www.hilti.us

| Company: | LEI | Page: | 7 |
| :--- | :--- | :--- | :--- |
| Specifier: | MK | Project: | Hamilin MS |
| Address: |  | Sub-Project I Pos. No.: | 21210330.000 |
| Phone I Fax: | I | Date: | $5 / 5 / 2021$ |

E-Mail:

## 8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.


## DESIGN LOADS:

1. DESIGN LIVE LOADS

DEAD LOAD 6psf.
LIVE LOAD 100psf.
SEAT \& FOOTBOARDS 120psf.
SWAY (PERPENDICULAR) X NUMBER OF SEATING ROWS 10PLF SWAY (PARALLEL) X NUMBER OF SEATING ROWS 24PLF
*GUARDAILS/HANDRAILS 50plf
*OR 200 LB CONCENTRATED LOAD APPLIED TO RAIL AT ANY POINT IN ANY DIRECTION
2. WIND:

V = 102 MPH
EXPOSURE: C
3. SEISMIC:

SEISMIC USE GROUP III
Sds $\quad 0.566 \mathrm{~g}$
Sd1 0.515 g
SITE CLASS D-DEFAULT
SEISMIC DESIGN CATEGORY D
4. SNOW

Pg: 11 PSF
IMPORTANCE FACTOR:1.1

## GENERAL NOTES:

1. BLEACHER DESIGNED TO COMPLY WITH 2019 OREGON STRUCTURAL SPECIALTY CODE (REF INTERNATIONAL BUILDING CODE 2018 IBC) AND SUPPLEMENT ICC 300.
2. ALL STRUCTURAL ALUMINUM TO CONFORM TO ALLOY 6061-T6.
3. STRUCTURAL BOLTS TO BE:

## E Larson

Engineering Inc
1488 Bond Street, Suite 100 Naperville, Illinois 60563 (p) 630.357 .0540 (F) 630357.0164 EI Comm No. 21210330.000

HAMLIN MIDDLE SCHOOL
SPRINGFIELD, OR
GENERAL NOTES

## Earson

Engineering Inc
1488 Bond Street, Suite 100 Naperville, Illinois 60563
(p) 630.357 .0540 (F) 630.357 .0164

LEI Comm No. 21210330.000 LIMITED TO STRUCTURAL DESIGN


## F Larson <br> Engineering Inc

1488 Bond Street, Suite 100 Naperville, Illinois 60563 (p) 630.357 .0540 (F) 630.357 .0164 LEI Comm No. 21210330.000 LIMITED TO STRUCTURAL DESIGN


ECTRICAL PANEL


``` SPRINGFIELD, OR
TYPE
FRAMING
```

International of Bleachers International.
and may not be copied,

purpose withouthe expressed
Written consent of Bleachers
Intermational.

1488 Bond Street, Suite 100
Naperville, Illinois 60563
(p) 630.357 .0540 (F) 630.357 .0164


IMITED TO STRUCTURAL DESIGN


Engineering Inc
1488 Bond Street, Suite 100
Naperville, Illinois 60563
(p) 630.357 .0540 (F) 630.357 .0164 LEI Comm No. 21210330.000 LIMITED TO STRUCTURAL DESIGN


EXPIRATION DATE: $12 / 31 / 2021$

(1/5)


$4 / 5$


| ITEM | MATERIAL |
| :---: | :---: |
| 1 | L1.5"X1.5"X/16" ALUMINUM |
| 2 | L2"X2"X3/6" ALUMINUM |
| 3 | L3"X2"X3/16" ALUMINUM |
| 4 | C4X1.85 ALUMINUM |
| 5 | $3 / 8 " \varnothing X 2 \frac{3}{4} / 4$ EMBED HILTI KWIK BOLT-TZ |
| 6 | L3"X2"X ${ }^{1} 4$ " ALUMINUM |
| 7 |  |


$1 / 5$

International

(3/6)

(6/6)


| ITEM | MATERIAL |
| :---: | :---: |
| 1 | L1.5"X1.5"X³/16" ALUMINUM |
| 2 | L2"X2"X³/16" ALUMINUM |
| 3 | L3"X2"X³/16" ALUMINUM |
| 4 | C4X1.85 ALUMINUM |
| 5 | 3/8"ØX2 3/4" EMBED HILTI KWIK BOLT-TZ |
| 6 | L3"X2"X¼" ALUMINUM |
| 7 | $\begin{gathered} 1 / 2 " \times 3-1 / 2 " \text { EMBED HILTI KWIK } \\ \text { BOLT-TZ } \end{gathered}$ |
| 8 | C5X2.32 |

Engineering Inc
1488 Bond Street, Suite 100
Naperville, lllinois 60563
(p) 630.357 .0540 (F) 630.357 .0164 LEI Comm No. 21210330.000

6/6

LIMITED TO STRUCTURAL DESIGN

| ITEM | MATERIAL |
| :---: | :---: |
| 1 | L1.5"X1.5"X¹/16" ALUMINUM |
| 2 | L2"X2"X³/16" ALUMINUM |
| 3 | L3"X2"X³/16" ALUMINUM |
| 4 | C4X1.5 $\mathrm{K}^{3} /$ \% $^{\prime \prime}$ " ALUMINUM |
| 5 | $\begin{gathered} 3 / 8 " \varnothing X 23 / 4 " \text { EMBED HILTI KWIK } \\ \text { BOLT-TZ } \end{gathered}$ |

EXPIRATION DAFE:1/31/2021

(4) DUGOUT BLEACHER SIDE VIEW
(1) WALKWAY NEXT TO DUGOUT
$\square$
HAMLIN MIDDLE SCHOOL SPRINGFIELD, OR

SECTION VIEW

Engineering Inc
1488 Bond Street, Suite 100
Naperville, Illinois 60563
p) 630.357 .0540 (F) 630.357 .0164 FI Comm No 21210330.000
LIMITED TO STRUCTURAL DESIGN

N


## Earson <br> 1488 Bond Street, Suite 100 Naperville, Illinois 60563 (p) 630.357.0540 (F) 630.357.016




(1) $\frac{1}{D}$
(TYP) RAMP
DETAIL

(2) (TYP) RAMP SECTION

(3) $\frac{\text { (TYP) STAIR }}{\text { FRAME }}$ FRAME

Farson
Engineering Inc
1488 Bond Street, Suite 100 Naperville, Illinois 60563 (p) 630.357 .0540 (F) 630.357 .0164 (p) 630.357.0540 (r) 630.357 .0

LIMITED TO STRUCTURAL DESIGN


HAMLIN MIDDLE SCHOOL SPRINGFIELD, OR

EGRESS DETAILS







bulomg ENELOPE








OOOR HAROOWRE SCHEOUE

| ооов нав |
| :--- |
| 00081 |




| $\frac{\text { ERAMEE }}{\text { TrPE: }}$ |  |
| :---: | :---: |
| FLOOR: <br> UNDERCLOSURE <br> INSULA RIMS: <br> RIMS: JOISTS: <br> JOISTS: DECKING: <br> UNDERLAYMENT: <br> BASE TRIM | R-30 FIBERGLASS - TWO LAYERS OF R-15 $2 \mathrm{X} 8 \mathrm{H} / \mathrm{F}$ \#2 BOLTED INSIDE STEEL FRAME <br> 2X8 H/F \#2 @ 16" O.C. TRANSVERSE $3 / 4$ " T \& G OSB STURDIFL <br> AT PERIMETER TO STEEL FRAME $1 / 4$ " SUREPLY <br> 1/4" SUREPLY <br> 4" RUBBER BASE |
| EXTERIOR WALL: <br> STUDS: <br> COVERING: <br>  <br> TRIM: <br> INSULATION: <br> SHEATHING: <br> SIDING: <br> TRIM: |  <br> 5/8" VINYL COVERED GYPSUM WALLBOARD <br> VINYL COVERED WOOD BATT CORNER TRIM <br> 7/16 OSB OR 1/2" CDX PLYUOODRIER <br> 26 GAUGE METAL SALES CLASSIC RIB STEEL PANELS OVER HOUSE WRA <br> 26 GAUGE BASE TRIM |
| INTERIOR WALL <br> covering: <br> TRIM: INSULATION |  <br>  |
|  <br> SLOPE: CEILING: CEILING HEIGHT: INSULATION: SHEATHING ROOFING: OVERHANG: FASCIA: VENTING: GUTTERS/D.S.: |  |



(5) $\frac{\text { ROOF TO WALL L LOW SIDE }}{112^{\prime \prime}}=11^{-1-0^{\prime}}$

2) $\frac{\text { WALLTO FLOOR }}{1112^{"}=1-0.0}$


1) $\frac{\text { Cross section }}{344^{\prime \prime}=1-0^{\prime}}$

(6 $\frac{\text { RAL MOUNTING }}{3^{\prime \prime}}=1-0^{-0}$



2) $\begin{aligned} & \text { East Elevation } \\ & 38^{\prime \prime}=1-1-0^{\prime \prime}\end{aligned}$


(5) $\frac{\text { Ms CLASSIC RBEASTENG }}{11=1-1.01}$




(a) Daylight sensor, celme mount Low voltage for lighting


- 

Rectr to panel scheoule por detalls


(T) KNMG LINE Voltae wall thenmostat with ful off position




3. TTALCS Nicate work one on ste















$\underset{\sim}{\infty}$


(2) $\frac{\text { RFFLECTED }}{12^{\prime \prime}=11-0^{\prime}}$ CELLING

(3) $\frac{\text { ROOF ELECTRICAL }}{1 / 22^{\prime \prime}} 11^{-0.0 "}$

| Branch Panel: MDP |  |  |
| :---: | :---: | :---: |
| Supory |  | A.c. |
| $\substack{\text { Monaring } \\ \text { Encosuse }}$ |  |  |

[^14]$\qquad$
$\square$





## SITE CHARACTERISTICS

The subject site currently is a natural turf baseball field with dugouts and concrete walks. This proposal is to replace the existing natural turf on the baseball field with artificial turf, along with adding bleachers, new dugouts and concrete picnic areas adjacent to the baseball field

## EXISTING HYDROLOGY

The site is relatively flat and the site drains into the existing bio-swales inside of the property.

## PROPOSED HYDROLOGY

The proposed drainage system consists of piping the proposed impervious drainage to two treatment ponds. See attached Hydrology Map. An infiltration rate of 2 " per hour was assumed to size the treatment ponds.

## North Basin

The north basin collects the drainage from the concrete picnic areas and landscape areas ( 1,200 s.f.). The impervious area ( 17,500 s.f.) included a future restroom building and drain to a proposed treatment pond. The treatment pond was sized using the City of Eugene's Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet and is attached. The minimum required size for an Infiltration Rain Garden is 529 s.f. at the top of the facility. The proposed treatment pond is over 1,170 s.f.

## South Basin

The south basin collects the drainage from the concrete picnic areas. The impervious area ( 5,600 s.f.) drains to a proposed treatment pond. The treatment pond was sized using the City of Eugene's Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet and is attached. The minimum required size for an Infiltration Rain Garden is 190 s.f. at the top of the facility. The proposed treatment pond is over 450 s.f.

CONCLUSION
Based on my calculations and the proposed drainage systems are sized properly and will provide the necessary treatment.





| Pollution Reduction-Calculation Results |  |  |  |
| :---: | :---: | :---: | :---: |
| Peak Flow Rate to Stormwater Facility $=$ <br> Total Runoff Volume to Stormwater Facility = <br> Max. Depth of Stormwater in Facility= <br> Drawdown Time= <br> Yes <br> Facility Sizing M <br> YES Meets Req <br> Y YES Meets Req | 0.044 cfs $\square$ cf in $\qquad$ hours <br> Pollution <br> ment of No Fa ment for Maxi | Peak Facility Overflow Rate= <br> Total Overflow Volume= <br> dards? <br> rawdown Time? |  |
| Flow Control-Calculation Results |  |  |  |
| Peak Flow Rate to Stormwater Facility $=$ Total Runoff Volume to Stormwater Facility = <br> Max. Depth of Stormwater in Facility= Drawdown Time= <br> Pre-Development R <br> Peak Flow Rate = <br> Total Runoff Volume = <br> N\A Facility Sizing M | 0.121 cfs <br> 1568 cf <br> 12.0 <br> in <br> 6.8 hours <br> fata <br> 0.067 cfs 982 cf <br> Flow Con <br> ment for Post ment for Maxi | Peak Facility Overflow Rate= <br> Total Overflow Volume= <br> Peak Off-Site Flow Rate <br> Filtration Facility Underdrain= <br> e flow less or equal to Pre-Deve rawdown Time? | 754 cf <br> cfs <br> ent Flow? |
| Destination-Calculation Results |  |  |  |
| Peak Flow Rate to Stormwater Facility = <br> Total Runoff Volume to Stormwater Facility $=$ <br> Max. Depth of Stormwater in Facility= <br> Drawdown Time= <br> N/A Facility Sizing M |  | Peak Facility Overflow Rate= <br> Total Overflow Volume= <br> rawdown Time? | N/A cfs <br> N/A cf |





# DS330 Fatigue Resistant Soft Square Steel Post 




Full Base Cover (Standard)


Dart Square - 2 T (Optional)


## SPECIFICATIONS

Pole Shaft - The pole shaft is fabricated from hot rolled welded steel tubing of one-piece construction with a minimum yield strength of 55 KSI .

Pole Top - A removable pole cap is provided for poles receiving drilling patterns for side-mount luminaire arm assemblies. For top mount luminaire and/or bracket consult the factory. Consult the luminaire manufacturer for correct tenon size or drill pattern. Other pole top options include pole cap only (PC) or plain top (PL) which is typical when the pole top diameter matches the necessary slip fit dimensions.

Handhole - A reinforced handhole with grounding provision is provided at $1^{\prime}-6 "$ from the base end of the pole assembly. Each handhole includes an easy to install, self-contained Swing Latch handhole cover assembly. U.S. Patent Swing Latch cover is fabricated from durable polycarbonate/ABS blend plastic. All pole assemblies are provided with a 2.50 " $\times 5.00^{\prime \prime}$ rectangular handhole. Handhole dimensions are nominal.

Base Cover - A two-piece full base cover fabricated from ABS plastic is provided with each pole assembly. Additional base cover options, including the dart square (2T) cast aluminum cover, are available upon request.

Anchor Bolts - Anchor bolts conform to ASTM F1554 Grade 55 and are provided with two hex nuts and two flat washers. Bolts have an "L" bend on one end and are galvanized a minimum of 12 " on the threaded end.
Hardware - All structural fasteners are galvanized high strength carbon steel. All non-structural fasteners are galvanized or zinc-plated carbon steel or stainless steel.

Finish - Standard finishes are either Galvanized (GV) or Finish Painted (FP). Additional finish options including Finish Paint over Galvanizing (FPGV) or any of the V-PRO ${ }^{\text {m }}$ Finish Coating Systems are available upon request. See the product ordering code for color options.

Design Criteria - Please reference Design Criteria Specification for appropriate design conditions.

| Job Name: |  | Client Name: |  |
| :---: | :---: | :---: | :---: |
| Job Location - City: | State: | Created By: | Date: |
| Product: DS330 | Quote: | Customer Approval: | Date: |

## ANCHORAGE DATA

| POLE |  | BASE PLATE |  |  |  | ANCHOR BOLTS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OLE |  | BOLTC | RCLE |  |  |  |  |  |
| SQUARE <br> (IN) | $\begin{aligned} & \text { WhEL } \\ & \text { THK } \\ & (\mathrm{GA}) \end{aligned}$ | $\begin{aligned} & \text { DIA } \\ & \text { (IN) } \end{aligned}$ | $\stackrel{ \pm}{(\mathbb{N})}$ | SQUARE <br> (IN) | $\begin{aligned} & \text { THK } \\ & \text { (IN) } \end{aligned}$ | $\underset{(\mathbb{I N})}{\text { DIAx LENGTH }} \times \text { HOOK }$ | $\begin{gathered} \text { PROIECTION } \\ \text { (IN) } \end{gathered}$ | $\stackrel{+}{(\mathbb{N})}$ |
| 4.00 | 11 | 8.50 | 0.50 | 8.25 | 0.750 | $0.75 \times 17.00 \times 3.00$ | 3.50 | 0.25 |
| 4.00 | 7 | 8.50 | 0.50 | 8.25 | 0.875 | $0.75 \times 17.00 \times 3.00$ | 3.63 | 0.25 |
| 5.00 | 11 | 11.00 | 1.00 | 11.00 | 1.000 | $0.75 \times 17.00 \times 3.00$ | 3.75 | 0.25 |
| 5.00 | 7 | 11.00 | 1.00 | 11.00 | 1.000 | $0.75 \times 17.00 \times 3.00$ | 3.75 | 0.25 |
| 6.00 | 7 | 12.00 | 1.00 | 12.50 | 1.000 | $1.00 \times 36.00 \times 4.00$ | 4.25 | 0.25 |

Anchor Base Detail
$180^{\circ}$

$0^{\circ}$ - Handhole

## DESIGNATION,LOAD AND DIMENSIONAL DATA

| DESIGN INFORMATION |  |  |  |  |  |  | POLE DIMENSIONS ${ }^{3}$ |  |  |  | DESIGNATION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NOMINAL MOUNTING HEIGHT | $\begin{array}{r} 80 \mathrm{MPH} \\ \mathrm{w} / 1.3 \mathrm{GUST} \\ \hline \end{array}$ |  | $\begin{array}{r} 90 \mathrm{MPH} \\ \text { w/1.3 GUST } \\ \hline \end{array}$ |  | $\begin{array}{r} 100 \mathrm{MPH} \\ \mathrm{w} / 1.3 \mathrm{GUST} \\ \hline \end{array}$ |  | $\begin{gathered} \text { SHAFT } \\ \text { BASE } \\ \text { SQUARE } \\ (\mathbb{N}) \end{gathered}$ | SHAFT TOP SQUARE <br> (IN) | WALL THK (GA) | $\begin{aligned} & \text { STRUCTURE } \\ & \text { WEIGHT² } \\ & \text { (LBS) } \end{aligned}$ |  |
|  | $\begin{gathered} \hline \text { MAX } \\ \text { EPA } \\ (S Q F T) \end{gathered}$ | $\begin{gathered} \text { MAX } \\ \text { WEIGHT } \\ \text { (LBS) } \end{gathered}$ | $\begin{gathered} \text { MAX } \\ \text { EPA } \\ \text { (SQFT) } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { MAX } \\ \text { WEIGHT¹ } \\ \text { (LBS) } \\ \hline \end{array}$ | $\begin{gathered} \text { MAX } \\ \text { EPA } \\ (\text { SQFI } \end{gathered}$ | $\begin{gathered} \text { MAX } \\ \text { WEIGHT } \\ \text { (LBS) } \end{gathered}$ |  |  |  |  |  |
| 10'-0" | 30.6 | 765 | 23.8 | 595 | 18.9 | 473 | 4.00 | 4.00 | 11 | 75 | 400Q100 |
| 12'-0" | 24.4 | 610 | 18.8 | 470 | 14.8 | 370 | 4.00 | 4.00 | 11 | 90 | 400Q120 |
| 14'-0" | 19.9 | 498 | 15.1 | 378 | 11.7 | 293 | 4.00 | 4.00 | 11 | 100 | 400Q140 |
| 16'-0" | 15.9 | 398 | 11.8 | 295 | 8.9 | 223 | 4.00 | 4.00 | 11 | 115 | 400Q160 |
| 18'-0" | 12.6 | 315 | 9.2 | 230 | 6.7 | 168 | 4.00 | 4.00 | 11 | 125 | 400Q180 |
| 20'-0" | 9.6 | 240 | 6.7 | 167 | 4.5 | 150 | 4.00 | 4.00 | 11 | 140 | 400Q200 |
|  | 17.7 | 443 | 12.7 | 343 | 9.4 | 235 | 5.00 | 5.00 | 11 | 185 | 500Q200 |
|  | 28.1 | 703 | 21.4 | 535 | 16.2 | 405 | 5.00 | 5.00 | 7 | 265 | 500W200 |
| 25'-0" | 4.8 | 150 | 2.6 | 100 | 1.0 | 50 | 4.00 | 4.00 | 11 | 170 | 400Q250 |
|  | 10.8 | 270 | 7.7 | 188 | 5.4 | 135 | 4.00 | 4.00 | 7 | 245 | 400W250 |
|  | 9.8 | 245 | 6.3 | 157 | 3.7 | 150 | 5.00 | 5.00 | 11 | 225 | 500Q250 |
|  | 18.5 | 463 | 13.3 | 333 | 9.5 | 238 | 5.00 | 5.00 | 7 | 360 | 500W250 |
| 30'-0" | 6.7 | 168 | 4.4 | 110 | 2.6 | 65 | 4.00 | 4.00 | 7 | 291 | 400W300 |
|  | 4.7 | 150 | 2.0 | 50 | N/A | N/A | 5.00 | 5.00 | 11 | 265 | 500Q300 |
|  | 10.7 | 267 | 6.7 | 167 | 3.9 | 100 | 5.00 | 5.00 | 7 | 380 | 500W300 |
|  | 19.0 | 475 | 13.2 | 330 | 9.0 | 225 | 6.00 | 6.00 | 7 | 520 | 600W300 |
| 35'-0" | 5.9 | 150 | 2.5 | 100 | N/A | N/A | 5.00 | 5.00 | 7 | 440 | 500W350 |
|  | 12.4 | 310 | 7.6 | 190 | 4.2 | 105 | 6.00 | 6.00 | 7 | 540 | 600W350 |
| 40'-0" | 7.2 | 180 | 3.0 | 75 | N/A | N/A | 6.00 | 6.00 | 7 | 605 | 600W400 |

1. Maximum EPA (Effective Projected Area) and weight values are based on side mounted fixtures only. Consult factory on loading criteria for pole top mounted luminaires and/or brackets. Variations from sizes above are available upon inquiry at the factory. Satisfactory performance of poles is dependent upon the pole being properly attached to a supporting foundation of adequate design.
2. Structure weight is a nominal value which includes the pole shaft and base plate only.
3. Belled-bottom will have reduced thickness due to the cold-working process. However, the belled-bottom meets or exceeds the structural capacity of the original square section. In addition, the rounded section provides better fatigue resistance.

## PRODUCT ORDERING CODES



å]PZo [ Ğ̛̣
бо̀ø $\square$


## \&ต̆Ă Začs





^\} in >ê

z\}|Uvhv]êd


| Part\# | Wattage | Volts | Housing <br> Color | Light <br> Pattern | Lumens | CCT | CRI | Dimming | Lumens/Watt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 74010A | 150 | $120-277$ | Bronze | Type III | 19186 | 5000 | 75.0 | $0-10 \mathrm{~V} /$ PWM/VR | 130.1 |
| 74012A | 150 | $120-277$ | White | Type III | 19186 | 5000 | 75.0 | $0-10 \mathrm{~V} /$ PWM/VR | 130.1 |
| 74008A | 150 | $120-277$ | Bronze | Type III | 18931 | 4000 | 75.0 | $0-10 \mathrm{~V} /$ PWM/VR | 128.5 |
| 74014A | 150 | $347-480$ | Bronze | Type III | 19274 | 5000 | 75.0 | $0-10 \mathrm{~V} /$ PWM/VR | 130.0 |
| 74011A | 150 | $120-277$ | Bronze | Type IV | 19367 | 5000 | 75.0 | $0-10 \mathrm{~V} /$ PWM/VR | 131.1 |
| 74013A | 150 | $120-277$ | White | Type IV | 19367 | 5000 | 75.0 | $0-10 \mathrm{~V} /$ PWM/VR | 129.7 |
| 74009A | 150 | $120-277$ | Bronze | Type IV | 19139 | 4000 | 75.0 | $0-10 \mathrm{~V} /$ PWM/VR | 129.7 |
| 74015A | 150 | $347-480$ | Bronze | Type IV | 18694 | 5000 | 75.0 | $0-10 \mathrm{~V} /$ PWM/VR | 126.3 |
| 74053A | 150 | $120-277$ | Bronze | Type V | 19142 | 5000 | 75.0 | $0-10 \mathrm{~V} /$ PWM/VR | 129.6 |
| 74055A | 150 | $120-277$ | Bronze | Type V | 18907 | 4000 | 75.1 | $0-10 \mathrm{~V} /$ PWM/VR | 128.0 |
| 74054A | 150 | $347-480$ | Bronze | Type V | 18668 | 5000 | 75.0 | $0-10 \mathrm{~V} /$ PWM/VR | 126.2 |


| DLC Product ID\# <br> Area Light | DLC Product ID\# <br> Flood Light |
| :--- | :--- |
| PL3P3X8C8SW2 | PLWTUITQXBWO |
| PL3P3X8C8SW2 | PLWTUITQXBWO |
| PLABV9LGR8KI | PL49WKINNF8K |
| PLVMLQQ0E8DUK | PLU184OY5RDH |
| PLURU0YEQFOM | PLM8ZYZ8RS2J |
| PLURU0YEQF0M | PLM8ZYZ8RS2J |
| PL1ZLHFSXT7S | PLN6RVZGE4SP |
| PLOIENBYK2E7 | PL6UBJOLQYCF |
| PL9IMPD3N3XB | PLIOBVXOEGOL |
| PL41SCTU1FCK | PLW97EPMTYDP |
| PLO9Q2RXSOYH | PLS5FBC7P8ZP |

## Area Light'[ Ĝ̣ 3 B <br> бO゙વ! <br> 

## dzW ///W



| Illuminance at a Distance |  |  |  |
| :---: | :---: | :---: | :---: |
| 17.00t | 14.9 fc | 40.4 ft | 108.4 ft |
|  | 3.73 fc | 80.8 ft | 216.7 ft |
| 51.0 ft | 1.66 fc | 121.2 ft | 325.1 ft |
| 68.00 t | 0.93 fc | 161.6 ft | 433.5 ft |
| 85.015 | 0.60 fc | 201.9 ft | 541.9 ft |
| 102.00t | 0.41 fc | 242.3 ft | 650.2 ft |
|  | read: 99.8 <br> read: 145 |  |  |



## Area Light'[ Ǧ̂[3] <br> бӧб

## 

| Voltage | L70 | Current | PF | THD | R9 | DUV | Chromati city ( $x, y$ ) | Chromati city (u,v) | Driver Output (Volts) | Driver Output (Amps) | BUG <br> Rating | Surge Protection |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 120-277 | >50k hrs | $\begin{aligned} & 1.2327- \\ & 0.5533 \end{aligned}$ | $\begin{gathered} 0.996- \\ 0.929 \end{gathered}$ | $\begin{aligned} & \text { 7.05\%- } \\ & \text { 9.75\% } \end{aligned}$ | 0 | -0.001 | $\begin{aligned} & x=0.3817 \\ & y=0.3754 \end{aligned}$ | $\begin{aligned} & u=0.2265 \\ & v=0.5012 \end{aligned}$ | 43V | 3.1A | G2 | 10kV |
| 277-480 | >50k hrs | $\begin{gathered} 0.5366- \\ 0.3268 \end{gathered}$ | $\begin{gathered} 0.997- \\ 0.935 \end{gathered}$ | $\begin{aligned} & \text { 3.54\%- } \\ & 8.26 \% \end{aligned}$ | 0 | -0.0011 | $\begin{aligned} & x=0.3817 \\ & y=0.3752 \end{aligned}$ | $\begin{aligned} & u=0.2266 \\ & v=0.5011 \end{aligned}$ | 43V | 3.1A | G2 | 10kV |

## Componesptecification:

LED6HRXCB 030

## 2SHUDW LQJ7HPSHUDWXUH

0LQLPXP6WDUW任
\& RQVWUXFWLRQ
+RXVLQJ\$OXPLQX BOORBRZGHU\&RDWHG
,35DWLQJ,3VXLWDEOHIRUZHWORFDWLRQV
/HQVODWHULBFOIFDUERQDWHHDW89 DQG)LUHHVLVWDQW

## Listings:

ULL i s tEe4d:4299

CartQdn:
We i ghlt bV
EPRAR ifnt $g^{2}$ :

ORXQWLQJ
3FORXQW'HVLJQIRUVLPSOHSHUVRDQVWDOODWLRQ

## 3KRWR\&RQWURO

7ZLVWORFNUHFHSWDFOHDQGVKRUWLQJLQFOXGHG 3KRWRFHOOVROGVHSDUDWHO\

## :DUUDQWI

Morris Products car rfireosm ad a of purchase against defec workmanship (assuming norma

Pol e MArunm t: Cat \# \$\$4 0C3a2t \# \$7403
SI i pfitter MoCuantt\# \$4 0C3a4t \# \$7403
<RNH Mount: Cat \#40\$36Cat \# 4 © 3
TUXQQLROXXQ
8QLYHUVDOORXQW
\&DW \$ \&DW \$
Cat \#4 © 4 Cat \# \$7404

hv] $\mathrm{e} D \mathrm{D}$ \}uhtigivã

DKZZ/^dIWÛ D̂



 อ̈ỗ̃ò






ODGHZLW KHDY ${ }^{*}$ DXJH 6WHHO
\%URQ]H3RZGHU\&RDW
\&RPHVZLW WHY HW*DV NHVBODV W.DDO
30XJVDQ GFUHZVIRU,QVWDOODWLRQ

# 0255,6\&\$7\$ <br> )L[WXUH+RRN Mounting <br> Pattern 



CED
155 GARFIELD ST., SUITE H1
EUGENE OR 97402
TEL: 541 683-2474 FAX: 541 343-8454
CONTACT: ROGER KUHL
QUOTE FOR: OLSSON INDUST ELECT INC
ACCT \#: LL-65374 OLSSON INDUST ELECT INC

PO BOX 70413
SPRINGFIELD, OR 97475
TEL: (541)747-8460

SLS: 0813
INSLS: 0011
BY: RK
FOB: SHIPPING POINT
FRT: PREPAID

QUOTE \#: 5001156
DATE: 07/09/21
REV \#: 001
REV DATE: 07/09/21

## QUOTE EXPIRES 08/08/2021

CUS PO \#:
JOB NAME: HAMLIN MIDDLE SCHOOL

| LN TYPE/DESIG | QTY | MFR | CATALOG\# | DESCRIPTION | PRICE | UOM | $\begin{aligned} & \text { EXT } \\ & \text { AMT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | 1 | MORRI | 74010A |  | 153.00 | E | 153.00 |
| 02 |  |  |  | 600+ IN NY |  |  |  |
| 03 | 1 | MORRI | 74043A |  | 33.00 | E | 33.00 |
| 04 |  |  |  | 400+ IN NY |  |  |  |
| 05 |  |  |  |  |  |  |  |
| 06 |  |  |  | WALLPACK OPTIONS |  |  |  |
| 07 | 1 | MORRI | 71437C | 45W FIXTURE 150W MH REPLACEMENT. | 63.00 | E | 63.00 |
| 08 |  |  |  | OR |  |  |  |
| 09 | 1 | MORRI | 71440B | 120W FIXTURE 400W MH REPLACEMENT. | 158.00 | E | 158.00 |
|  |  |  |  |  |  |  | 407.00 |
|  |  |  |  |  | Shipping |  | 0.00 |

PLEASE NOTE: THIS IS NOT AN OFFER TO CONTRACT, BUT MERELY A QUOTATION OF CURRENT PRICES FOR YOUR CONVENIENCE AND INFORMATION. ORDERS BASED ON THIS QUOTATION ARE SUBJECT TO YOUR ACCEPTANCE OF THE TERMS AND CONDITIONS LOCATED AT SALES.OUR-TERMS.COM, WHICH WE MAY CHANGE FROM TIME TO TIME WITHOUT PRIOR NOTICE. WE MAKE NO REPRESENTATION WITH RESPECT TO COMPLIANCE WITH JOB SPECIFICATIONS.

# MORRISCAT\＃71437C <br> LEDD ］$\mu$ Classic WallPadk 



Se a t ull

阿］PP


å 边 1 b $\} v W d>1 d>$


Òz
／WO̊
$\bar{\sigma}$ ，e a t
Resistant
Directed


あ Polycatleasate

| $3 \text { D UTW }$ | ，QSXW <br> D WWE | 9 ${ }^{\text {R }}$ | $N N X P H \mathbb{R}$ | Q \＆\＃ | \＆50 | ＇L P P ¢ Q J | ／LJ K WV XPHQV 3 D WVPHU Q D VVW |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 \＆ | ： | 120 00］ |  | K | ！ | 9 | ＊DODH |  |  |

PHOTOMETRY


# MORRSCAT\# 71437C <br> LEDD] $\mu$ Classic WallPack 45W, 120-27/N, 5000KBronze 

d ĞĐ Electrical:

Input Volg9t age: 120
Curra@120V
Frequency: $50 / 60 \mathrm{~Hz}$
Poweactor: $\geq$. 9
T H D\% @ 1 20 V

Oper atiemgerature:


Construction:
Hous iAn gu:mi A lulmo y
Powdearated
I $\mathbb{R}$ atinguit \&fbolve t I ocations
 ,QSXWWat t: s:
Lumens:
LenUsV Res iFsitraentResistant

Efficacy mepneswat $t$

C C Ta:0 00 (K\&RRDOh ite)

## \$FFHVVRULHV

Chromacity Measurements:

BUGRat i BA ل $\mathrm{J}:-\mathrm{G}$
CRI!:
R 9 :
(PHUJHQFM\%DFNXS\&\$7\%
/(' \%XWWRQ6WIOH3KRWRFHOO\&\$7
/('6KXWWHU6WIOH3KRWRFHOO\&\$7
/('3HQFLO6WIOH3KRWRFHOO\&\$7
6HPL\&XWRII9LVRU\%URQ]H\&\$7\%
:LUH*XDUG\&\$7\%

## Component

Specifications:
LEDXPLOHGV
104950-60 H
Driontput 9 Volt s:
'ULYHU2XWSXW \$PSVP\$
■KVSurgeotection

Warranty:
Morris Products carfrem dat5eyefrponacha against defects in materials and workm and proper usage).

Dimming:





■ oulvu，©］vi
ò 觙Ã
\＆］V咭v

$\bar{\sigma}$ ，e at
Resistant
Optics



คลٌ
の Ò
の Z／WEÓ
■ W\＆WEIÏ
の ZıWï

| New Cat\＃ | Old <br> Cat\＃ | Watts | Volts | Housing Color | Lumens | HID <br> Equivalent | Input Current Amps＠120V | Dimming | Weight | Order Qty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Large Wall Packs－120－277V |  |  |  |  |  |  |  |  |  |  |
| 71440B | 71440A | 120 | 120－277 | Bronze | 14，475 | 400W | 0.96 | 0－10V | 11 | 1 |
| 71441B | 71441A | 120 | 120－277 | White | 14，475 | 400W | 0.96 | 0－10v | 11 | 1 |
| Large Wall Packs－347－480V |  |  |  |  |  |  |  |  |  |  |
| 71450B |  | 120 | 347－480 | Bronze | 4，997 | 400W | 0.25 | 0－10V | 9 | 1 |
| Accessories |  |  |  |  |  |  |  |  |  |  |
| 71463B | 71442 | Full Cutoff Visor Bronze |  |  |  |  |  |  | 3 | 1 |
| 71443B | 71433 | Full Cutoff Visor White |  |  |  |  |  |  | 3 | 1 |
| 71460B |  | Wire Guard |  |  |  |  |  |  | 3 | 1 |

## PHOTOMETRY


:DW W


:DW W


## :DW W



# LDM Mecium dassic WallPack dZv]o^. UJ \}vê 

Electrical:
I nput Volg99age: 120
Cur r ĐHHFKDUSN
)Uequency: $50 / 60 \mathrm{~Hz}$
Pow®actor: $\geq$. 9
T H D\% @1 20 V

Operatiemgeratar- ${ }^{\circ} \mathrm{F}$

Construction:
Hous i'Lnt © DVAI u mi Anlulmo y Powdearat)L@ldVK

Le nMsa t e BUL\& H DWLF\%RURVLOLFDWH*ODVV/HQV


Product Parameters: ,35DWLQJ3 VXLWDRORHWORFDWLRQV


CCTO O OK \&RPRCh ite)
ListiFh/gls:
Chromacity Measuremespftsirulhv
BeaAmgl+自é
$B \cup G R$ at i $B A$ لو $:-\quad G$
CRI:
R 9 :
\% IXOO\&XWRII9LVRU\%URQ]H

Component
/XPLOHGV

SpelcEDf:icat ions:
)X00\&XWRII9LVRU:KLWH
:LUH*XDUG

1 V 9259
50-60HZ Driver9 Out puo\% Volt(BHUJHQFI\%DFNXSIRU::)L[WXUHV 'ULYHU2XWSXW \$PSVP\$
KVSurgeotection

Dimmirg :

## Warranty:

Morris Products carfrem datbeyefrpo against defects in materials and and proper usage).


M


## HAMLIN MI DDLE SCHOOL BASEBALL TEAM / RESTROOM BUILDING



## OCCUPANCY AND EXIT PLAN

BUILDING CODE SUMMARY


$\perp$ Godios



INTERIOR WALL TYPE

 $\underset{\square}{\text { Won }}$ IW | 7980 |
| :--- |
| $1 W$ | $\begin{array}{r}0 \\ 1 \nabla \\ \hline \mathbf{N}\end{array}$ $\forall I N N$

$S \exists y$
NIT『 の $\sum^{4}$










WEST ELEVATION


$\qquad$


BREEZEWAY 115 - EAST ELEVATION


BREEZEWAY 116 - EAST ELEVATION


BREEZEWAY 115 - WEST ELEVATION


BREEZEWAY 116 - WEST ELEVATION


| JOB NUMBER: | 2111 |
| :--- | :--- |
|  |  | | DRAWN BY: | EJH |
| :--- | :--- |
| CHECKED BY: | KS | SHEET TILE





WALL SECTION

(44.02) WALL SECTION


WALL SECTION

(44.02) WALL SECTION

PRELIMINARY
NOT FOR CONSTRUCTION


Atachment 5. Page 176 of 236


WOMEN'S RESTROOM 108
$\frac{1}{45.01}$

$\square_{5}$
(A) UMPIRE RM 106


A

## MEN'S RESTROOM 109

(A5.01) SCALE: $1 / 4^{4}=1 \cdot-.0$


GENERAL NOTES
a. Don not scale the deawncos.

Ditals.


ACCESSORY SCHEDULE


©



- 2 203s mbroo

Tolut SEAT Covere ospenser ofca
KEYNOTES

$\frac{12}{2}$ rounerstal Peatrion

(4) mopsink

5) wastie and dert

6 WAER HAEAR
7 MECHANCAL oce shown odester
B] Exossid cmu. Panied
8. Expose cmu. Accen Panit (shown harchel



| OB NUMBER: | 2111 |
| :--- | :--- | :--- |


| DRAWN BY: | EHH |
| :--- | :--- |


| CHECKED BY: | Ks |
| :--- | :--- |

SHEET TILE
interor fievations
A5.01

(16.01) CEILING PLAN

DOOR TYPES

(A)

©

(C)

RRAME TYPES


(1) EAVE FRAMING AT HIGH END

(2) EAVE FRAMING AT LOW END

(3) RAKE FRAMING


FRAMING @ TOILET RM
(4) ENTRY, BREEZEWAYS SIM.
(5) TYP. FOOTING DETAIL

(10) @ METAL PANEL 1) © CMUE WAINSCOT SCALE: $3^{\prime \prime}=1 \cdot-0^{\prime \prime}$


12 SCALE: $3^{\prime \prime}=1.1 .0^{\prime \prime}$



## general structural notes




## DRAWING INDEX




SPECIAL INSPECTIONS:






| FOOTING SCHEDULE |  |  |  |
| :---: | :---: | :---: | :---: |
| MARK |  | "т" | вennorcang |
| (A) |  | ${ }^{10} 1$ | (2) 44, cont. втм |
| (B) |  | 10" | (3) 4 4 cont. - 8im |
| (c) | 2.00'x conr | ${ }^{101}$ | (3) 4 c cont. 8tM |


| CMU WALL SCHEDULE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Mata |  | Horz. reme. | vert. .enf. |  |
| (1) | ${ }^{6 \prime}$ |  |  | - |
| (2) | ${ }^{8 \prime}$ |  |  | тr. .enforacm, un..a |
| (3) | ${ }^{8 \prime}$ |  |  | - |
| SCHEDULE NOTES: <br> 1. ALL CMU WALLS TO BE FULLY GROUTED <br> VERTICAL CONTROL JOINTS SHALL BE PLACED IN ALL MASONRY WALLS AT LOCATIONS <br> DETAIL 3/S5.01 FOR TYPICAL CONTROI JOINT CONSTRUCTION <br> 3. WALL CORNERS / INTERSECTIONS SHALL BE CONSTRUCTED PER DETAIL 4/S5.01. 4. REF. GENERAL STRUCTURAL NOTES FOR ADDITIONAL REINFORCING INFORMATION. |  |  |  |  |



FOUNDATION PLAN
SCALE:1/4"=1-0"

| CMU LINTEL SCHEDULE |  |  |  |
| :---: | :---: | :---: | :---: |
| МаАк | sze | Rennoracmg | remaras |
| [1] | ${ }^{6 \times \times 1} \times 14^{4}$ |  |  |
| [ | $8^{8 \times 1} \times 14$ |  |  |
|  |  |  |  |
|  |  |  |  |


| 1. |  | not uss sfructreal orawnos alo |
| :---: | :---: | :---: |
|  |  |  |
|  |  | And |
|  |  |  |
|  |  | Sill |
|  |  |  |
|  |  | wocaris cmu wall. |
| 3. | ( $\frac{x}{\text { (xx) }}$ |  |
|  | $\stackrel{0}{0}$ | INDICATES SPAN DIRECTION OF 5/8" APA SHEATHING (APA INDEX 40/20). ATTACH TO ROOF |





NON-STRUCTURAL CMU WALL @ ROOF JOISTS SCALE: $1^{\prime \prime}=1^{1-0}$


ROOF JOIST @ CMU WALL
(HIGH END, SIM. SLOPE OPP. DIRECTION) (6.01) $\xlongequal{\text { SCALE: } 1^{\prime \prime}=1^{\prime}-0^{\prime \prime}}$


2
EAVE FRAMING @ RAKED CMU WALL
SCALE: $1^{\prime \prime}=1^{\prime}-0^{\prime \prime}$


56.01

ttachment 5 , Page 187 of of 26


(1) DIFFUSER GRILL \& REGISTER CONNECTION
(2) $\frac{\text { ROOF DRYER OUTLET }}{\text { not To scale }}$
(3) WALL MOUNTED FAN COIL


(4) DUCT CONSTRUCTION
(5) ROUND DUCT CONSTRUCTION
(6) HORIZONTAL FAN COIL
(7) SIDEWALL EXHAUST FAN




항


```
藌
Job number: 2111
\begin{tabular}{lll} 
JOB NUMBER: & 2111 \\
\hline DRAWN BY: & JSH \\
\hline
\end{tabular} CHECKED BY: GN
SHEET TITLE
sCheDules


(1.10) FOUNDATION PLUMBING FLOOR PLAN
\(\bigcirc\)


(1) DOWNSPOUT CONNECTION WITH INTEGRAL CLEANOUT

(2) DOMESTIC WATER HEATER - ELECTRIC

(3) DOMESTIC WATER SERVICE ENTRANCE

(4) SEWAGE EJECTOR INSTALLATION

Not to scall

\section*{DOMESTIC WATER DESIGN CRITERIA}


SANITARY WASTE AND VENT DESIGN CRITERIA













D. Provod lablim on deice putes as reuired

E. Convor why Mom dual inviat convicons











The Entri LED luminaire features a classic and stylish design with the added benefits of solid state lighting technology, offering outstanding uniformity and energy savings. Using Cooper Lighting Solutions' proprietary LED LightSquare technology and AccuLED Optics \({ }^{\text {TM }}\) system, the Entri LED luminaire offers designers vast versatility in system design, function and performance. Use Entri LED for wall mount architectural lighting applications and egress lighting requirements. UL/cUL listed for use in wet locations.

\section*{SPECIFICATION FEATURES}

\section*{Construction}

HOUSING: Heavy wall, one-piece, die-cast aluminum construction for precise tolerance control and repeatability in manufacturing. Integral extruded aluminum heat sink provides superior thermal heat transfer in \(+40^{\circ} \mathrm{C}\) ambient environments. FACEPLATE / DOOR: One-piece, die-cast aluminum construction. Captive, side hinged faceplate swings open via release of one flush mount diecast aluminum latch on housing side panel. GASKET: One-piece molded silicone gasket mates perfectly between the door and housing for repeatable seal. LENS: Uplight lens is impact-resistant, 5/32" thick tempered frosted glass sealed to housing with continuous bead silicone gasket. Downlight lens is an LED LightSquare with integral optics sealed for IP66 rating. HARDWARE: Stainless steel mounting screws and latch hardware allow access to electrical components for installation and servicing.

\section*{Optics}

Choice of 9 patented, high efficiency AccuLED Optics \({ }^{\text {TM }}\) distributions. Optics are precisely designed to shape the light output, maximizing efficiency and application spacing. AccuLED Optics technology creates consistent distributions with the
scalability to meet customized application requirements. CRI and CCT offering includes 2200 K , 2700K, 3000K, 3500K, 4000K, 5000 K , and 5700 K with minimum 70 CRI and 2700 K and 3000 K with minimum 80CRI all within 5-step MacAdam ellipse.

\section*{Electrical}

LED drivers mount to die-cast aluminum back housing for optimal heat sinking, operation efficacy, and prolonged life. Standard drivers feature electronic universal voltage (120-277V \(50 / 60 \mathrm{~Hz}), 347 \mathrm{~V} 60 \mathrm{~Hz}\) or 480 V 60 Hz operation. 480 V is compatible for use with 480 V Wye systems only. Greater than 0.9 power factor, less than \(20 \%\) harmonic distortion, and is suitable for operation in \(-40^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\) ambient environments and optional 50 C construction available. All fixtures are shipped standard with \(10 \mathrm{kV} / 10 \mathrm{kA}\) common - and differential - mode surge protection. LightSquare feature an IP66 enclosure rating and maintain greater than \(98 \%\) lumen maintenance at 60,000 hours per IESNA TM-21. Emergency egress options for \(-20^{\circ} \mathrm{C}\) ambient environments, WaveLinx \({ }^{\top \mathrm{M}}\), occupancy sensor, and dimming options available.

\section*{Mounting}

JUNCTION BOX: Standard with
zinc-plated, quick-mount junction box plate that mounts directly to 4" J-Box. LightSquare mounts facing downward. Fixture slides over mounting plate and is secured with two stainless steel fasteners. Mounting plate features a onepiece EPDM gasket on back side of plate to firmly seal fixture to wall surface, forbidding entry of moisture and particulates. Optional mounting arrangements utilize a die-cast mounting adaptor box to allow for LED battery pack, surface conduit and trough branch wiring. The Entri LED luminaire is approved for mounting on combustible surfaces.

\section*{Finish}

Housing is finished in five-stage super TGIC polyester powder coat paint, 2.5 mil nominal thickness for superior protection against fade and wear. LightSquare cover plates are standard white and may be specified to match finish of luminaire housing. Standard colors include black, bronze, grey, white, dark platinum and graphite metallic. RAL and custom color matches available. Consult Outdoor Architectural Colors brochure for a complete selection.

\section*{Warranty}

Five-year warranty.


ENC/ENT/ENV ENTRI LED

LightSquare Solid State LED

\section*{ARCHITECTURAL WALL LUMINAIRE}


CERTIFICATION DATA
DesignLights Consortium \({ }^{\oplus}\) Qualified*
UL/cUL Listed
ISO 9001
IP66 LightSquares
LM79 / LM80 Compliant
ENERGY DATA
Electronic LED Driver
>0.9 Power Factor
<20\% Total Harmonic Distortion
\(120-277 \mathrm{~V} / 50\) \& \(60 \mathrm{~Hz}, 347 \mathrm{~V} / 60 \mathrm{~Hz}, 480 \mathrm{~V} / 60 \mathrm{~Hz}\) \(-30^{\circ} \mathrm{C}\) Minimum Temperature
\(40^{\circ} \mathrm{C}\) Ambient Temperature Rating (Optional)

SHIPPING DATA
Approximate Net Weight:
15.2 lbs. ( 6.9 kgs .) - Without backbox
29.1 lbs. (13.2 kgs.) - With backbox

Sample Number: ENC-SA1C-740-U-T4W-GM-ULG-HA-ZW-SWPD4BK
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Product Family \({ }^{1}\)} & \multicolumn{2}{|c|}{Light Engine} & \multirow{2}{*}{Color Temperature} & \multirow{2}{*}{Voltage} & \multirow{2}{*}{Distribution} & \multirow{2}{*}{Finish} \\
\hline & Configuration & Drive Current & & & & \\
\hline ENC=Entri Round Clean ENT=Entri Triangle Reveals ENV=Entri Round Reveals & SA1=1 Square & \begin{tabular}{l}
\(A=350 \mathrm{~mA}\) \\
\(B=450 \mathrm{~mA}\) \\
C \(=600 \mathrm{~mA}\) \\
\(\mathrm{D}=800 \mathrm{~mA}\) \\
\(\mathrm{E}=1000 \mathrm{~mA}\) \\
\(\mathrm{F}=1200 \mathrm{~mA}\)
\end{tabular} & \[
\begin{aligned}
& \mathbf{7 2 2}=70 \mathrm{CRI}, 2200 \mathrm{~K}^{3} \\
& \mathbf{7 2 7}=70 \mathrm{CRI}, 2700 \mathrm{~K}^{3} \\
& \mathbf{7 3 0}=70 \mathrm{CRI}, 3000 \mathrm{~K}^{3} \\
& \mathbf{7 3 5}=70 \mathrm{CRI}, 3500 \mathrm{~K} \\
& \mathbf{7 4 0}=70 \mathrm{CRI}, 4000 \mathrm{~K} \\
& \mathbf{7 5 0}=70 \mathrm{CRI}, 5000 \mathrm{~K}^{3} \\
& \mathbf{7 6 0}=70 \mathrm{CRI}, 5700 \mathrm{~K}^{3} \\
& \mathbf{8 2 7}=80 \mathrm{CRI}, 2700 \mathrm{~K}^{3} \\
& \mathbf{8 3 0}=80 \mathrm{CRI}, 3000 \mathrm{~K}^{3} \\
& \mathbf{8 3 5}=80 \mathrm{CRI}, 3500 \mathrm{~K}^{3}
\end{aligned}
\] & \[
\begin{aligned}
& \text { U=UNV (120-277) } \\
& 1=120 \\
& 2=208 \\
& 3=240 \\
& 4=277 \\
& 8=480 \\
& 9=347
\end{aligned}
\] & \[
\begin{aligned}
& \text { T2=Type II } \\
& \text { T3=Type III } \\
& \text { T4FT=Type IV Forward Throw } \\
& \text { T4W=Type IV Wide } \\
& \text { SL2=Type II w/Spill Control } \\
& \text { SL3=Type III w/Spill Control } \\
& \text { SL4=Type IV w/Spill Control } \\
& \text { SLL=90 Spill Light Eliminator Left } \\
& \text { SLR }=90^{\circ} \text { Spill Light Eliminator Right }
\end{aligned}
\] & \[
\begin{aligned}
& \text { BZ=Bronze } \\
& \text { AP=Grey } \\
& \text { BK=Black } \\
& \text { DP=Dark Platinum } \\
& \text { GM=Graphite Metallic } \\
& \text { WH=White }
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{Options (Add as Suffix)} & \multicolumn{3}{|l|}{Accessories (Order Separately)} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
F=Singled fused (Must specify voltage, fused on single hot leg of 120, 277, or 347) \\
FF=Doubled fused (Must specify voltage, fused on both hot legs of 208, 240, or 480) \\
X=Driver Surge Protection (6kV) Only \\
20K=Series 20kV UL 1449 Surge Protective Device \\
DIM=0-10V Dimming Driver \({ }^{5,6}\) \\
EBP=Battery Pack with Back Box (Must specify voltage, available in 120 V or 277V) \(2,4,9\) \\
CBP=Battery Pack with Back Box, Cold Weather Rated (Must specify voltage, available in 120V or 277V) \({ }^{2,4,10}\) \\
CBP-CEC=Battery Pack with Back Box, Cold Weather Rated, CEC compliant (Must specify voltage, available in 120 V or 277 V ) \({ }^{2,4,10}\) \\
R90 \(=\) Rotated Right \(90^{\circ}\) \\
L90=Rotated Left \(90^{\circ}\) \\
HSS=Factory Installed House Side Shield \({ }^{16}\) \\
LCF=LightSquareTrim Plate Matches Housing Finish \({ }^{15}\) \\
ULG=Uplight Glow \({ }^{7}\) \\
\(H A=50^{\circ} \mathrm{C}\) High Ambient \({ }^{8}\) \\
WG=Wire Guard \\
TR=Tamper Resistant Hardware \\
BOX=Empty back box (1/2" NPT, each side with plugs installed \\
BPC=Button Type Photocontrol (Must specify voltage, available in 120, 208, 240, 277V, 347, and 480) \\
AHD145=After Hours Dim, 5 Hours, 50\% \({ }^{17}\) \\
AHD245=After Hours Dim, 6 Hours, 50\% \({ }^{17}\) \\
AHD255=After Hours Dim, 7 Hours, 50\% \({ }^{17}\) \\
AHD355=After Hours Dim, 8 Hours, 50\% \({ }^{17}\) \\
SPB1=Dimming Occupancy Sensor with Bluetooth Interface, \(<8^{\prime}\) Mounting \({ }^{13,22}\) \\
SPB2=Dimming Occupancy Sensor with Bluetooth Interface, \(8^{\prime}-20^{\prime}\) Mounting \({ }^{13,22}\) \\
SPB4=Dimming Occupancy Sensor with Bluetooth Interface, 21'-40' Mounting \({ }^{13,22}\) \\
MS-L08=Motion Sensor for ON/OFF Operation, Up to 8' Mounting Height 11, 12, 13 \\
MS-L20=Motion Sensor for ON/OFF Operation, \(9^{\prime}\) - 20' Mounting Height \({ }^{11,12,13}\) \\
MS/DIM-L08=Motion Sensor for Dimming Operation, Up to 8' Mounting Height \({ }^{11,12,13}\) \\
MS/DIM-L20=Motion Sensor for Dimming Operation, 9' - 20' Mounting Height 11, 12, 13 \\
ZW=Wavelinx-enabled 4-PIN Twistlock Receptacle \({ }^{19,20}\) \\
ZW-SWPD4XX=Wavelinx Wireless Sensor, 7' - 15' Mounting Height \({ }^{19,20,21}\) \\
ZW-SWPD5XX=Wavelinx Wireless Sensor, 15' - 40' Mounting Height \({ }^{\text {19, } 20,21}\) \\
CC=Coastal Construction \({ }^{23}\)
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
MA1253=10kV Circuit Module Replacement \\
MA1253-480V=10kV Circuit Module Replacement (480V only) \\
FSIR-100-PK=Wireless Configuration Tool for Occupancy Sensor \({ }^{11}\) \\
VA6172SA=Wireguard Accessory \\
VA6173=Tamper-Resistant Driver Bit \\
VA6174=Vandal Shield Accessory \\
VA2001-XX=Thru-Way Conduit Box \\
SWPD4-XX=Wavelinx Wireless Sensor, 7' - 15' Mounting Height \\
(Available colors: BZ=Bronze; WH=White; BK=Black) \({ }^{19,20,21}\) \\
SWPD5-XX=Wavelinx Wireless Sensor, 15' - 40' Mounting Height \\
(Available colors: BZ=Bronze; WH=White; BK=Black) \({ }^{19,20,21}\) \\
WOLC-7P-10A=WaveLinx Outdoor Control Module (7-pin) \\
LS/HSS=House Side Shield (Works with all distributions listed for Entri)
\end{tabular}} \\
\hline
\end{tabular}

\section*{OTES}
1. DesignLights Consortium Qualified. Refer to www.designlights.org Qualified Products List under Family Models for details. DLC Family Code: MMMSPQ
2. EBP or CBP options limited to \(25^{\circ} \mathrm{C}, 120-277 \mathrm{~V}\) only. Control option limited to BPC=Button Type Photocontrol (must specify voltage).
3. Extended lead times apply. Use dedicated IES files when performing layouts.
4. Not available with HA option.
5. Cannot be used with other control options.
6. Low voltage control lead brought out \(18^{\prime \prime}\) outside fixture
7. ULG only available in 740
. Not available with ULG option
.
.
1. The FSIR-100 configuration tool is required to adjust parameters including high and low modes, sensitivity, time delay, cutoff and more. Consult your lighting representative at Cooper Lighting
2. Replace LXX with the available mounting height options: L08, L20, L40 or L40W are the only choices.
3. Includes integral photosensor
14. Bronze sensor is shipped with Bronze fixtures. White sensor shipped on all other housing color options
15. Not available with HSS option.
16. Only for use with SL2, SL3 and SL4 distributions. The light square trim plate is painted black when the HSS option is selected.
17. Requires the use of BPC photocontrol. See After Hours Dim supplemental guide for additional information.
18. Control option limited to BPC=Button Type Photocontrol (must specify voltage).
19. WAC Gateway required to enable field-configurability: Order WAC-PoE and WPOE-120 ( 10 V to PoE injector) power supply if needed
20. Requires ZW .
21. Replace XX with sensor color (WH, BZ, or BK).
22. Smart device with mobile application required to change system defaults. See controls section for details.
23. Coastal construction finish salt spray tested to over 5,000 -hours per ASTM B117, with a scribe rating of 9 per ASTM D1654.
\begin{tabular}{|l|c|c|c|c|}
\hline Project & & Catalog \# & & \\
\hline Prepared by & Notes & & Type \\
\hline
\end{tabular}


\section*{Interactive Menu}
- Order Information page 2
- Photometric Data page 2
- Product Warranty

\section*{Top Product Features}
- \(2 \mathrm{ft}, 4 \mathrm{ft}\), and 8 ft Sealed and Gasketed Vaportite
- Lumen packages up to 22 K lumens
- High-Performance efficacy up to 150 LPW
- LEDs available in \(3500 \mathrm{~K}, 4000 \mathrm{~K}\) and 5000 K at 80 CRI
- Rated for -40 c to 35 c ambient

\section*{Metalux}

\section*{Vaportite LED}

\section*{4' Industrial LED Lamp}

Vaportite Industrial Refrigerated Case

Typical Applications
Parking Garage \(\cdot\) Cold Storage \(\cdot\) Canopy \(\cdot\) Warehouse \(\cdot\) Food Processing \(\cdot\) Manufacturing \(\cdot\) Complex Environments

\section*{Product Certification}


Product Features

\section*{LINEAR DISCONNECT} Sate and convenient means
disconnecting power


Dimensional and Mounting Details


\section*{Installation Data}


\section*{Order Information}

SAMPLE ORDER NUMBER: 4VT2-LD5-4-DR-UNV-L840-CD1-WL-U
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Series & Lamp Type & LED Lumens Output & Lens & Distribution & Voltage & Remote Emergency Enclosure \\
\hline Series (1). (2) & Lamp Type & LED Lumens Output & Lens & Distribution & Voltage & Remote Emergency Enclosure \\
\hline 4VT2=4' Vaportite & LD5=LED 5.0 & \[
\begin{aligned}
& \text { 4=4000 Lumens } \\
& \mathbf{6 = 6 0 0 0} \text { Lumens } \\
& \mathbf{8 = 8 0 0 0} \text { Lumens } \\
& \text { 11=11000 Lumens }
\end{aligned}
\] & \begin{tabular}{l}
DR=Internal Prismatic Lens/15\% DR High Impact Additive \\
DR100=Internal Prismatic Lens/100\% DR High Impact Additive FR50=Frosted Lens/15\% DR High Impact Additive \({ }^{(3)}\)
\end{tabular} & [Blank]=Medium (Standard) W=Wide Distribution & \begin{tabular}{l}
347V=347 Volt \\
UNV=Universal Voltage 120-277
\end{tabular} & EL10W=10-watt, 120-277V emergency battery pack installed \({ }^{(4)}\) VT-REM-EL=Remote Emergency Installed, 700 lumens \({ }^{(4)}\) \\
\hline \begin{tabular}{l}
Notes \\
(1) To order product that is compliant with the Buy American Act of 1933 (BAA) or Trade Agreements Act (TAA), use the online specification configurator to specify BAA or TAA. Please refer to DOMESTIC PREFERENCES LINK for more information. (2) DesignLights Consortium \({ }^{\circledR}\) Qualified and classified for both DLC Standard and DLC Premium, refer to www.designlights.org for details.
\end{tabular} & & & \begin{tabular}{l}
Notes \\
(3) Not available in wide distribution.
\end{tabular} & & & \begin{tabular}{l}
Notes \\
(4) EL must specify 120 or 277 V only.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Lamps & Driver Type & Label & Options & Packaging & Accessories \\
\hline Lamps & Driver Type & Label & Options & Packaging & Accessories (order separately) \\
\hline L835=3500K, LED L840 \(=4000 \mathrm{~K}\), LED L850 \(=5000 \mathrm{~K}\), LED & CD1=1 Dimming Driver 5LTD1=Fifth Light DALI & WL=Wet Location Label & \begin{tabular}{l}
SSL=Stainless Steel Latches \\
GL=Single Element Fuse \\
TH=(2) Top Watertite Hubs \\
TEH=(2) Top and (2) End Watertite Hubs (all Watertite Hubs have 1/2" Conduit Entry) \\
MS=Damp Listed Motion Sensor \\
MSWL20 =Wet Listed Motion Sensor, max 20ft mounting height \\
HBE11=Wet location PIR Indoor/Outdoor Occupancy Sensor \({ }^{(5)}\)
\end{tabular} & \(\mathbf{U}=\) Unit Pack & \begin{tabular}{l}
VT2-Chain/Set-U=Chain Hanging Set. Includes 6 ft . of chain, 4 large S-Hooks and 4 small S-Hooks Order One (1) Kit for each 2' or 4' Fixture \\
VT2-SS-MBK=Stainless Steel Mounting Bracket
\end{tabular} \\
\hline & & & \begin{tabular}{l}
Notes \\
(5) Available for \(120 \mathrm{~V}, 277 \mathrm{~V}\), and 347 V voltage only.
\end{tabular} & & II \\
\hline
\end{tabular}

\section*{Product Specifications}

Construction
- Rugged and durable construction
- Fiberglass housing is reinforced polyester and selfextinguishing (ASTM-D635-74) plastic
- Full metal fixture liner
- Watertight housing
- \(1 / 2^{\prime \prime}\) conduit entry at each end of housing (standard) for continuous feed
- Polyurethane gasketing provides a continuous seamless seal for the diffuser lens
- Four sturdy cam latches clamp diffuser tightly for a positive seal between housing, gasketing and diffuser
- Surface or chain mounting

Electrical
- Long-Life LED system coupled with electrical driver for optimal performance
- LED's available in \(3500 \mathrm{~K}, 4000 \mathrm{~K}\) and 5000 K with a CRI \(\geq 80\)
- Projected life is 60,000 hours at \(91 \%\) lumen output
- Electronic drivers are available for \(120-277 \mathrm{~V}\) applications
- 0-10V dimming control (standard)
- Operating temperature of \(-40^{\circ} \mathrm{C}\) to \(35^{\circ} \mathrm{C}\); Ideal for cold storage environments

\section*{Lens}
- High-impact diffuser lens
- Internal Prismatic Lens with 15\% DR High Impact Additive (DR) or Internal Prismatic Lens with 100\% DR High Impact Additive (DR100)
- Frosted Lens with 15\% DR High Impact Additive (FR50) option

\section*{Photometric Data}

Finish
- Housing is permanent pearl gray color

Warranty
- Five-year limited warranty

Compliance
- UL/cUL listed for Wet location
- RoHS compliant
- LED modules comply with IESNA LM-79 and LM-80 standards
- NSF listed
- DesignLights Consortium \({ }^{\circledR}\) Qualified and classified for both DLC Standard and DLC Premium (refer to www.designlights.org for details)
- The VT2 Series ratings apply to Horizontal Mounting only


\section*{4VT2-LD5-6-DR-UNV-L840-CD1-WL-U}

Electronic Driver Linear LED 4000K
Spacing criterion: (II) \(1.21 \times\) mounting height,
( \(\perp\) ) \(1.22 \times\) mounting height
Lumens: 6197
Input Watts: 50.6 W
Efficacy: \(122.5 \mathrm{Im} / \mathrm{W}\)
Test Report:
4VT2-LD5-6-DR-UNV-L840-CD1-WL-U.IES


\section*{4VT2-LD5-6-DR-W-UNV-L840-CD1-WL-U}

Electronic Driver Linear LED 4000K
Spacing criterion: (II) \(1.22 \times\) mounting height,
( \(\perp\) ) \(1.6 \times\) mounting height
Lumens: 5931
Input Watts: 50.6 W
Efficacy: 117.2 Im/W
Test Report:
4VT2-LD5-6-DR-W-UNV-L840-CD1-WL-U.IES
\begin{tabular}{|c|c|c|}
\hline Pb & \({ }_{\text {ct }}\) & \% \\
\hline Ft & N® & ® \\
\hline
\end{tabular}


\section*{Interactive Menu}
- Order Information page 2
- Photometric Data page 3
- Control Systems page 4
- VividTune \({ }^{\text {TM }}\) Color Tuning Solutions page 5
- Product Warranty

\section*{Metalux}

\section*{14RLN}

\section*{1' x 4' Recessed LED}

Specification Grade
Rectilinear Shielding
Typical Applications
- Commercial Office Spaces • Schools • Hospitals
- Retail Merchandising Areas

\section*{Product Certification}


Product Features


\section*{Top Product Features}
- Luminous center panel with gently elevated luminous side panels for a visually pleasing appearance
- Efficacy up to \(139 \mathrm{Im} / \mathrm{W}\), uniform illumination for a pleasant ambient environment
- \(3000 \mathrm{~K}, 3500 \mathrm{~K}\), and 4000 K at 80 or 90 CRI
- White tuning solutions available, either 3000K - 5000K or 2700 K - 6500 K
- LED driver access from below the ceiling

\section*{Dimensional and Mounting Details} RECTILINEAR


Ceiling Compatibility


\section*{Order Information}

SAMPLE ORDER NUMBER: 14RLN-LD5-35-UNV-L835-CD1-U
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Rating & Series & Lamp Type & Lumen Output & Shielding & Voltage & Emergency & CCT \\
\hline Rating & Series \({ }^{(1)}\) & Lamp Type & Lumen Output & Shielding & Voltage \({ }^{(3)}\) & Emergency & CCT \\
\hline \[
\begin{aligned}
& \text { [Blank]=Standard } \\
& \text { ATW- } \\
& \text { SW4=Chicago } \\
& \text { Rated }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 14RLN=1x4 RLN } \\
& \text { Series }
\end{aligned}
\] & LD5=LED 5.0 & \[
\begin{aligned}
& \mathbf{2 3}=2300 \text { Lumen }^{(2)} \\
& \text { 26=2600 Lumen } \\
& \text { 31=3100 Lumen } \\
& \text { 35=3500 Lumen } \\
& \mathbf{4 0}=\mathbf{4 0 0 0} \text { Lumen }
\end{aligned}
\] & \begin{tabular}{l}
Blank=Standard Lens \\
RDP=Rectilinear with Round Pattern Insert
\end{tabular} & \[
\begin{aligned}
& 347 \mathrm{~V}=347 \text { Volt }^{(4)} \\
& \text { UNV=Universal Voltage } \\
& 120-277 \\
& \mathbf{4 8 V}=48 \text { Volt Low- } \\
& \text { voltage (Class 2) } \\
& \mathbf{1 2 0 V}=120 \text { Volt }^{(5)} \\
& \mathbf{2 7 7 V}=277 \text { Volt }^{(5)}
\end{aligned}
\] & \begin{tabular}{l}
EL7W=7-watt, 120V-277V emergency battery pack installed \({ }^{(6)}\) \\
EL14W \(=14\)-watt 120 V -277V emergency battery pack installed (6) \\
ELV7W=Low-voltage system, 7-watt emergency battery pack \({ }^{\text {(c) }}\) \\
ELV14W=Low-voltage system, 14-watt emergency battery pack \({ }^{\text {(c) }}\) \\
GTR2=Bodine Generator Transfer Relay \({ }^{\text {(7), (8) }}\) \\
ETRD=Iota Emergency Transfer Relay with dimming control \({ }^{(7)}\)
\end{tabular} & \begin{tabular}{l}
L830=3000K \\
L835=3500K \\
L840 \(=4000 \mathrm{~K}\) \\
L930 \(=3000 \mathrm{~K}\) \\
L935=3500K \\
L940 \(=4000 \mathrm{~K}\) \\
L83050=80CRI \\
3000K-5000K White \\
Tuning \({ }^{(9)}\) \\
L93050=90CRI \\
3000K-5000K White \\
Tuning \({ }^{(9)}\) \\
L82765=80CRI \\
2700K-6500K White \\
Tuning \({ }^{(9)}\) \\
L92765=90CRI \\
2700K-6500K White Tuning \({ }^{(9)}\)
\end{tabular} \\
\hline & \begin{tabular}{l}
Notes \\
(1) DesignLights Consortium \({ }^{\text {® }}\) Qualified and classified for both DLC Standard and DLC Premium, refer to www.designlights. org for details.
\end{tabular} & & \begin{tabular}{l}
Notes \\
(2) Not compatible with WN driver.
\end{tabular} & & \begin{tabular}{l}
Notes \\
(3) Products also available in non-US voltages and frequencies for international markets. \\
(4) 347 V versions are not available with emergency options. (5) Must specify voltage as 120 V or 277 V when ordering GTR2 option. \\
(C) Consult WaveLinx LowVoltage or DLVP system pages for additional details and compatibility.
\end{tabular} & \begin{tabular}{l}
Notes \\
(6) With integral test switch/ indicator/laser test. For approximate delivered lumens multiply the lumens per watt of the desired fixture by the wattage of the emergency battery pack ( \(100 \mathrm{Im} / \mathrm{W} \times 7=700\) lumens). IES-format photometry for luminaire under emergency operation available. (7) Used to bypass local control during outage. Must be used in conjunction with UL 1008 device (provided by others). GTR2 option includes 2 relays on fixtures with dimming drivers. ETRD option only requires one relay when used on a dimming fixture. (8) Must specify voltage as 120 V or 277 V when ordering GTR2 option. \\
(C) Consult WaveLinx Low-Voltage or DLVP system pages for additional details and compatibility.
\end{tabular} & \begin{tabular}{l}
Notes \\
(9) White tuning provides correlated color temperatures (CCT) between 3000 K (warm) to 5000 K (cool) or 2700 K (warm) to 6500 K (cool). Must be used in conjunction with W2A driver only. Must be used with two (2) 10V dimming control channels, 1 color, 1 intensity.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Factory Wiring & Driver Type & Number of Drivers & Integrated Sensing Systems & Packaging & Accessories \\
\hline Factory Wiring & Driver Type & Number of Drivers & Integrated Sensing Systems & Packaging & Accessories \\
\hline \begin{tabular}{l}
A3/8-4/18GDIM=3/8" Flex with 0-10V Dimming Leads. Multiple other configurations available. See below for details. \\
A3/8-5/18GDIM=Flex with 0-10V Dimming leads and Blue for alternate wiring. See below for details.
\end{tabular} & \begin{tabular}{l}
\(C D=0-10 \mathrm{~V}\) Dimming Driver ( \(1 \%-100 \%\) Dimming) \\
WN=WaveLinx Wireless Fixture, No Sensor. (A), (G), (H) \\
5LTD=Fifth Light DALI Driver ( \(10 \%-100 \%\) Dimming) \({ }^{(10),(\text { E })}\) \\
5LTHD=Fifth Light Dimming Driver (1\%\(100 \%\) Dimming) \({ }^{(\mathrm{E})}\) \\
LV=Low-voltage System Dimming Driver (0\%-100\% Dimming \({ }^{\text {(c) }}\) \\
SD=Step Dimming Driver ( \(50 \%\) or \(100 \%\) Dimming) \({ }^{(10)}\) \\
LH=Lutron HiLume (LDE1 series) 1\%100\% EcoSystem Driver with Soft-on Fade to Black dimming \({ }^{(f)}\) \\
L5=Lutron 5 Series (LDE5-Series) 5\%\(100 \%\) EcoSystem Driver \({ }^{(f)}\) \\
W2A=White Tuning, 2 ch , Intensity and CCT Control (11) \\
SR=Sensor-ready Dimming Driver (1\%100\% Dimming)
\end{tabular} & 1=1 Driver & \begin{tabular}{l}
[Blank]=No Sensor \\
WAA=WaveLinx Wireless Integrated Sensor \({ }^{(12),(4)}\) \\
WAB=WaveLinx Lite Wireless Integrated Sensor \({ }^{(13),(B)}\) \\
WLA=Low-voltage Integrated Sensor \({ }^{(14), ~(C)}\) \\
SVPD1 \(=0-10 \mathrm{~V}\) Stand-alone Integrated Sensor \({ }^{(13),(0)}\)
\end{tabular} & U=Unit Pack PALC=Job Pack, in carton & \begin{tabular}{l}
EQ-CLIP-U=T-BAR Safety Earthquake Clips \({ }^{(15)}\) F2M-14S-W-U=Field Installed Flange Kit DF-14W-U=1' x 4' Drywall Frame Kit SK-14-WT=Field Install Surface Mount Kit, Tall \\
ISHH-01=Programming Remote for Integrated Sensor \({ }^{(0)}\) \\
ISHH-02=Personal Control Remote for Integrated Sensor \({ }^{(0)}\)
\end{tabular} \\
\hline \begin{tabular}{l}
Flexible Metal Conduit Options \\
Flex options available for \(0-10 \mathrm{~V}\) dimming control, DALI dimming control, emergency and night light functions. 72-inch factory-installed and pre-wired to driver, fitted to luminaire housing access plate with \(90^{\circ}\) enclosed FMC connector. Not all options may be combined and installation ratings vary by type. \\
A3/8-4/18GDIM series notes: Factory installed dimming option \(3 / 8^{\prime \prime}\) flexible metal conduit with 2-\#18 power and ground wires and 2-\#18 UL-listed jacketed \(0-10 \mathrm{~V}+/\) control wires. Meets UL 66, 83, 1479, 1569, 1581, 2556. NEC® \(250.118,300.22\) (C), 392, 396, 330, 501, 502, 503 , 530, 504, 505, 518, 520, 530, 645, 72; Federal Specification A-A-59544 (formerly J-C-30B); all applicable OSHA and HUD Requirements. UL Classified \(1-2\), and 3 -hour through penetration with applicable fire stop product (not included). May be surface mounted, fished and/or embedded in plaster. Cable tray and approved raceway rated, install per NEC®; Environmental Air-Handling Space Installation per NEC® 300.22(C ).
\end{tabular} & \begin{tabular}{l}
Notes \\
(10) 2300,2600 and 3100 Lumen packages not available with Step- \(\operatorname{Dim}(S D)\) and Fifth Light (5LTD) driver option. (11) White tuning provides correlated color temperatures (CCT) between 3000 K (warm) to 5000 K (cool) or 2700 K (warm) to 6500 K (cool). Must be used in conjunction with W2A driver only. Must be used with two (2) 10V dimming control channels, 1 color, 1 intensity. \\
Integrated options must be used in conjunction with the associated system and may not be compatible with other options or accessories. Please refer to the following: (A) Consult WaveLinx system pages for additional details and compatibility. (C) Consult WaveLinx Low-Voltage or DLVP system pages for additional details and compatibility. (E) Consult Fifth Light system pages for additional details and compatibility. \\
(F) Consult Marketplace Options - Lutron system pages for additional details and compatibility. Compatible only with driver series shown, and may require two or more drivers. Requires field commissioning to operate or dim. Contact Lutron at www.lutron.com. (G) Not compatible with GTR, ETRD, or integrated sensor options. (H) Available with UNV voltage only.
\end{tabular} & & \begin{tabular}{l}
Notes \\
(12) WAA sensor to be used with CD or W2A driver. (13) WAB and SVPD1 sensor to be used with CD driver. (14) WLA sensor to be used with LV driver. \\
Integrated options must be used in conjunction with the associated system and may not be compatible with other options or accessories. Please refer to the following: (A) Consult WaveLinx system pages for additional details and compatibility. (B) WaveLinx Lite devices are not currently compatible with the WaveLinx Wireless Area Controller. Consult WaveLinx Lite system pages for additional details and compatibility. (C) Consult WaveLinx Low-Voltage or DLVP system pages for additional details and compatibility. (D) Consult SVPD series system pages for additional details and compatibility.
\end{tabular} & & \begin{tabular}{l}
Notes \\
(15) An EQ Grid Clip is recommended for all \(9 / 16^{\prime \prime}\) ceiling systems. Four required per fixture. \\
Integrated options must be used in conjunction with the associated system and may not be compatible with other options or accessories. Please refer to the following: (D) For use with SVPD sensor only. Consult SVPD series system pages for additional details and compatibility.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Pb & Ct & ¢ \\
\hline P) & N® & \({ }^{\text {® }}\) \\
\hline
\end{tabular}


\section*{Interactive Menu}
- Order Information page 2
- Photometric Data page 4
- Control Systems page 5
- VividTune \({ }^{\text {TM }}\) Color Tuning Solutions page 6
- Product Warranty

\section*{Top Product Features}
- Luminous center panel with gently elevated luminous side panels for a visually pleasing appearance
- Efficacy up to \(139 \mathrm{Im} / \mathrm{W}\), uniform illumination for a pleasant ambient environment
- \(3000 \mathrm{~K}, 3500 \mathrm{~K}\), and 4000 K at 80 or 90 CRI
- White tuning solutions available, either 3000K - 5000K or 2700 K - 6500 K
- LED driver access from below the ceiling

\section*{Dimensional and Mounting Details}

\section*{RECTILINEAR}


\section*{Ceiling Compatibility}


\section*{Order Information}

SAMPLE ORDER NUMBER: 24RLN-LD5-45-UNV-L835-CD1-U
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Rating & Series & Door Frame & Lamp Type & Lumen Output & Shielding & Voltage & Emergency & CCT \\
\hline Rating & Series \({ }^{(1)}\) & Door Frame & Lamp Type & Lumen Output & Shielding & Voltage \({ }^{(3)}\) & Emergency & CCT \\
\hline \begin{tabular}{l}
[Blank]=Standard ATW- \\
SW4=Chicago Rated
\end{tabular} & \[
\begin{aligned}
& \text { 24RLN=2x4 RLN } \\
& \text { Series }
\end{aligned}
\] & Standard=Flat White Steel Door (Leave Blank) & LD5=LED 5.0 & \begin{tabular}{l}
Stock \\
45=4500 Lumen 55=5500 Lumen \\
MTO \\
31=3100 Lumen \\
36=3600 Lumen \\
42=4200 Lumen \\
50=5000 Lumen \\
60 \(=6000\) Lumen \\
67=6700 Lumen \\
74=7400 Lumen \({ }^{(2)}\) \\
80=8000 Lumen \({ }^{(2)}\)
\end{tabular} & \begin{tabular}{l}
[Blank]=Standard Lens \\
RDP \(=\) Rectilinear with Round Pattern Insert
\end{tabular} & \[
\begin{aligned}
& \mathbf{3 4 7 V}=347 \text { Volt }{ }^{(4)} \\
& \text { UNV=Universal } \\
& \text { Voltage } 120-277 \\
& \text { 48V=48 Volt } \\
& \text { Low-voltage (Class } \\
& \text { 2) } \\
& \text { 120V }=120 \text { Volt }^{(5)} \\
& \text { 277V=277 }{ }^{(5) 1 t}{ }^{(5)}
\end{aligned}
\] & \begin{tabular}{l}
EL7W=7-watt, 120V-277V emergency battery pack installed \({ }^{\text {(6) }}\) \\
EL14W=14-watt 120 V -277V emergency battery pack installed \({ }^{(6)}\) \\
ELV7W=Low-voltage system, 7-watt emergency battery pack \({ }^{\text {(c) }}\) \\
ELV14W=Low-voltage system, 14-watt emergency battery pack \({ }^{\text {(c) }}\) \\
GTR2=Bodine Generator Transfer Relay \({ }^{(7),(8)}\) ETRD=Iota Emergency Transfer Relay with dimming control \({ }^{(7)}\)
\end{tabular} & \[
\begin{aligned}
& \text { L830 }=3000 \mathrm{~K} \\
& \text { L835 }=3500 \mathrm{~K} \\
& \text { L840 }=4000 \mathrm{~K} \\
& \text { L930 }=3000 \mathrm{~K} \\
& \text { L935 }=3500 \mathrm{~K} \\
& \text { L940 }=4000 \mathrm{~K} \\
& \text { L83050 }=80 \mathrm{CRI} \text { 3000K-5000K } \\
& \text { White Tuning } \\
& \text { L93050 }=90 \text { CRI } 3000 \mathrm{~K}-5000 \mathrm{~K} \\
& \text { White Tuning } \\
& \text { L82 } \\
& \text { White Tuning } \\
& \text { L92) } \\
& \text { L92765=90CRI } \\
& \text { White Tuning } \\
& \left({ }^{(9)}\right.
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
Notes \\
(1) DesignLights Consortium \({ }^{\text {® }}\) Qualified and classified for both DLC Standard and DLC Premium, refer to www. designlights.org for details.
\end{tabular} & & & \begin{tabular}{l}
Notes \\
(2) Not compatible with WN driver.
\end{tabular} & & \begin{tabular}{l}
Notes \\
(3) Products also available in non-US voltages and frequencies for international markets. (4) 347 V versions are not available with emergency options. (5) Must specify voltage as 120 V or 277V when ordering GTR2 option. \\
(C) Consult WaveLinx Low-Voltage or DLVP system pages for additional details and compatibility.
\end{tabular} & \begin{tabular}{l}
Notes \\
(6) With integral test switch/ indicator/laser test. For approximate delivered lumens multiply the lumens per watt of the desired fixture by the wattage of the emergency battery pack ( \(100 \mathrm{Im} / \mathrm{W} \times 7=700\) lumens). IES-format photometry for luminaire under emergency operation available. (7) Used to bypass local control during outage. Must be used in conjunction with UL 1008 device (provided by others). GTR2 option includes 2 relays on fixtures with dimming drivers. ETRD option only requires one relay when used on a dimming fixture. (8) Must specify voltage as 120 V or 277 V when ordering GTR2 option. \\
(C) Consult DLVP system pages for additional details and compatibility.
\end{tabular} & \begin{tabular}{l}
Notes \\
(9) White tuning provides correlated color temperatures (CCT) between 3000 K (warm) to 5000 K (cool) or 2700 K (warm) to 6500 K (cool). Must be used in conjunction with W2A driver only. Must be used with two (2) 10 V dimming control channels, 1 color, 1 intensity.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Factory Wiring & Driver Type & Number of Drivers & Integrated Sensing Systems & Packaging \\
\hline Factory Wiring & Driver Type & Number of Drivers & Integrated Sensing Systems & Packaging \\
\hline \begin{tabular}{l}
A3/8-4/18GDIM=3/8" Flex with 0-10V Dimming Leads. Multiple other configurations available. See below for details. \\
A3/8-5/18GDIM=Flex with 0-10V Dimming leads and Blue for alternate wiring. See below for details.
\end{tabular} & \begin{tabular}{l}
CD=0-10V Dimming Driver (1\%-100\% \\
Dimming) \\
WN=WaveLinx Wireless Fixture, No Sensor. \({ }^{(A),(G), ~(H)}\) \\
5LTD=Fifth Light DALI Driver (10\%-100\% Dimming) \({ }^{(10),(E)}\) \\
5LTHD=Fifth Light Dimming Driver (1\%100\% Dimming) \({ }^{(E)}\) \\
LV=Low-voltage System Dimming Driver (0\%-100\% Dimming \({ }^{\text {(c) }}\) \\
SD=Step Dimming Driver (50\% or 100\% Dimming) \({ }^{(10)}\) \\
LH=Lutron HiLume (LDE1 series) 1\%\(100 \%\) EcoSystem Driver with Soft-on Fade to Black dimming \({ }^{(F)}\) \\
L5=Lutron 5 Series (LDE5-Series) 5\%100\% EcoSystem Driver \({ }^{(f)}\) \\
W2A =White Tuning, 2 ch , Intensity and CCT Control (11) \\
SR=Sensor-ready Dimming Driver ( \(1 \%\) 100\% Dimming)
\end{tabular} & 1=1 Driver 2=2 Drivers & \begin{tabular}{l}
[Blank]=No Sensor \\
WAA=WaveLinx Wireless Integrated Sensor \({ }^{(12), ~(A) ~}\) \\
WAB=WaveLinx Lite Wireless Integrated Sensor \({ }^{(13),(8)}\) \\
WLA=Low-voltage Integrated Sensor \({ }^{(14), ~(C)}\) \\
SVPD1 \(=0-10 \mathrm{~V}\) Stand-alone Integrated Sensor \({ }^{(13),(0)}\)
\end{tabular} & U=Unit Pack PALC=Job Pack, in carton \\
\hline \begin{tabular}{l}
Flexible Metal Conduit Options \\
Flex options available for 0-10V dimming control, DALI dimming control, emergency and night light functions. 72 -inch factory-installed and pre-wired to driver, fitted to luminaire housing access plate with \(90^{\circ}\) enclosed FMC connector. Not all options may be combined and installation ratings vary by type. \\
A3/8-4/18GDIM series notes: Factory installed dimming option \(3 / 8^{\prime \prime}\) flexible metal conduit with 2-\#18 power and ground wires and 2-\#18 UL-listed jacketed \(0-10 \mathrm{~V}+/-\) control wires. Meets UL 66, 83, 1479, 1569, 1581, 2556. NEC® \(250.118,300.22\) (C), \(392,396,330,501,502,503\), \(530,504,505,518,520,530,645,72\); Federal Specification A-A-59544 (formerly J-C-30B); all applicable OSHA and HUD Requirements. UL Classified 1-, 2-, and 3 -hour through penetration with applicable fire stop product (not included). May be surface mounted, fished and/or embedded in plaster. Cable tray and approved raceway rated, install per NEC®; Environmental Air-Handling Space Installation per NEC® 300.22(C).
\end{tabular} & \begin{tabular}{l}
Notes \\
(10) 3100 and 3600 Lumen packages not available with Step- Dim (SD) and Fifth Light (5LTD) driver option. (11) White tuning provides correlated color temperatures (CCT) between 3000 K (warm) to 5000 K (cool) or 2700 K (warm) to 6500 K (cool). Must be used in conjunction with W2A driver only. Must be used with two (2) 10V dimming control channels, 1 color, 1 intensity. \\
Integrated options must be used in conjunction with the associated system and may not be compatible with other options or accessories. Please refer to the following: (A) Consult WaveLinx system pages for additional details and compatibility. (C) Consult WaveLinx Low-Voltage or DLVP system pages for additional details and compatibility. (E) Consult Fifth Light system pages for additional details and compatibility. (F) Consult Marketplace Options - Lutron system pages for additional details and compatibility. Compatible only with driver series shown, and may require two or more drivers. Requires field commissioning to operate or dim. Contact Lutron at www.lutron.com. (G) Not compatible with GTR, ETRD, or integrated sensor options. (H) Available with UNV voltage only.
\end{tabular} & & \begin{tabular}{l}
Notes \\
(12) WAA sensor to be used with CD or W2A driver. (13) WAB and SVPD1 sensor to be used with CD driver. (14) WLA sensor to be used with LV driver. \\
Integrated options must be used in conjunction with the associated system and may not be compatible with other options or accessories. Please refer to the following: (A) Consult WaveLinx system pages for additional details and compatibility. (B) WaveLinx Lite devices are not currently compatible with the WaveLinx Wireless Area Controller. Consult WaveLinx Lite system pages for additional details and compatibility. (C) Consult WaveLinx Low-Voltage or DLVP system pages for additional details and compatibility. (D) Consult SVPD series system pages for additional details and compatibility.
\end{tabular} & \\
\hline
\end{tabular}

\section*{Notes}
(13) An EQ Grid Clip is recommended for all \(9 / 16^{"}\) ceiling systems. Four required per fixture.

Integrated options must be used in conjunction with the associated system and may not be compatible with other options or accessories. Please refer to the
following: (D) For use with SVPD sensor only. Consult SVPD series system pages for additional details and compatibility.
\begin{tabular}{|l|c|c|c|c|}
\hline Project & & Catalog \# & & \\
\hline Type & \\
\hline Prepared by & Notes & & & \\
\hline
\end{tabular}


\section*{Interactive Menu}
- Order Information page 2
- Photometric Data page 3
- Product Warranty

\section*{Top Product Features}
- Standard (SL) and High lumen/High Efficacy (HL) packages
- High efficiencies - up to 153 LPW
- Three different lens types for optical control
- Two different reflectors for precise distribution control
- Available CCT: 3000K, 3500K, 4000K and 5000K
- Minimum CRI of 80; 90 CRI available

\section*{Metalux}

\section*{SNLED Lensed}

Lensed LED Strip Round and Square Lens

Typical Applications
Storage / Utility • Coves • Display Cases • Task and General Area

\section*{Product Certification}


\section*{Product Features}
\begin{tabular}{|c|c|c|c|}
\hline & & MWYS & Rapid Response \\
\hline mp locatio & fifthlight & Moulick wis sisit & CLICK HERE \\
\hline
\end{tabular}

\section*{LINEAR DISCONNECT}

Safe and convenient means
disconnecting power

\section*{Dimensional Details}

\section*{Round Lens}


Square Lens


ZW-SWPD3 Sidecar


\section*{Order Information}

\section*{SAMPLE ORDER NUMBER: 4SNLED-LD5-46SL-LN-UNV-L835-CD1-U \\ 8TSNLED-LD5-200HL-SLN-UNV-EL7W-L840-CD2-U}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Lens} & Voltage & \multicolumn{6}{|c|}{Options} & Color Temp / CCT \\
\hline \begin{tabular}{l}
Round \\
LC=Clear Lens \\
LN=Semi-Frost Lens \\
LW=Full Frost Lens - W \\
Square \\
SLC=Square / Flat Cle SLN=Square / Flat Sem Narrow \\
SLW=Square / Flat Full
\end{tabular} & \begin{tabular}{l}
rrow \\
e \\
Lens \\
Frost Lens - \\
rost Lens - Wide
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
UNV=Universal Voltage 120-277 \\
\(347=347 V^{(5),(6),(7)}\) \\
\(480=480 \mathrm{~V}^{(4)}\)
\end{tabular}} & \begin{tabular}{l}
Emergency \\
EL7W=7-watt, 120 V -277V emergency battery pack installed \({ }^{(8),(10)}\) EL14W=14-watt 120V-277V emergency battery pack installed \({ }^{(8),(10)}\) GTR2=Bodine Generator Transfer Relay \({ }^{(11)}\) \\
ETRD=Iota Emergency Transfer Relay with dimming control \({ }^{(11)}\)
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Wiring \\
PI/CPI=Plug in and cross over plug in options \({ }^{(13)}\) \\
PC6/515P=(NEMA 5-15P) 6 ft . Cord with NEMA Straight Plug \({ }^{(12),(13)}\) \\
PC6/L715=(NEMA L7-15P) 6 ft . Cord with NEMA Twist Plug \({ }^{(12), ~(13)}\) \\
ZW-SWPD3=WaveLinx Wireless Sensor, Sidecar mount, with 1200 sq ft. coverage
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Motion Sensors \({ }^{(14)}\) \\
LB-ERMS360=360 \({ }^{\circ}\) Low Bay Motion Sensor - End of Row LB-MRMS360=360 Low Bay Motion Sensor - Middle of Row HB-ERMS360 \(=360^{\circ}\) High Bay Motion Sensor - End of Row HB-MRMS360 \(=360^{\circ}\) High Bay Motion Sensor - Middle of Row
\end{tabular}} & \begin{tabular}{l}
CCT/CRI \\
L830=3000K, 80 CR L835=3500K, 80 CR L840=4000K, 80 CR L850=5000K, 80 CR L930=3000K, 90 CR L935=3500K, 90 CR L940=4000K, 90 CR L950=5000K, 90 CR
\end{tabular} \\
\hline Drive Type & No.of Drivers & Paint Finish & Packaging & \multicolumn{6}{|c|}{Accessories (Order Separately)} \\
\hline \(C D=0-10 \mathrm{~V}\) Dimming Driver (10\%-100\% Dimming) HCD \(=0-10 \mathrm{~V}\) Dimming Driver (1\%-100\% Dimming) SD=Step-dim (Bi Level) \({ }^{(15)}\) 5LTD=Fifth Light (DALI) Driver \({ }^{(15), ~(16)}\) & \[
\begin{aligned}
& \text { 1=1 Driver } \\
& \text { 2=2 Drivers }
\end{aligned}
\] & \begin{tabular}{l}
[blank]=Standard White \\
BLK=PAF Black
\end{tabular} & U=Unit Pack & \multicolumn{2}{|l|}{\begin{tabular}{l}
AYC-Chain/Set=36" Chain Hanger (Use 1 set per fixture) \\
SCF=Fixed Stem Set (Specify Length) \\
SCS=Swivel Stem Set (Specify Length) \\
SCA=Adjustable 48" Stem Set \\
EYE-CHAIN/SET-B=Eye Bolt Chain (Use 1 set per fixture) \\
WG/SNF-2FT=2 ft Wire Guard \\
WG/SNF-4FT=4 ft Wire Guard \\
A1B/Spacer-U=Spacer 1-1/2" to 2-1/2" from ceiling (Use 2 per fixture) \\
TOGGLE=Single Toggle No. 2 (Specify Length) \\
BKYT18-063-_K=Y-Toggle, No. 2 (Specify length in inches), Use 2 per fixture \\
GRP-SNF-U=Gripper Hanger \\
550702P PK=SNLED Long Row Aligner Extension
\end{tabular}} & \multicolumn{2}{|l|}{Round Replacement Lenses SNLED-LENS-LW-2FT-U= Replacement Lens 2 ft , Full Frost SNLED-LENS-LN-2FT-U= Replacement Lens 2 ft , Semi Frost SNLED-LENS-LC-2FT-U= Replacement Lens 2 ft , Clear SNLED-LENS-LW-4FT-U= Replacement Lens 4 ft , Full Frost SNLED-LENS-LN-4FT-U= Replacement Lens 4 ft , Semi Frost SNLED-LENS-LC-4FT-U= Replacement Lens 4 ft , Clear} & \multicolumn{2}{|l|}{Square Replacement Lenses SNLED-SQLENS-SLW-2FT-U= Replacement Lens 2 ft , Full Frost SNLED-SQLENS-SLN-2FT-U= Replacement Lens 2 ft , Semi Frost SNLED-SQLENS-SLC-2FT-U= Replacement Lens 2 ft , Clear SNLED-SQLENS-SLW-4FT-U= Replacement Lens 4 ft , Full Frost SNLED-SQLENS-SLN-4FT-U= Replacement Lens 4 ft , Semi Frost SNLED-SQLENS-SLC-4FT-U= Replacement Lens 4 ft , Clear} \\
\hline
\end{tabular}

Notes: (1) DesignLights Consortium @ Qualified and classified for both DLC Standard and DLC Premium, refer to www.designlights.org for details. (2) Nominal lumen values. See table for value and fxxtur length. (3) DALI and Step-dim versions reauire two drivers. (4) 4 ft . and 8 ft . only. (5) 347 V CD driver is imited to 50 W max output before requiring 2 drivers (no 85 W 347 V solution). (6) 347 SD Driver require aty 2 transformers for Dual switch legs can not offer with EBP due to space requirements for 3 ed transformer for EBP charge circuit. (7) All other drivers at 347 V requires single transformer for Driver. If \(E B P\) is included, would require second transformer \(T H D\) an \(P F\) affected by transformer (no DLL ). ( 8 ) 4 ft . and 8 ft . only. (9) Motion Sensor offers dimmability. (10) With integral test switch/ indicator/laser test. For approximate delivered lumens multiply the lumens per watt of the desired fixture by the wattage of the emergency battery pack ( \(100 \mathrm{Im} / \mathrm{W} \times 7=700\) lumens). IES-format photometry for luminaire under emergency operation available. (11) Used
to byyass local control during outage. Must be used in coniunction with UL 1008 device (provided by others). \(G\) TR2 and \(\mathrm{ETR2}\) options include 2 relays on fixtures with dimming drivers. FTRD option only requires one relay when used on a dimming fixture. Must specify voltage as \(120 V\) or \(277 V\) when ordering these devices. (12) Most common C\&P shown. Must specify location for cord. All "end " locations will be on the end with sensor installed. (13) Consult tech support on numerous options for this feature. (14) Sensors provided in separate externally mounted enclosure. See SRL spec sheet for fully integrated/connected sensors. (15) 4 ft . and 8 ft . only. (16) For a complete listing of Fifth Light products, visit www.cooperlighting.com (17) Black fixture and lens ends. Refer to Finish multiplier table for performance (page 3).

4 inch LED recessed narrow, medium, or wide beam downlight designed for glare free even illumination. Featuring a two-stage diffused reflector system producing smooth distribution with excellent light control and low aperture brightness. Lumen packages range from 500 to 6000 with color temperatures of \(2400 \mathrm{~K}, 2700 \mathrm{~K}, 3000 \mathrm{~K}, 3500 \mathrm{~K}, 4000 \mathrm{~K}\), and 5000 K . VividTune: Dim-to-warm technology - similar to halogen at full power, the 3000K LED warms smoothly as dimmed to 1850 K creating a rich warm glow within the space. Tunable white technology - adjust the color temperature from warm white to cool white while independently controlling intensity.
\begin{tabular}{|l|l|c|}
\hline Catalog \# & & Type \\
\hline Project & & \\
\hline Comments & & Date \\
\hline Prepared by & & \\
\hline
\end{tabular}

\section*{SPECIFICATION FEATURES}

Lower Shielding Reflector Painted die cast aluminum or spun aluminum lower reflector with a lensed upper optical chamber providing superior lumen output with minimal source brightness. Spun reflectors are offered in all Portfolio Alzak \(®\) finishes. Available with non-conductive polymer trim. Reflector is retained with two torsion springs holding the flange tight to the finished ceiling surface. Plaster lathing ring accessory offered for flush reflector transition.

\section*{Plaster Frame / Collar}

Die cast aluminum 1-1/2" deep collar accommodates ceiling materials up to \(2^{\prime \prime}\). Universal mounting bracket accepts \(1 / 2^{\prime \prime}\) EMT, C channel and bar hangers and adjusts 5 " vertically from above and below the ceiling.

\section*{Junction Box}

Listed for (8) \#12 AWG (four in, four out) \(90^{\circ} \mathrm{C}\) conductors and feed thru branch wiring. (4) \(1 / 2^{\prime \prime}\) and (2) \(3 / 4^{\prime \prime}\) trade size pry outs positioned to allow straight conduit runs. Lever connectors for simple push in wiring.

\section*{Thermal}

Aluminum heat sink conducts heat away from the LED module for optimal performance and long life.

\section*{LED}

Chip on board with a multitude of highly efficient white LED's, combined with a high reflectance upper reflector and convex transitional lens produce even distribution with no pixilation. Lumen output shall not decrease by more than \(10 \%\) over the minimum life of 55,000 hours ( \(\mathrm{L} 90>55,000\) hours).

Auto resetting, thermally protected, LED's are turned off when safe operating temperatures are exceeded. Color variation within 2-step
MacAdam ellipses. Quick disconnect allows for tool-less replacement of LED engine from below ceiling. Available in 80, 90 or 97 CRI.
D2W \({ }^{\text {TM }}\) - dim-to-warm shifts CCT from 3000 K to 1850 K as fixture dims mimicking halogen sources. W2N - Tunable white CCT range 2700 K to 6500 K or 2000 K to 5000 K , 90 CRI.

\section*{Driver}

Standard 120-277V 0-10V dimming driver provides flicker free dimming from \(100 \%\) to \(1 \%\). Optional 120 V leading edge, <1\% 0-10V, Fifth Light, DMX or Lutron \({ }^{\circledR}\) Ecosystem. Driver can be serviced from above or through the aperture. Distributed low voltage power system combines power, lighting, and controls with ease of installation.

\section*{Connected Lighting System} Options
Two WaveLinx connected systems to choose from. Refer to WaveLinx system specifications and application guides for details.
WaveLinx Wireless System Tilemount Sensor Kit
- WaveLinx Wireless WTA tile mount sensor kit offers daylight dimming, PIR motion sensing, scene and zone configuration, automatic commissioning; and optional RLTS - Real Time Location Services available.

WaveLinx Lite System Tilemount Sensor Kit
- WaveLinx Lite WTK tile mount sensor kit offers daylight dimming and PIR motion sensing, scene and grouping configuration.

WaveLinxTilemount Kits Application
- The WTA and WTK tilemount kits include a control module mounted on the luminaire junction box via 1/2" knock-out, and a tilemount sensor on 54 -inch whip; for ceiling installation by direct-mount spring clips or via mounting bracket in octagon ceiling boxes.
- The WTA and WTK tilemount kits may be ordered as factory installed on the luminaire, or ordered separately as a field installed accessory kit.

\section*{Code Compliance}

Thermally protected and cULus listed for wet locations with covered ceiling IP66 rated when used with IP66 gasket kit accessory. Optional City of Chicago environmental air (CCEA) marking for plenum applications. EMI/RFI emissions per FCC 47CFR Part 18 Class B consumer limits. 2000 lumen and abover are Non-IC rated - Insulation must be kept \(3^{\prime \prime}\) from top and sides of housing. IC rated up to 1500 lumens. 5000 lumen and above are marked spacing and must follow spacing requirements. RoHS Compliant. Photometric testing completed in accordance with IES LM 79. Lumen maintenance projections in accordance with IES LM-80-08 and TM-21-11.

\section*{Warranty}

5-year warranty




Narrow, Medium, or Wide Beam
New Construction
\begin{tabular}{|c|c|c|c|c|}
\hline Housing & Lumens \({ }^{1}\) & Voltage & Driver & Options \({ }^{3}\) \\
\hline \begin{tabular}{l}
LD4B=LED Downlight 4" Nominal Aperture \\
LD4BCP=LED Downlight 4" Nominal Aperture, Chicago Plenum
\end{tabular} & \begin{tabular}{l}
05=500 lumens \({ }^{19}\) \\
10=1000 lumens \\
15=1500 lumens \\
20=2000 lumens \\
30 \(=3000\) lumens \\
\(40=4000\) lumens \\
50=5000 lumens \({ }^{15}\) \\
\(60=6000\) lumens \({ }^{15}\)
\end{tabular} & \begin{tabular}{l}
Blank \(=120-277 \mathrm{~V}\) \\
3=347V (step down transformer)
\end{tabular} & \begin{tabular}{l}
500-4000 \\
D010 \(=0-10 \mathrm{~V}\) Dimming, \(1 \%\) to \(100 \%, 120 \mathrm{~V}-277 \mathrm{~V}\) \\
D010TR \(=0-10 \mathrm{~V}\) or Line Voltage Dimming, \(5 \%\) to \(100 \%, 120 \mathrm{~V}-277 \mathrm{~V}\) \\
DE010 \(=0-10 \mathrm{~V}\) Linear Dimming, \(0 \%\) to \(100 \%, 120 \mathrm{~V}-277 \mathrm{~V}\) \\
D5LT=Fifth Light® (DALI) Logarithmic Dimming, 0\% to 100\%, 120V-277V \\
DMX=DMX/RDM Logarithmic Dimming, 0\% to 100\%, 120V-277V13 \\
DMXC5=DMX/RDM Logarithmic Dimming, \(0 \%\) to \(100 \%, 120 \mathrm{~V}\)-277V, with RJ45 connection \\
DL2=Lutron® Hi-Lume Forward Phase Dimming, 1\% to 100\%, 120V Only \\
DLE=Lutron Ecosystem dimming 1\% to \(100 \%\), 120V-277V \\
DLV=Low voltage dimming driver ( \(1-100 \%\) ) for use with DLVP system ( 3000 lumen and below) \({ }^{3,14}\) \\
5000-6000 \\
D010TE \(=0-10 \mathrm{~V} 1 \%\) or trailing edge \(10 \%, 120-277 \mathrm{~V}\) ( 120 V only with trailing edge dimming) \\
Tunable white 1000-2000 Lumens \({ }^{16}\) \\
1DE010W2N2050 \(=0-10 \mathrm{~V}\) dimming, \(0 \%\) to \(100 \%, 120 \mathrm{~V}, 2000 \mathrm{~K}\) - 5000 K \\
1DE010W2N2765 \(=0-10 \mathrm{~V}\) dimming, \(0 \%\) to \(100 \%, 120 \mathrm{~V}, 2700 \mathrm{~K}-6500 \mathrm{~K}\) \\
1D5LTW2N2050=Fifth Light (DALI), 0\% to 100\%, 120, 2000K - 5000K \\
1D5LTW2N2765=Fifth Light (DALI), \(0 \%\) to \(100 \%, 120 \mathrm{~V}, 2700 \mathrm{~K}-6500 \mathrm{~K}\) \\
2DE010W2N2050=0-10V dimming, \(0 \%\) to \(100 \%\), 277V, 2000K - 5000 K \\
2DE010W2N2765=0-10V dimming, 0\% to 100\%, 277V, 2700K - 6500 K \\
2D5LTW2N2050=Fifth Light (DALI), 0\% to 100\%, 277V, 2000K - 5000K \\
2D5LTW2N2765=Fifth Light (DALI), 0\% to 100\%, 277V, 2700K - 6500K
\end{tabular} & \begin{tabular}{l}
EMBOD=Bodine® Emergency Module with Remote Test Switch \\
EMBOD7ST \(=\) Bodine \({ }^{\circledR}\) Emergency Module with Self Test Remote Test Switch \\
EM7=7W Emergency Module with Remote Test Switch \\
EM14=14W Emergency Module with Remote Test Switch \\
IEMBOD=Bodine® Emergency Module with Integral Test Switch \\
IEM7=7W Emergency Module with Integral Test Switch \\
IEM14=14W Emergency Module with Integral Test Switch \\
EMV7=7W Low Voltage Emergency Module with Remote Test Switch \({ }^{4}\) \\
EMV14=14W Low Voltage Emergency Module with Remote Test Switch \({ }^{4}\) \\
IEMV7=7W Low Voltage Emergency Module with Integral Test Switch \({ }^{4}\) \\
IEMV14=14W Low Voltage Emergency Module with Integral Test Switch \({ }^{4}\) \\
WTA = Factory installed WaveLinx sensor Kit \({ }^{1417}\) \\
WTK = Factory installed WaveLinx Lite Sensor Kit \({ }^{14} 18\)
\end{tabular} \\
\hline
\end{tabular}

SAMPLE NUMBER: EU4B10208035


SAMPLE NUMBER: 4LBM1LIE
\begin{tabular}{|c|c|c|c|c|}
\hline Trim & Distribution \({ }^{5}\) & Flange & Finish & Options \\
\hline 4LB=4" LED & \begin{tabular}{l}
\(\mathbf{N}=\) Narrow ( \(30^{\circ}\) Beam), Spun Aluminum \\
\(\mathbf{M}=\) Medium ( \(50^{\circ}\) Beam), Spun Aluminum \\
W=Wide ( \(75^{\circ}\) Beam), Spun Aluminum \\
\(\mathbf{S}=\) Shallow ( \(75^{\circ}\) Beam), Spun Aluminum \\
PS=Non-conductive Shallow ( \(75^{\circ}\) Beam), Injection Molded white \({ }^{11}\) \\
CS=Cast Shallow ( \(75^{\circ}\) Beam), Die Cast Aluminum \\
\(B A=B a f f l e\), Spun Aluminum \({ }^{7}\)
\end{tabular} & \begin{tabular}{l}
\(\mathbf{0}=\) White Polymer Trim Ring \\
1=Self-flanged \({ }^{12}\) \\
2=White Painted Self-flanged
\end{tabular} & \begin{tabular}{l}
LI=Specular Clear \({ }^{10}\) \\
H=Semi-Specular Clear \({ }^{10}\) \\
WMH=Warm Haze \({ }^{10}\) \\
WH=Wheat \({ }^{10}\) \\
GPH=Graphite Haze \({ }^{10}\) \\
B=Specular Black \({ }^{10}\) \\
MW=Matte White \\
MB=Matte Black \({ }^{9}\) \\
MMS=Matte Metallic Silver \({ }^{8}\)
\end{tabular} & E=Integral Emergency Test Switch Hole \({ }^{6}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline Accessories \\
\hline HSA4=Slope Adapter for 4" Aperture Housings, Specify Slope in \(5^{\circ}\) increments \\
TRM4=Metal Trim Ring, Specify Color \({ }^{2}\) \\
TRR4=Rimless Trim Ring \({ }^{2}\) \\
LGSKT4IP66=IP66 Gasket Kit \\
PRR4=Rimless Plaster Ring for Flush Mount \({ }^{2}\) \\
Bar Hangers \\
HB26=C-channel Bar Hanger, 26" Long, Pair \\
HB50=C-channel Bar Hanger, 50" Long, Pair \\
RMB22=Wood Joist Bar Hanger, 22" Long, Pair \\
Transformers \\
H347=347 to 120 V Step Down Transformer, 75VA \\
H347200=347 to 120V Step Down Transformer, 200VA \\
Connected Lighting Systems \({ }^{3,14}\) \\
WTA = Field installed WaveLinx sensor Kit \({ }^{17}\) \\
WTK = Field installed WaveLinx Lite Sensor Kit \({ }^{18}\) \\
\hline
\end{tabular}

Notes:
1 Nominal Lumens will vary depending on selected color, driver and reflector finish.
2 Order spun trim with polymer trim ring or die cast with rimless flange (Consult specification sheet for color ordering information and options).
3 Not available with Chicago Plenum.
4 ULus approved only.
5 Beam angles are nominal with LI finish trims.
6 Only available with Narrow and Medium Spun Aluminum trims. Required for use with all IEMBOD, IEM7, and IEM14 housings.
7 Only available with Matte White and Matte Black Finishes.
8 Only available on CS distribution.
9 Available only on BA and CS distributions.
10 Not available on PS, CS or BA distributions.
11 Matte white and self flanged only, 2000 lumen max.
12 Flange is same finish as the reflector.

13 DMX fixtures default to full on upon loss of DMX signal
14 Refer to system specifications for additional information, features, and benefits. Order either factory installed option or accessory. Use with 0-10V driver.
15 Product is marked spacing and must be installed with the following minimum spacing
- Center to center of adjacent luminaires: 36 "
- Center of luminaire to side of building member: \(18^{n}\)
- Minimum overhead: \(1 /\) ² \(^{\prime \prime}\)

16 Non-IC
17 WTA = WaveLinx wireless sensor kit for daylight dimming, PIR motion sensing, and optional RLTS - Real Time Location Services, use with 0-10V only.
18 WTK = WaveLinx Lite tile mount sensor kit for daylight dimming, PIR motion sensing, use with D010 only (Refer to WaveLinx Lite system specifications)
19 Limited to D010 drivers.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{1000 Lumen D010} & \multicolumn{2}{|r|}{1500 Lumen D010} \\
\hline Inpt Power: W & THD: & Inpt Power: 55W & THD: \\
\hline 20Vhpt Current: 009 & 27npt Current: 00A & \multicolumn{2}{|l|}{20Vnpt Current: 0A 27\%pt Current: 006A} \\
\hline \multicolumn{2}{|r|}{2000 Lumen D010} & \multicolumn{2}{|r|}{3000 Lumen D010} \\
\hline Inpt Power: 22W & THD: \(\triangle\) & Inpt Power: 2BW & THD: 畈 \\
\hline 20Vnpt Current: 0a & \multicolumn{3}{|l|}{27npt Current: 008 20Vnpt Current: 023 27npt Current: 00A} \\
\hline \multicolumn{2}{|r|}{4000 Lumen D010} & \multicolumn{2}{|r|}{5000 Lumen D010TE} \\
\hline Inpt Power: \(\mathbf{6 W}\) & THD: & Inpt Power: 59V & THD: \\
\hline 20Vhpt Current: 03A & 27npt Current: 05A & 20Vnpt Current: 0A & 27npt Current: 022A \\
\hline
\end{tabular}

\section*{PRODUCT SPECIFICATIONS}

Elkay ezH2O® Bottle Filling Station, \& Bi-Level High Efficiency VandalResistant Cooler, Filtered Refrigerated Stainless. Chilling Capacity of 8.0 GPH (gallons per hour) of \(50^{\circ} \mathrm{F}\) drinking water, based on \(80^{\circ} \mathrm{F}\) inlet water and \(90^{\circ} \mathrm{F}\) ambient, per ASHRAE 18 testing. Features shall include Antimicrobial, Filtered, Green Ticker \({ }^{\text {TM }}\), Hands Free, High Efficiency, Laminar Flow, Real Drain, Vandal Resistant, Visual Filter Monitor. Furnished with Vandal Resistant StreamSaver \({ }^{\text {TM }}\) bubbler. Electronic Bottle Filler Sensor with Mechanical Front Bubbler Button activation. Product shall be Wall Mount (On Wall), for Indoor applications, serving 2 station(s). Unit shall be certified to UL 399 and CAN/CSA C22.2 No. 120. Unit shall be lead-free design which is certified to NSF/ANSI 61 \& 372 (lead free) and meets Federal and State low-lead requirements.
\begin{tabular}{|l|l|}
\hline Special Features: & \begin{tabular}{l} 
Antimicrobial, Filtered, Green Ticker \\
\\
Hands Free, High Efficiency, Laminar \\
Flow, Real Drain, Vandal Resistant, \\
Visual Filter Monitor
\end{tabular} \\
\hline Finish: & Stainless Steel \\
\hline Power: & \(115 \mathrm{~V} / 60 \mathrm{~Hz}\) \\
\hline Bubbler Style: & Vandal Resistant StreamSaver \({ }^{\text {TM }}\) \\
\hline Activation by: & \begin{tabular}{l} 
Electronic Bottle Filler Sensor with \\
Mechanical Front Bubbler Button
\end{tabular} \\
\hline Mounting Type: & Wall Mount (On Wall) \\
\hline Chilling Capacity*: & 8.0 GPH \\
\hline Full Load Amps & 1 \\
\hline Rated Watts: & 260 \\
\hline Dimensions (L x W x H): & \(36-1 / 8^{* \prime} \times 18-5 / 8^{\prime \prime} \times 46-1 / 4^{\prime \prime}\) \\
\hline Approx. Shipping Weight: & 115 lbs. \\
\hline Installation Location: & Indoor \\
\hline No. of Stations Served: & 2 \\
\hline \begin{tabular}{l} 
*Based on \(80^{\circ}\) F inlet water \& \(90^{\circ} \mathrm{F}\) ambient air temp for \(50^{\circ}\) F chilled \\
drinking water.
\end{tabular} \\
\hline
\end{tabular}
- Mechanically-Activated bubbler continues to supply water in event of service disruptions.
- Visual Filter Monitor: LED Filter Status Indicator for when filter change is necessary.
- Filter is certified to NSF 42 and 53 for lead, particulate, chlorine, taste and odor reduction. 3,000 gal. capacity.
- High-performance compressor and insulation greatly reduce energy consumption.
- Green Ticker: Informs user of number of 20 oz. plastic water bottles saved from waste.
- Laminar flow provides clean fill with minimal splash.
- Silver Ion Antimicrobial protection on key plastic components to inhibit the growth of mold and mildew.
- Real Drain System eliminates standing water.

PART: \(\qquad\) QTY: \(\qquad\)
PROJECT: \(\qquad\)
CONTACT: \(\qquad\)
DATE: \(\qquad\)
NOTES: \(\qquad\)
APPROVAL:


\section*{Included with Product: Water Cooler (LVRCGRNTL8WSC), Bottle Filler (LZWSR), Filter}

\section*{Ships in multiple boxes.}

AMERICAN PRIDE. A LIFETIME TRADITION.
Like your family, the Elkay family has values and traditions that endure. For almost a century, Elkay has been a family-owned and operated company, providing thousands of jobs that support our families and communities.

\section*{PRODUCT COMPLIANCE}

ADA \& ICC A117.1
ASME A112.19.3/CSA B45.4
Buy American Act
CAN/CSA C22.2 No. 120
GreenSpec \({ }^{\circledR}\)
NSF/ANSI 42, 53, 61, \& 372 (lead free)
UL 399


Complies with ADA \& ICC A117.1 accessibility requirements when installed according to the requirements outlined in these standards. Installation may require additional components and/or construction features to be fully compliant. Consult the local Authority Having Jurisdiction if necessary

Installation Instructions (PDF)
5 Year Limited Warranty on the refrigeration system of the unit. Electrical components and water system are warranted for 12 months from date of installation. Warranty pertains to drinking water applications only. Non-drinking water applications are not covered under warranty.
Warranty (PDF)

\footnotetext{
In keeping with our policy of continuing product improvement, Elkay reserves the right to change product specifications without notice. Please visit elkay.com for the most current version of Elkay product specification sheets. This specification describes an Elkay product with design, quality, and functional benefits to the user. When making a comparison of other producers' offerings, be certain these features are not overlooked.
}

Elkay ezH2O Bottle Filling Station \& Bi-Level High Efficiency Vandal-Resistant Cooler

\section*{COOLING SYSTEM}
- Compressor: Hermetically-sealed, reciprocating type, single phase. Sealed-in lifetime lubrication.
- Condenser: Fan cooled, copper tube with aluminum fins. Fan motor is permanently lubricated.
- Cooling Unit: Combination tube-tank type. Continuous copper tubing with is fully insulated with EPS foam that meets UL requirements for self-extinguishing material.
- Refrigerant Control: Refrigerant HFC-134a is controlled by accurately calibrated capillary tube for positively trouble-free operation.
- Temperature Control: Easily accessible enclosed adjustable thermostat is factory preset. Requires no adjustment other than for altitude requirements.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Optional Accessories } \\
\hline\(\underline{51300 C}\) & \begin{tabular}{l} 
Elkay WaterSentry Plus Replacement Filter (Bottle Fillers) \\
Spec Sheet (PDF)
\end{tabular} & \\
\hline\(\underline{98324 C}\) & \begin{tabular}{l} 
Accessory - Cane Apron for HAC, HVR, EMABF \& VRC Models (Stainless) \\
Spec Sheet (PDF)
\end{tabular} & \\
\hline\(\underline{36292 C}\) & \begin{tabular}{l} 
Accessory - Power Block for Multistation Bottle Filling Stations \\
Spec Sheet (PDF)
\end{tabular} & \\
\hline\(\underline{\text { WSF6000R-2PK }}\) & \begin{tabular}{l} 
WaterSentry Fresh 6000 CTO Replacement Filter (2pack) \\
Spec Sheet (PDF)
\end{tabular} & \\
\hline
\end{tabular}

\section*{IMPORTANT!}

\section*{INSTALLER PLEASE NOTE :}

This water cooler has been designed and built to provide water to the user which has not been altered by materials in the cooler waterways. The grounding of electrical equipment such as telephone, computer, etc. to water lines is a common procedure. The grounding may be in the building but may also occur away from the building. This grounding can cause electrical feedback into a water cooler creating an electrolysis which creates a metallic taste or causes an increase in the metal content of the water. This condition is avoidable by installing the cooler using the proper materials as shown below.

\section*{NOTICE}

This water cooler must be connected to the water supply using a dielectric coupling. The cooler is furnished with a non-metallic strainer which meets this requirement. The drain trap which is provided by the installer should also be plastic to completely isolate the cooler from the building plumbing system.
Bottle filler unit on bracket attached to wall by 6 holes (as shown). Water and electrical will connect through pre-punched hole in basin.
These products are designed to operate on 20 psi to 105 psi supply line pressure. Simultaneous operation of both bubblers on a bi-level unit may not be possible depending on water supply pressure. If simultaneous operation is desired, please ensure a minimum of 50 psi supply.


LEGEND:
REDUCE HEIGHT BY 3 INCHES FOR INSTALLATION OF CHILDRENS ADA COOLER
A = Recommended Water Supply location. Shut-off Valve (not furnished) to accept 3/8" O.D. unplated copper tube. Up to \(3^{\prime \prime}\) ( 76 mm ) maximum out from wall.
\(B=\) Recommended Waste Outlet location. To accommodate 1-1/2" nominal drain. Drain stub 2" ( 51 mm ) out from wall.
C = 1-1/2" Trap (not furnished).
D = Electrical Supply (3) Wire Recessed Box Duplex Outlet.
\(\mathrm{E}=\) Insure proper ventilation by maintaining \(6^{\prime \prime}(152 \mathrm{~mm})\) minimum clearance from cabinet louvers to wall.
\(F=7 / 16^{\prime \prime}(11 \mathrm{~mm})\) Bolt Holes for fastening to wall.
Note : New Installations Must Use Ground Fault Circuit Interrupter (GFCI). It is highly recommended that the circuit be dedicated and the load protection be sized for 20 amps .

In keeping with our policy of continuing product improvement, Elkay reserves the right to change product specifications without notice. Please visit elkay.com for the most current version of Elkay product specification sheets. This specification describes an Elkay product with design, quality, and functional benefits to the user. When making a comparison of other producers' offerings, be certain these features are not overlooked.

Aqualyn \({ }^{\circledR}\) Countertop Sink

\section*{Aqualyn \({ }^{\circledR}\) Countertop Sink}
- Made from vitreous china
- Self-rimming with cutout template supplied
- Front overflow
- Faucet ledge
0475.020 Faucet holes on 8" (203mm) centers (illustrated)
0475.920 Faucet holes on 8" (203mm) centers
- Less overflow
0476.028 Faucet holes on \(4^{\prime \prime}\) ( 102 mm ) centers
0476.037 Faucet holes on \(4^{\prime \prime}(102 \mathrm{~mm})\) centers
- Extra right-hand hole
0475.035 Faucet holes on \(4^{\prime \prime}\) ( 102 mm ) centers
- Extra left-hand hole
0476.928 Faucet holes on \(4^{\prime \prime}\) ( 102 mm ) centers
- Less overflow
0475.047 Center hole only

Nominal Dimensions:
\(518 \times 441 \mathrm{~mm}\)
(20-3/8" x 17-3/8")

\section*{Bowl sizes:}

406mm (16") wide
254 mm (10") front to back 143mm (5-5/8") deep

\section*{Compliance Certifications -}

Meets or Exceeds the
Following Specifications:
- ASME A112.19.2M for Vitreous China Fixtures
\begin{tabular}{|ll|}
\hline To Be Specified: \\
Color: White \(\quad\) Bone \\
& Linen \\
Faucet*: \\
Faucet Finish: \\
Supplies: \\
1-1/4" Trap: \\
\\
\hline
\end{tabular}
* See faucet section for additional models available

\footnotetext{
meets the americans with disabilities act guidelines
AND ANSI A117.1 ACCESSIBLE AND USABLE
bUILDINGS AND FACILITIES - CHECK LOCAL CODES.
Install lavatory 864 mm (34") from finished floor.
Lavatory installed \(51 \mathrm{~mm}\left(2^{\prime \prime}\right)\) minimum from front edge of countertop provides 686 mm (27") knee clearance area.
See faucet section for additional models available
of countiop provides 686m (27") knee clearance area.
}


\section*{SEE REVERSE FOR ADDITIONAL ROUGHING-IN DIMENSIONS}

NOTES:
* DIMENSIONS SHOWN FOR LOCATION OF SUPPLIES AND "P" TRAP ARE SUGGESTED.
FOR COUNTERTOP CUTOUT AND INSTALLATION INSTRUCTIONS USE TEMPLATE SUPPLIED WITH SINK
FITTINGS NOT INCLUDED WITH FIXTURE AND MUST BE ORDERED SEPARATELY.
SEALING COMPOUND SUPPLIED BY OTHERS.
IMPORTANT: Dimensions of fixtures are nominal and may vary within the range of tolerances established by ANSI Standard A112.19.2
These measurements are subject to change or cancellation. No responsibility is assumed for use of superseded or voided pages.
0476.028 Faucet holes on \(4^{\prime \prime}(102 \mathrm{~mm})\) centers

0476.037 Faucet holes on \(4^{\prime \prime}\) ( 102 mm ) centers
- Extra right-hand hole

0475.035 Faucet holes on 4" (102mm) centers
- Extra left-hand hole


ACT GUIDELINES AND ANSI A117.1 ACCESSIBLE AND USABLE BUILDINGS AND FACILITIES - CHECK LOCAL CODES. Install lavatory 864mm (34") from finished floor. Lavatory installed 51 mm (2") minimum from front edge of countertop provides 686 mm (27") knee clearance area.

NOTES:
* DIMENSIONS SHOWN FOR LOCATION OF SUPPLIES AND "P" TRAP ARE SUGGESTED.
FOR COUNTERTOP CUTOUT AND INSTALLATION INSTRUCTIONS USE TEMPLATE SUPPLIED WITH SINK
FITTINGS NOT INCLUDED WITH FIXTURE AND MUST BE ORDERED SEPARATELY.
SEALING COMPOUND SUPPLIED BY OTHERS.
IMPORTANT: Dimensions of fixtures are nominal and may vary within the range of tolerances established by ANSI Standard A112.19.2
These measurements are subject to change or cancellation. No responsibility is assumed for use of superseded or voided pages.

\section*{OPTIONS}

\section*{Power Type}

日 Hardwired

\section*{Body Type}

D-Mid
Mounting
\(\square\) Deck

\section*{Power Supply}

PI'Plug Adapter (PLG)
\(\square\) Hardwired Less Transformer (HLT)

\section*{Sensor Type}
- I Infrared (IR)

\section*{Flow Rate}
\(\square 0.5 \mathrm{gpm}(2 \mathrm{Lpm})\) ( 0.5 GPM )
\(\square 0.35 \mathrm{gpm}(1 \mathrm{Lpm})(0.35 \mathrm{GPM})\)
\(\square 1.0 \mathrm{gpm}\) ( 4 Lpm ) (1.0GPM)

\section*{Spray Type}
\(\square\) Aerated (AER)
■ Multi-Laminar (MLM)
\(\square\) Laminar (LAM)

\section*{Finish}
- Polished Chrome (CP)

\section*{Control Access}
\(\square-A b o v e\) Deck

\section*{Mixer}
\(\square\) Integrated Side Mixer (ISM)Mixer Not IncludedIntegrated Thermostatic Mixer (ITM)

\section*{Special Features}
\(\square\) IQ Click (IQ)
\(\square\) Carbon Offset (CO)
\(\square\) Less Logo (LL)IC Click (IC)Drain Pop Up (DPU)

\section*{Compliances \& Certifications}
- - ADA Compliant
\# ASME A112.18.1 CompliantCEC Compliant
NYC604.4
\(\square\) Proposition 65TAS


> Image for a standard EAF-200 shown

\section*{DESCRIPTION}

Optima ® Hardwired-Powered Deck-Mounted Mid Body Faucet

\section*{FEATURES}

Commercial Grade, ADA Compliant, Electronic, SensorActivated, Die-Cast Metal Hand Washing Faucet with the following features:
- Double Infrared Sensors with Automatic Setting Feature and Microprocessor
- Automatic Self-adapting Sensor Technology
- Magnetic Solenoid Valve
- Water Supply Connection with Flexible High-pressure Hose and Strainer
- 6 Volt DC Plug-in Adapter (must be ordered separately for Less Adapter/Transformer (-LT) faucets)
- Appropriate Mounting Hardware included
- 3 year limited warranty

\section*{DOWNLOADS}
- EAF 200/225/250/275 Installation Instructions
- EAF 200/225/250/275 (SP) Installation Instructions
- Faucet Spray Heads Repair and Maintenance Guide
- Optima Plus EAF 200 Repair and Maintenance Guide
- Additional Downloads

\section*{VIDEOS}

Sloan Connect App®

\section*{FLORWELL™ \({ }^{\text {SERVICE SINK }}\)}
- Enameled cast iron
- 3" outlet
- Corner model
7741.000 Fixture only - Less rim guard
7745.811 Removable vinyl rim guard

\section*{Nominal Dimensions:}
\(711 \times 711 \times 330 \mathrm{~mm}\)
(28" x 28" x 13")

\section*{Compliance Certifications -}

Meets or Exceeds the Following Specifications:

- ASME A112.19.1 for Cast Iron Plumbing Fixtures

\section*{To Be Specified:}
- Faucet: 8344.112 faucet with top brace, stops, and vacuum breaker
- Alternative Faucet:

Drain: 7721.038 flat grid drain
- Removable vinyl-coated rim guard: 7745.811 (black)


NOTES:
PROVIDE SUITABLE REINFORCEMENT FOR ALL WALL SUPPORTS FITTINGS NOT INCLUDED AND MUST BE ORDERED SEPARATELY.

IMPORTANT: Dimensions of fixtures are nominal and may vary within the range of tolerances established by ANSI Standard A112.19.2. These measurements are subject to change or cancellation. No responsibility is assumed for use of superseded or voided pages.

\section*{Product Type}

Wall-mounted manual sink faucet with 8" centers

\section*{Features \& Specifications}
- Round wall escutcheons
- Includes integral check valves
- 8 " body, adjustable arms \(7-5 / 8\) " \(-8-3 / 8\) "centers
- Vandal Proof 2-3/8" lever handle
- Ceramic \(1 / 4\)-turn operating cartridge, right-hand
- Ceramic \(1 / 4\)-turn operating cartridge, left-hand
- CFNow! Item Ships in 3 Days

\section*{Performance Specification}
- Rated Operating Pressure: 20-125 PSI
- Rated Operating Temperature: \(40-140^{\circ} \mathrm{F}\)

\section*{Warranty}
- 5-Year Limited Cartridge Warranty
- Lifetime Limited Faucet Warranty
- 1-Year Limited Finish Warranty

\section*{Codes \& Standards}
- \({ }^{[80}\) 为 ASME A112.18.1/CSA B125.1

Job Name \(\qquad\)

Item Number \(\qquad\)

Section/Tag \(\qquad\)

Model Specified \(\qquad\)

Architect \(\qquad\)

Engineer \(\qquad\)
Contractor \(\qquad\)
[ ] Submitted as Shown
[ ] Submitted with Variations

Date \(\qquad\)


\section*{Architect/Engineer Specification}

Chicago Faucets No. 897-CRCF, Sink Faucet for hot and cold water, wall-mounted with 7-5/8" - 8-3/8" adjustable centers. Rough chrome plated. Includes integral hot and cold water supply stops. Vacuum breaker spout with pail hook and wall brace. 2-3/8" metal, vandal-proof, lever handles with sixteen-point, tapered broach and secured blue and red index buttons. Quaturn \({ }^{T M}\) rebuildable compression cartridge, opens and closes \(90^{\circ}\), closes with water pressure, features square, tapered stem. Adjustable supply arms include 1/2" NPT female union nut and integral check valves. 3/4" male hose thread outlet. Round wall escutcheons. Integral stop valves for servicing the faucet. NOTE: Atmospheric vacuum breaker is NOT intended for continuous pressure applications. This product meets ADA ANSI/ICC A117.1 requirements and is tested and certified to industry standards: ASME A112.18.1/CSA B125.1.


\section*{Operation and Maintenance}

Installation should be in accordance with local plumbing codes. Flush all pipes thoroughly before installation. After installation, remove spout outlet or flow control and flush faucet thoroughly to clear any debris. Care should be taken when cleaning the product. Do not use abrasive cleaners, chemicals or solvents as they can result in surface damage. Use mild soap and warm water for cleaning and protecting the life of Chicago Faucet products. For specific operation and maintenance refer to the installation instructions and repair parts documents that are located at www.chicagofaucets.com.

Chicago Faucets, member of the Geberit Group, is the leading brand of commercial faucets and fittings in the United States, offering a complete range of products for schools, laboratories, hospitals, office buildings, food service, airports and sport facilities. Call 1.800.TECTRUE or 1.847.803.5000 Option 1 for installation or other technical assistance.

\section*{Model}

\section*{ST－2459－A Universal Closet}

Top Spud Vitreous China Elongated Water Closet

\section*{DESCRIPTION}

Complete vitreous china water closet．

\section*{Flush Cycle}

Model ST－2459－A Universal Closet
（1．1 to \(1.6 \mathrm{gpf} / 4.2\) to 6.0 Lpf\()\)
Code： 2102459
Flush volume is determined by the flushometer used with closet．


\section*{SPECIFICATIONS}

\section*{Water Closet}
－Wall hung vitreous china elongated bowl
－Siphon jet flushing action
－1－1／2＂I．P．S．top spud inlet
－2－1／8＂fully glazed trapway diameter
－Mounting hardware，carrier and toilet seat not included
－Integral flushing rim
－Water spot area 11－1／4＂x 8－1／2＂
－ASME A112．19．2／CSA B45．1

\section*{Colors／Finishes}
－White

\section*{Recommended Accessories}
－Bemis：
1955CT／1955SSCT
2155CT／2155SSCT
－Church： 295CT／295SSCT 2155CT／2155SSCT
＊＊This model meets the requirements for a High Efficiency Toilet when used with a high efficiency flushometer （1．28 gpf／4．8 Lpf or 1．1／1．6 gpf－4．2／6．0 Lpf dual－flush）

Meets the American Disabilities Guidelines and ANSI A117．1 requirements when installed according to these requirements．

NOTE：
Plumbing System Requirements
\(\sqrt{ }\) Minimum Flowing Pressure： 25 PSI
\(\sqrt{ }\) Maximum Static Pressure： 80 PSI
\(\sqrt{ }\) Minimum Flow Rate： 18 gpm

This space for Architect／Engineer approval
\begin{tabular}{ll} 
Job Name & Date \\
\hline Model Specified & Quantity \\
\hline Variations Specified & \\
\hline Customer／Wholesaler & \\
\hline Contractor & \\
\hline Architect & \\
\hline
\end{tabular}

\footnotetext{
The information contained in this document is subject to change without notice
}

\section*{SLロAN}

10500 Seymour Avenue Franklin Park，IL 60131 Phone：1－800－982－5839
Fax：1－800－447－8329
www．sloanvalve．com
© 2015 Sloan Valve Company ST－2459－A 09－15

\section*{1955CT / 1955SSCT}


\section*{FEATURES:}
- STA-TITE \({ }^{\circledR}\)

Commercial Fastening System \({ }^{\text {TM }}\)
Eliminates callbacks for loosened seats

\section*{SPECIFICATIONS:}

Size: Elongated
Material: Plastic
Style: Open Front less Cover
Ring Bumpers: Four
Hinges: Plastic Non Self-Sustaining Check Hinges (1955CT) or Self-Sustaining Check Hinges (1955SSCT) with Non-Corroding 300 Series Stainless Steel Posts and Pintles

Hardware: STA-TITE \({ }^{\circledR}\) Commercial Fastening System \({ }^{\text {™ }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{3}{*}{UPC} & \multicolumn{8}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
IAPMO/ANSI Z124.5 \\
Performance Standard \\
Heavy-Duty Commerci
\end{tabular}}} \\
\hline & & & & & & & & & \\
\hline Codes \& Standards: & & & & & & & & & \\
\hline
\end{tabular}

\section*{CODE NUMBER}

\section*{DESCRIPTION}
1.28 gpf, Polished Chrome Finish, Fixture Connection Top Spud, Single Flush, Royal® Exposed Manual Water Closet Flushometer.

\section*{DETAILS}
- Flush Volume: 1.28 gpf (4.8 Lpf)
- Finish: Polished Chrome (CP)
- Valve: Diaphragm
- Valve Body Material: Semi-red Brass
- Fixture Type: Water Closet
- Fixture Connection: Top Spud
- Rough-In Dimension: 11 ½" (292mm)
- Spud Coupling: 1 ½" (38mm)
- Supply Pipe: \(1^{1 "}\) (25mm)

\section*{FEATURES}
- PERMEX® Synthetic Rubber Diaphragm with Dual Filtered Fixed Bypass
- Sweat Solder Adapter with Cover Tube \& Cast Wall Flange with Set Screw
- Non-Hold-Open Handle, Fixed Metering Bypass and No External Volume Adjustment to Ensure Water Conservation
- Diaphragm, Handle Packing and Vacuum Breaker to be molded from PERMEX® Rubber Compound for Chloramine Resistance
- ADA Compliant Metal Oscillating Non-Hold-Open Handle
- 1" I.P.S. Screwdriver Bak-Chek® Angle Stop with Free Spinning Vandal Resistant Stop Cap

\section*{VIDEOS}
( PVD Special Finishes


\section*{COMPLIANCES \& CERTIFICATIONS}

ADA Compliant, BAA Compliant, BREEAM Materials Credit, BREEAM Water Credit, Carbon Neutral, cUPC Certified, cUPC Green Certified, EPD, Green Globes Materials \& Resources Credit, Green Globes Water Credit, HPD, LBC Credit, LEED Materials \& Resources EPD Credit, LEED Materials \& Resources HPD Credit, LEED V4 Water Efficiency Credit, Satisfies LEED Credits, WaterSense Listed, WELL Building Standard

\section*{RECOMMENDED SPECIFICATION}

Valve Body, Cover, Tailpiece and Control Stop shall be in conformance with ASTM Alloy Classification for Semi- Red Brass. Valve shall be in compliance with the applicable sections of ASSE 1037 and ANSI/ASME 112.19.2.

\section*{VALVE OPERATING PRESSURE (FLOWING)}

15-80 PSI (103-552 kPa). Specific fixtures may require greater minimum flowing pressure - consult manufacturer requirements.

\section*{DOWNLOADS}
- Royal Exposed Installation Instructions
- Control Stop Repair and Maintenance Guide
- Flush Connections Flanges Repair and Maintenance Guide
- Tail Piece Repair and Maintenance Guide
- Royal Manual Diaphragm Flushometer Repair and Maintenance Guide
- Tools/Accessories
- Flushometer Pressure gauges
- Additional Downloads

\section*{NOTES}

All information contained within this document subject to change without notice.

Looking for other variations of the ROYAL 111 product? View the general spec sheet with all options.

Find a compatible urinal for this flushometer.
Find a compatible water closet for this flushometer.
WaterSense compliant when used with a WaterSense compliant fixture

\section*{ROUGH-IN}


\section*{Model}

\section*{SU-1009-A Universal High-Efficiency Urinal}

Top Spud Vitreous China Wash Down Urina

\section*{DESCRIPTION}

Complete vitreous china top spud urinal.

\section*{Flush Cycle}

Model SU-1009-A*
(0.125 to \(0.5 \mathrm{gpf} / 0.5\) to 1.9 Lpf )

Flush volume is determined by the flushometer used with urinal.

*Please note that this model is fully interchangeable with Models SU-1000-A, SU-1002-A \& SU-1005-A and matches all dimensional and performance parameters.

\section*{SPECIFICATIONS}

Urinal
- Wall hung top spud vitreous china
- Washdown flushing action
- 3/4" IPS top spud inlet
- 2" NPT outlet flange
- All mounting hardware included
- Integral flushing rim
- \(100 \%\) factory flush tested
- Compliant to the applicable sections of ASME A112.19.2/CSA B45.1
- Carrier not included


NOTE: All vitreous china dimensions shown in these drawings are nominal. Dimensions can vary within the tolerances established in the governing ASME A112.19.2/CSA B45.1 standard. Please take this into consideration when planning rough-in and plumbing layouts.

\section*{Product Specification}

Washdown urinal shall be made of vitreous china with a \(3 / 4\) " top spud. Urinal shall have a 2" NPT outlet flange. Urinal shall include a removable strainer, inlet spud and hanger. Urinal shall shall be Sloan Model SU-1009-A.


Meets the American Disabilities Guidelines and ANSI A117.1 requirements when installed at the proper height requirements for accessibility.

NOTE: Plumbing System Requirements
\(\sqrt{ }\) Minimum Flowing Pressure: 25 PSI
\(\sqrt{ }\) Maximum Static Pressure: 80 PSI
\begin{tabular}{ll} 
This space for Architect/Engineer approval & \\
Job Name & Date \\
\hline Model Specified & Quantity \\
\hline Variations Specified & \\
\hline Customer/Wholesaler & \\
\hline Contractor & \\
\hline Architect & \\
\hline
\end{tabular}

The information contained in this document is subject to change without notice.
Attachment 5, Page 231 of 236

\section*{GREEN}


Water Efficiency
Listed by
IAPMO


\section*{SLロAN}

Sloan Headquarters 10500 Seymour Avenue Franklin Park, IL 60131 Phone: 1-800-982-5839 Fax: 1-800-447-8329 www.sloanvalve.com

\section*{CODE NUMBER}

3912633

\section*{DESCRIPTION}
0.125 gpf, Dual-Filtered Bypass, Polished Chrome Finish, Fixture Connection Top Spud, Single Flush, Royal® Exposed Manual Urinal Flushometer.

\section*{DETAILS}
- Flush Volume: 0.125 gpf ( 0.5 Lpf)
- Finish: Polished Chrome (CP)
- Valve: Diaphragm
- Bypass: Dual-Filtered Bypass (DBP)
- Valve Body Material: Semi-red Brass
- Fixture Type: Urinal
- Fixture Connection: Top Spud
- Rough-In Dimension: 11 ½" (292mm)
- Spud Coupling: \(3 / 4^{" 1}\) (19mm)
- Supply Pipe: \(3 / 4\) " \((19 \mathrm{~mm})\)

\section*{FEATURES}
- PERMEX® Synthetic Rubber Diaphragm with Dual Filtered Fixed Bypass
- Sweat Solder Adapter with Cover Tube \& Cast Wall Flange with Set Screw
- Non-Hold-Open Handle, Fixed Metering Bypass and No External Volume Adjustment to Ensure Water Conservation
- Diaphragm, Handle Packing and Vacuum Breaker to be molded from PERMEX® Rubber Compound for Chloramine Resistance
- ADA Compliant Metal Oscillating Non-Hold-Open Handle

3/4" I.P.S. Screwdriver Bak-Chek® Angle Stop w/ Free Spinning Vandal Resistant Stop Cap

\section*{VIDEOS}
( PVD Special Finishes

\section*{COMPLIANCES \& CERTIFICATIONS}

ADA Compliant, BAA Compliant, BREEAM Materials Credit, BREEAM Water Credit, Carbon Neutral, cUPC Certified, cUPC Green Certified, EPD, Green Globes Materials \& Resources Credit, Green Globes Water Credit, HPD, LBC Credit, LEED Materials \& Resources EPD Credit, LEED Materials \& Resources HPD Credit, LEED V4 Water Efficiency Credit, Satisfies LEED Credits, WaterSense Listed, WELL Building Standard

\section*{RECOMMENDED SPECIFICATION}

Valve Body, Cover, Tailpiece and Control Stop shall be in conformance with ASTM Alloy Classification for Semi- Red Brass. Valve shall be in compliance with the applicable sections of ASSE 1037 and ANSI/ASME 112.19.2.

\section*{VALVE OPERATING PRESSURE (FLOWING)}

15-80 PSI (103-552 kPa). Specific fixtures may require greater minimum flowing pressure - consult manufacturer requirements.

\section*{DOWNLOADS}
- Royal Exposed Installation Instructions
- Control Stop Repair and Maintenance Guide
- Flush Connections Flanges Repair and Maintenance Guide
- Tail Piece Repair and Maintenance Guide
- Royal Manual Diaphragm Flushometer Repair and Maintenance Guide
- Flushometer Pressure gauges
- Additional Downloads

\section*{NOTES}

All information contained within this document subject to change without notice.

Looking for other variations of the ROYAL 186 product? View the general spec sheet with all options.

Find a compatible urinal for this flushometer.
Find a compatible water closet for this flushometer.
WaterSense compliant when used with a WaterSense compliant fixture

\section*{ROUGH-IN}


\section*{Model}

\section*{ST－2459－A Universal Closet}

Top Spud Vitreous China Elongated Water Closet

\section*{DESCRIPTION}

Complete vitreous china water closet．

\section*{Flush Cycle}

Model ST－2459－A Universal Closet
（1．1 to \(1.6 \mathrm{gpf} / 4.2\) to 6.0 Lpf\()\)
Code： 2102459
Flush volume is determined by the flushometer used with closet．


\section*{SPECIFICATIONS}

\section*{Water Closet}
－Wall hung vitreous china elongated bowl
－Siphon jet flushing action
－1－1／2＂I．P．S．top spud inlet
－2－1／8＂fully glazed trapway diameter
－Mounting hardware，carrier and toilet seat not included
－Integral flushing rim
－Water spot area 11－1／4＂x 8－1／2＂
－ASME A112．19．2／CSA B45．1

\section*{Colors／Finishes}
－White

\section*{Recommended Accessories}
－Bemis：
1955CT／1955SSCT
2155CT／2155SSCT
－Church： 295CT／295SSCT 2155CT／2155SSCT
＊＊This model meets the requirements for a High Efficiency Toilet when used with a high efficiency flushometer （1．28 gpf／4．8 Lpf or 1．1／1．6 gpf－4．2／6．0 Lpf dual－flush）

Meets the American Disabilities Guidelines and ANSI A117．1 requirements when installed according to these requirements．

NOTE：
Plumbing System Requirements
\(\sqrt{ }\) Minimum Flowing Pressure： 25 PSI
\(\sqrt{ }\) Maximum Static Pressure： 80 PSI
\(\sqrt{ }\) Minimum Flow Rate： 18 gpm

This space for Architect／Engineer approval
\begin{tabular}{ll} 
Job Name & Date \\
\hline Model Specified & Quantity \\
\hline Variations Specified & \\
\hline Customer／Wholesaler & \\
\hline Contractor & \\
\hline Architect & \\
\hline
\end{tabular}

\footnotetext{
The information contained in this document is subject to change without notice
}

\section*{SLロAN}

10500 Seymour Avenue Franklin Park，IL 60131 Phone：1－800－982－5839
Fax：1－800－447－8329
www．sloanvalve．com
© 2015 Sloan Valve Company ST－2459－A 09－15
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Kochinvar} & STANDARD HI-POWER \({ }^{\circledR}\) WATER HEATER Submittal Sheet \\
\hline & HPS-Sub-01b \\
\hline
\end{tabular}

\section*{SURFACE THERMOSTAT - STANDARD HI-POWER \({ }^{\circledR}\) COMMERCIAL ELECTRIC WATER HEATERS}

JOB NAME \(\qquad\)
LOCATION \(\qquad\)
ENGINEER \(\qquad\)
WHOLESALER \(\qquad\)
MECH. CONTRACTOR \(\qquad\)
MODEL NO. \(\qquad\)
RECOVERY RATE IN GPH \(\qquad\) @ \(\qquad\) \({ }^{\circ}\) F RISE
GALLON CAPACITY \(\qquad\)
VOLTAGE/PHASE \(\qquad\)
KW \(\qquad\)
NOTES

\section*{Standard Features}
- Meets ASHRAE Energy Efficiency Standards
- 300 psi test pressure, 150 psi working pressure
- Tank Saver Anode
- Plated Incoloy, Low Watt Density Element
- Energy Cut-Off
- Internal Fusing when Current Exceeds 48 Amps
- \(180^{\circ}\) F Operation Approved
- ASME Temperature and Pressure Relief Valve
- Non-CFC Foam Insulation
- Hinged Door Access
- 3 Year Limited Tank Warranty, 1 Year Limited Parts Warranty (see warranty for details)

\begin{tabular}{c|rrrr|rrr}
\multicolumn{8}{c}{ AMPERAGE TABLE } \\
\multicolumn{8}{c}{ Single Phase } \\
\hline KW & 208V & 240V & 277V & 480V & 208V & 240V & Three Phase \\
\hline 6 & 28.8 & 25.0 & 21.7 & 12.5 & 16.7 & 14.4 & 7.2 \\
\hline 9 & 43.3 & 37.5 & 32.5 & 18.8 & 25.0 & 21.7 & 10.8 \\
\hline 12 & 57.7 & 50.0 & 43.3 & 25.0 & 33.3 & 28.9 & 14.4 \\
\hline 13.5 & 64.9 & 56.3 & 48.7 & 28.1 & 37.5 & 32.5 & 16.2 \\
\hline 15 & 72.1 & 62.5 & 54.2 & 31.3 & 41.6 & 36.1 & 18.0 \\
\hline 18 & 86.5 & 75.0 & 65.0 & 37.5 & 50.0 & 43.3 & 21.7 \\
\hline 24 & 115.4 & 100.0 & 86.6 & 50.0 & 66.6 & 57.7 & 28.9 \\
\hline 27 & 129.8 & 112.5 & 97.5 & 56.3 & 74.9 & 65.0 & 32.5 \\
\hline 30 & 144.2 & 125.0 & 108.3 & 62.5 & 83.3 & 72.2 & 36.1 \\
\hline 36 & 173.1 & 150.0 & 130.0 & 75.0 & 99.9 & 86.6 & 43.3 \\
\hline 40.5 & 194.7 & 168.8 & 146.2 & 84.4 & 112.4 & 97.4 & 48.7 \\
\hline 45 & 216.9 & 187.5 & 162.5 & 93.8 & 124.9 & 108.3 & 54.1 \\
\hline 54 & \(\mathrm{~N} / \mathrm{A}\) & 225.0 & 194.9 & 112.5 & 149.9 & 129.9 & 65.0
\end{tabular}

\section*{VOLTAGE SCHEDULE \\ Z-415V / 3PH}

T-208V / 1 or 3 PH W-277V / 1 PH
P-240V/l or 3 PH X-480V/l or 3 PH

Shipping
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Model Number & KW & Gallon Capacity & \[
\begin{gathered}
\text { GPH @ } \\
100^{\circ} \mathrm{F} \text { Rise }
\end{gathered}
\] & Number of Elements & A & B & C & Shipping Weight \\
\hline HS(X)06 050 & 6 & 50 & 25 & 3 & 55-3/4" & 21-3/4" & \(27^{\prime \prime}\) & 265 \\
\hline HS(X)09 050 & 9 & 50 & 37 & 3 & 55-3/4" & 21-3/4" & \(27{ }^{\prime \prime}\) & 265 \\
\hline HS(X)12 050 & 12 & 50 & 49 & 3 & \(55-3 / 4^{\prime \prime}\) & 21-3/4" & \(27^{\prime \prime}\) & 265 \\
\hline HS(X)13 050 & 13.5 & 50 & 55 & 3 & \(55-3 / 4^{\prime \prime}\) & 21-3/4" & \(27^{\prime \prime}\) & 265 \\
\hline HS(X)15050 & 15 & 50 & 61 & 3 & 55-3/4" & 21-3/4" & \(27{ }^{\prime \prime}\) & 265 \\
\hline HS(X)18050 & 18 & 50 & 74 & 3** & \(55-3 / 4^{\prime \prime}\) & 21-3/4" & \(27^{\prime \prime}\) & 265 \\
\hline HS(X)24 050 & 24 & 50 & 98 & 6 & \(55-3 / 4^{\prime \prime}\) & 21-3/4" & \(27{ }^{\prime \prime}\) & 265 \\
\hline HS(X)27 050 & 27 & 50 & 111 & 6 & 55-3/4" & 21-3/4" & \(27{ }^{\prime \prime}\) & 265 \\
\hline HS(X)30 050 & 30 & 50 & 123 & 6 & \(55-3 / 4^{\prime \prime}\) & 21-3/4" & \(27^{\prime \prime}\) & 265 \\
\hline HS(X)36 050 & 36 & 50 & 148 & \(6^{* * *}\) & \(55-3 / 4^{\prime \prime}\) & 21-3/4" & \(27^{\prime \prime}\) & 265 \\
\hline HS(X)06 080 & 6 & 80 & 25 & 3 & \(60-1 / 4^{\prime \prime}\) & \(25-1 / 2^{\prime \prime}\) & \(31^{\prime \prime}\) & 280 \\
\hline HS(X)09 080 & 9 & 80 & 37 & 3 & 60-1/4" & \(25-1 / 2^{\prime \prime}\) & \(31^{\prime \prime}\) & 280 \\
\hline HS(X)12 080 & 12 & 80 & 49 & 3 & 60-1/4" & \(25-1 / 2^{\prime \prime}\) & \(31^{\prime \prime}\) & 280 \\
\hline HS(X)13 080 & 13.5 & 80 & 55 & 3 & 60-1/4" & 25-1/2" & \(31^{\prime \prime}\) & 280 \\
\hline HS(X)15080 & 15 & 80 & 61 & 3 & 60-1/4" & 25-1/2" & \(31^{\prime \prime}\) & 280 \\
\hline HS(X)18 080 & 18 & 80 & 74 & 3** & 60-1/4" & \(25-1 / 2^{\prime \prime}\) & \(31^{\prime \prime}\) & 280 \\
\hline HS(X)24 080 & 24 & 80 & 98 & 6 & 60-1/4" & 25-1/2" & \(31^{\prime \prime}\) & 280 \\
\hline HS(X)27 080 & 27 & 80 & 111 & 6 & 60-1/4" & \(25-1 / 2^{\prime \prime}\) & \(31^{\prime \prime}\) & 280 \\
\hline HS(X)30 080 & 30 & 80 & 123 & 6 & 60-1/4" & 25-1/2" & \(31^{\prime \prime}\) & 280 \\
\hline HS(X)36 080 & 36 & 80 & 148 & \(6^{* * *}\) & 60-1/4" & \(25-1 / 2^{\prime \prime}\) & \(31^{\prime \prime}\) & 280 \\
\hline HS(X)40 080 & 40.5 & 80 & 166 & 9 & 60-1/4" & 25-1/2" & \(31^{\prime \prime}\) & 280 \\
\hline HS(X)45 080 & 45 & 80 & 194 & 9 & 60-1/4" & \(25-1 / 2^{\prime \prime}\) & \(31^{\prime \prime}\) & 280 \\
\hline HS(X)54 080 & 54 & 80 & 221 & 9 & 60-1/4" & 25-1/2" & \(31^{\prime \prime}\) & 280 \\
\hline HS(X)06 119 & 6 & 119 & 25 & 3 & 62-1/4" & 29-1/2" & \(35^{\prime \prime}\) & 390 \\
\hline HS(X)09 119 & 9 & 119 & 37 & 3 & 62-1/4" & 29-1/2" & \(35^{\prime \prime}\) & 390 \\
\hline HS(X)12 119 & 12 & 119 & 49 & 3 & 62-1/4" & 29-1/2" & \(35^{\prime \prime}\) & 390 \\
\hline HS(X)13 119 & 13.5 & 119 & 55 & 3 & 62-1/4" & 29-1/2" & \(35^{\prime \prime}\) & 390 \\
\hline HS(X)15 119 & 15 & 119 & 61 & 3 & 62-1/4" & 29-1/2" & \(35^{\prime \prime}\) & 390 \\
\hline HS(X)18 119 & 18 & 119 & 74 & 3** & 62-1/4" & 29-1/2" & \(35^{\prime \prime}\) & 390 \\
\hline HS(X)24 119 & 24 & 119 & 98 & 6 & 62-1/4" & 29-1/2" & \(35^{\prime \prime}\) & 390 \\
\hline HS(X)27 119 & 27 & 119 & 111 & 6 & 62-1/4" & 29-1/2" & \(35^{\prime \prime}\) & 390 \\
\hline HS(X)30 119 & 30 & 119 & 123 & 6 & 62-1/4" & 29-1/2" & \(35^{\prime \prime}\) & 390 \\
\hline HS(X)36 119 & 36 & 119 & 148 & \(6^{* * *}\) & 62-1/4" & 29-1/2" & \(35^{\prime \prime}\) & 390 \\
\hline HS(X)40 119 & 40.5 & 119 & 166 & 9 & 62-1/4" & 29-1/2" & \(35^{\prime \prime}\) & 390 \\
\hline HS(X)45 119 & 45 & 119 & 194 & 9 & 62-1/4" & 29-1/2" & \(35^{\prime \prime}\) & 390 \\
\hline HS(X)54 119 & 54 & 119 & 221 & 9 & 62-1/4" & 29-1/2" & \(35^{\prime \prime}\) & 390 \\
\hline
\end{tabular}
\({ }^{* *} 208 \mathrm{~V}\) models are configured with 6 elements, \({ }^{* * *} 208 \mathrm{~V}\) models are configured with 9 elements, Note: 208V - 54 KW models are factory assembled only. They are not field convertible.
\begin{tabular}{lll}
\hline AGENDA ITEM SUMMARY & Meeting Date: & 10/5/2021 \\
& Meeting Type: & Regular Meeting \\
& Staff Contact/Dept.: & Jeff Paschall, DPW \\
& Staff Phone No: & \(541-726-1674\) \\
& Estimated Time: & 10 Minutes \\
S P R I N G F I E L D & Council Goals: & \begin{tabular}{l} 
Maintain and Improve Infrastructure \\
and Facilities
\end{tabular} \\
PLANNING COMMISSION & & \\
\hline \hline
\end{tabular}
\begin{tabular}{ll} 
ITEM TITLE: & 2023-2027 CAPITAL IMPROVEMENT PROGRAM, A COMMUNITY REINVESTMENT \\
& PLAN
\end{tabular}
\begin{tabular}{ll}
\hline ACTION & CONDUCT A PUBLIC HEARING ON THE CAPITAL IMPROVEMENT PROGRAM (CIP). \\
REQUESTED: & \\
& AFTER PUBLIC INPUT, FORWARD RECOMMENDATION OF THE 2023-2027 CAPITAL \\
& IMPROVEMENT PROGRAM, A COMMUNITY REINVESTMENT PLAN TO THE CITY \\
& COUNCIL.
\end{tabular}

\section*{ISSUE}

STATEMENT:

Draft project lists have been prepared for the City of Springfield's 2023-2027 CIP - A Community Reinvestment Plan. The lists were presented to the Planning Commission during the September \(21^{\text {st }}\) work session for discussion and comment. It is now being brought to the Planning Commission to hold a public hearing, provide final comments and a recommendation to forward the CIP to the City Council. The City Council will review the CIP at their November \(1^{\text {st }}\) work session with consideration for final adoption December 6, 2021.

\section*{ATTACHMENTS: 1. Communication Memorandum}
2. Draft 2023-2027 Capital Improvement Program - A Community Reinvestment Plan Project Lists
3. Citizen Requests Summary
4. CIP Final Order

\section*{DISCUSSION:}

Draft project lists have been compiled for the City of Springfield 2023-2027 CIP. Since the Planning Commission reviewed the draft list at the September \(21^{\text {st }}\) work session, the Aspen Street Improvements project has been added. This reflects negotiations with Lane County for funding to complete the improvements as well as jurisdictional transfer to the City. The proposal is ready for City Council review and approval which warrants inclusion in the CIP.

The City of Springfield's Capital Improvement Program (CIP) is a five-year Community Reinvestment Plan that describes the near-term program for funding, evaluation, and construction of City owned and operated public facilities. A fundamental purpose of the CIP is to facilitate the efficient use of capital resources to maintain, improve, and expand City assets. The underlying concept is to strategically prioritize and program these resources to extend the useful life of existing assets, replace assets before failure, and to support growth with timely expansion.

As a reference, the Planning Commission Memorandum from the September 21, 2021 work session is included as Attachment 1.

After hearing public comments, Staff recommends that the Planning Commission support the draft 2023-2027 CIP and recommend it for Council review and adoption.
\begin{tabular}{lll}
\hline COMMUNICATION MEMORANDUM & \begin{tabular}{l} 
Meeting Date: \\
Meeting Type:
\end{tabular} & \begin{tabular}{l} 
9/21/2021 \\
Regular Meeting
\end{tabular} \\
& Staff Contact/Dept.: & Jeff Paschall/DPW \\
& Staff Phone No: & 541-726-1674 \\
& Estimated Time: & 30 Minutes \\
S P R I N G F I E L D & Council Goals: & Maintain and Improve \\
PLANNING COMMISSION & & Infrastructure and \\
& & Facilities \\
\hline \hline ITEM TITLE: & 2023-2027 CAPITAL IMPROVEMENT PROGRAM, A COMMUNITY \\
& REINVESTMENT PLAN & \\
\hline ACTION & Review and provide direction for the recommended five-year Capital Improvement \\
REQUESTED: & Program (CIP).
\end{tabular}
\begin{tabular}{ll}
\hline ISSUE & \begin{tabular}{l} 
Draft Project lists have been prepared for the City of Springfield's 2023-2027 CIP - A \\
Community Reinvestment Plan. The lists are being brought to the Planning \\
Commission for review and discussion with the Planning Commission. Staff will bring \\
the CIP back to the Planning Commission October 5 5
\end{tabular} \\
recommendation to forward to the City Council.
\end{tabular}

\section*{ATTACHMENTS: 1. Draft 2023-2027 Capital Improvement Program - A Community Reinvestment Plan Project Lists}

DISCUSSION: The City of Springfield's Capital Improvement Program (CIP) is a five-year Community Reinvestment Plan that describes the near-term program for funding, evaluation, and construction of City owned and operated public facilities. A fundamental purpose of the CIP is to facilitate the efficient use of capital resources to maintain, improve, and expand City assets. The underlying concept is to strategically prioritize and program these resources to extend the useful life of existing assets, replace assets before failure, and to support growth with timely expansion.

The CIP is typically updated on a biennial schedule, however due to the many unforeseen events over the last year, the update did not follow the traditional schedule and process. In addition, the traditional CIP update schedule was not well aligned with the City's budget calendar, with the draft Capital Budget completed before adoption of the CIP. Council agreed to update the schedule so that the CIP can be adopted in the fall prior to preparation of the Capital Budget during the winter/spring.

The CIP is an intermediate step in a process that originates with long term planning activities that anticipate the need for public facilities at least 20 years into the future and concludes with the adoption of the annual Capital Budget to appropriate funds to construction projects. Operation and maintenance cost is separately included in the City's budget.

As the interim step in the process, the CIP identifies the facilities concepts that may reasonably be expected to be required in the next five years, refines those concepts, and provides a priority list of projects. Priority projects are selected from the long list of needed capital improvements identified in the various master plans and refinement plans. The draft project lists are then presented to both the Planning Commission and the City Council for public review and comment prior to adoption by the City Council.

Over the last decade, the City has seen the wastewater and stormwater funds stabilize, which has supported completion of several projects and funding to be programmed for the next suite of projects identified within the City's adopted master plans. As an example, nearly all of the preservation, repair, and replacement projects identified in the 2008 Wastewater Master Plan have been completed. Street and Transportation funds
have not seen growth to keep pace with operating costs and provide for robust capital spending. The City relies on federal and state funding sources to support a majority of street and transportation projects and relies on street fund revenues and systems development charges to provide required match to outside funding sources.

The project section of the 2023-2027 CIP is organized by asset system with three sections for each system. The first section is a table that has details for the projects that are either in the current capital budget or have been completed since the last CIP update. The next section is the project detail sheets for those projects proposed to be programmed over the next five-year cycle. The last section is another table detailing the list of currently unfunded or partially funded projects. As appropriate resources become available or potential grant opportunities are identified these lists will be used to match projects with those priorities.

Stormwater - In review of the current capital budget and the previous CIP, a majority of the projects have been placed into a hold status. This is due to focusing limited capital delivery staffing resources to delivery of the 2018 GO Bond street preservation projects, as well as federal aid funded projects such as Mill Street Reconstruction. However, water quality initiatives are being advanced as many of the street projects incorporate improvements to treat runoff from street surfaces.

Street and Transportation - Currently all but one of the street segments scheduled for preservation through the citizen approved five-year general obligation bond is completed or in active construction. The final segment (Centennial Boulevard from Aspen St. to Prescott St.) is anticipated to be under construction in the spring of 2022. Several safety and pedestrian projects were also completed over the past three years, and many others are in the design phase with construction anticipated in 2022 or 2023.

Wastewater - Several unplanned sewer projects have been completed over the last couple of years as issues have been identified through routine inspection by operations staff, or through other project work. The most recent example is the repair of a broken pipe as part of the Mohawk Boulevard preservation project. Several other projects are currently in the design phase with anticipated construction in either 2022 or 2023. There are two pipeline rehabilitation projects proposed in the 2023-2027 CIP, that have been identified through the Flow Monitoring Analysis project. Additionally, with the completion of the hydraulic model update, staff is planning to have a consultant under contract in early 2022 to complete an updated Wastewater Master Plan.

Buildings and Facilities - Available funding for building and facilities projects is very limited so there is a long list of identified unfunded projects or programs. However, upgrades to the fuel facility storm system and a building assessment at the Booth Kelly site were completed.

\section*{FINANCIAL IMPACT:}

The CIP does not carry budget authority. It is, however, a valuable planning tool used to guide staff, the Budget Committee, and the City Council in creating the annual budget to fund priority projects.

FY20-FY22 Capital Project Status Update - Stormwater
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Project Title & Project Number &  & Project Category & Project Status & FY22 Budget (\$ in Thousands) & Total Cost to Complete & Notes \\
\hline 5th St./EWEB Path Pipe Upgrade & P21124 & X & Upgrades & On-Hold & \$112 & & \\
\hline Booth Kelly Stormwater Drainage Plan Implementation & P50234 & X & Upgrades & Not Started & \$150 & & \\
\hline Irving Slough Improvements & P21138 & X & Water Quality & Not Started & \$785 & & \\
\hline 2021 Maintenance Hole Rehab & P21168 & & Repair and Preservation & Design & \$75 & & Construction planned for FY22 \\
\hline Channel 6 Master Plan Implementation & P41020 & X & Upgrades & On-Hold & \$799 & & \\
\hline Stormwater Master Plan Update & P41021 & X & Studies & Not Started & \$0 & & \\
\hline Glenwood Stormwater Master Plan & P41042 & X & Studies & Planning & \$100 & & \\
\hline 42nd Street Levee Study & P41044 & X & Flood Control & Planning & \$534 & & \\
\hline Glenwood Park Blocks & P41045 & X & Studies & Not Started & \$50 & & \\
\hline Stormwater Repair & P61002 & X & Repair and Preservation & \begin{tabular}{l}
Ongoing \\
Program
\end{tabular} & \$500 & & \\
\hline Channel Improvement & P61004 & X & Water Quality & Ongoing Program & \$1,092 & & \\
\hline MS4 Permit Implementation & P61005 & X & Water Quality & \begin{tabular}{l}
Ongoing \\
Program
\end{tabular} & \$40 & & \\
\hline Riparian Land Management & P61006 & X & Water Quality & Ongoing Program & \$500 & & \\
\hline HOA Water Quality Facilities & P61013 & X & Water Quality & \begin{tabular}{l}
Ongoing \\
Program
\end{tabular} & \$85 & & \\
\hline 2016 Manhole Surface Repair & P21131 & & Repair and Preservation & Completed & & \$38,824 & Constructed in FY20 \\
\hline Fuel Facility Stormwater Upgrade & P21121 & X & Upgrades & Completed & & \$37,480 & Constructed in FY20 \\
\hline Over-Under Emergency Repair & P21163 & & Repair and Preservation & Completed & & \$121,243 & Constructed in FY20 \\
\hline
\end{tabular}

\section*{Stormwater}

\section*{Drainage Repair}

\section*{Department Development and Public Works}

\section*{Project Description:}

This program involves the rehabilitation of Springfield drainage systems; to repair or replace older pipe in the system and solve flooding problems and reduce street surface failures due to poor drainage. This program also includes rehabilitation of catch basins and culverts to prevent flooding, and the contractual cleaning of large storm sewer pipe. Potential projects include:

\section*{Project Status:}

Ongoing Program

\section*{Specific Plans/Policies Related to this Project:}

Springfield Stormwater Management Plan
Stormwater Master Plan
DEQ Stormwater Discharge Permit
Asset Management Program
Natural Hazard Mitigation Plan
Capital Costs (\$ in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Stormwater Capital & \$150 & \$150 & \$150 & \$150 & \$150 & \$750 \\
\hline Stormwater Reimbursement SDC & \$50 & \$50 & \$50 & \$50 & \$50 & \$250 \\
\hline Total & \$200 & \$200 & \$200 & \$200 & \$200 & \$1,000 \\
\hline
\end{tabular}

\section*{Stormwater}

\section*{Channel Improvement}

\section*{Department Development and Public Works}

\section*{Project Description:}

This project is intended to provide improvements to key drainage ways to address barriers to fish passage, and to correct previous channel modifications that have caused deterioration of flow capacity, water quality, and fish habitat functions. These improvements include culvert replacements or retrofits, road crossing and outfall modifications, and channel restoration. The adoption of the Springfield Total Maximum Daily Load Implementation Plan identifies an additional temperature benefit from channel restoration and shading.

\section*{Project Status:}

Ongoing Program

\section*{Specific Plans/Policies Related to this Project: \\ Springfield Stormwater Management Plan \\ Stormwater Master Plan \\ DEQ Stormwater Discharge Permit \\ Asset Management Program \\ Natural Hazard Mitigation Plan \\ Total Maximum Daily Load (TMDL) Implementation Plan \\ Capital Costs (\$ in thousands)}
\begin{tabular}{|lrrrrrr|}
\hline Fund & \(\mathbf{2 0 2 3}\) & \(\mathbf{2 0 2 4}\) & \(\mathbf{2 0 2 5}\) & \(\mathbf{2 0 2 6}\) & \(\mathbf{2 0 2 7}\) & Total \\
\cline { 2 - 8 } & & \(\$ 80\) & \(\$ 80\) & \(\$ 80\) & \(\$ 80\) & \(\$ 80\) \\
\(\$ 400\) \\
Stormwater Capital & \(\$ 20\) & \(\$ 20\) & \(\$ 20\) & \(\$ 20\) & \(\$ 20\) & \(\$ 100\) \\
Stormwater Reimbursement SDC & & & & & & \\
\cline { 2 - 8 } & \(\$ 100\) & \(\$ 100\) & \(\$ 100\) & \(\$ 100\) & \(\$ 100\) & \(\$ 500\) \\
\hline
\end{tabular}

\section*{Stormwater}

\author{
Water Quality
}

\section*{MS4 Permit Requirements}

\section*{Department Development and Public Works}

\section*{Project Description:}

Develop and implement programs and projects to comply with the National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) Discharge requirements. In 2003, the City applied for an MS4 permit from the Oregon Department of Environmental Quality (DEQ), which authorizes the City to lawfully discharge stormwater to the McKenzie and Willamette Rivers and their tributaries. The Permit was renewed in 2021 and requires the City to implement programs and capital projects that improve stormwater quality. Data show that stormwater in Springfield waterways routinely violates water quality standards established to protect human health anc aquatic life. This project provides for minor capital improvements and/or capital equipment purchases necessary and appropriate to address high priority water quality problem areas.

\section*{Project Status:}

Ongoing Program

\section*{Specific Plans/Policies Related to this Project:}

Springfield Stormwater Management Plan
Stormwater Master Plan
DEQ Stormwater Discharge Permit
Total Maximum Daily Load (TMDL) Implementation Plan
Capital Costs (\$ in thousands)
\begin{tabular}{|lrrrrrr|}
\hline Fund & \(\mathbf{2 0 2 3}\) & \(\mathbf{2 0 2 4}\) & \(\mathbf{2 0 2 5}\) & \(\mathbf{2 0 2 6}\) & \(\mathbf{2 0 2 7}\) & Total \\
\cline { 2 - 8 } & Stormwater Capital & \(\$ 20\) & \(\$ 20\) & \(\$ 20\) & \(\$ 20\) & \(\$ 20\) \\
Stormwater Reimbursement SDC & \(\$ 20\) & \(\$ 20\) & \(\$ 20\) & \(\$ 20\) & \(\$ 20\) & \(\$ 100\) \\
& & & & & & \\
\cline { 2 - 8 } & \(\$ 40\) & \(\$ 40\) & \(\$ 40\) & \(\$ 40\) & \(\$ 40\) & \(\$ 200\) \\
\hline
\end{tabular}

\section*{Stormwater}

\author{
Water Quality
}

\section*{Riparian Land Management}

\section*{Department Development and Public Works}

\section*{Project Description:}

This project provides funding to purchase riparian area lands from private property owners where needed to meet City and regulatory objectives for water quality, stormwater management, flood control and habitat protection. It also provides funding for consultant services to evaluate riparian buffer areas, City and other activities affecting them. Property acquisitions will typically result in increased operational spending to maintain city owned property. Projects developed on property acquired may, however, produce savings through reduced spending for flood control, water quality improvement, and wetland mitigation activities. Project funding levels have been reduced to conform to eligibility levels for improvement SDCs. Council adoption and implementation of a reimbursement SDC may permit restoration of prior funding levels.

\section*{Project Status:}

Ongoing Program

\section*{Specific Plans/Policies Related to this Project: \\ Springfield Stormwater Management Plan \\ Stormwater Master Plan \\ DEQ Stormwater Discharge Permit \\ Total Maximum Daily Load (TMDL) Implementation Plan \\ Capital Costs (\$ in thousands)}
\begin{tabular}{|lrrrrrr|}
\hline Fund & \(\mathbf{2 0 2 3}\) & \(\mathbf{2 0 2 4}\) & \(\mathbf{2 0 2 5}\) & \(\mathbf{2 0 2 6}\) & \(\mathbf{2 0 2 7}\) & Total \\
\cline { 2 - 8 } & Stormwater Capital & \(\$ 15\) & \(\$ 15\) & \(\$ 15\) & \(\$ 15\) & \(\$ 15\) \\
Stormwater Reimbursement SDC & \(\$ 13\) & \(\$ 13\) & \(\$ 13\) & \(\mathbf{\$ 1 3}\) & \(\mathbf{\$ 1 3}\) & \(\mathbf{\$ 6 5}\) \\
& & & & & & \\
\cline { 2 - 8 } & \(\$ 28\) & \(\$ 28\) & \(\$ 28\) & \(\$ 28\) & \(\$ 28\) & \(\mathbf{\$ 1 4 0}\) \\
\hline
\end{tabular}

\section*{Stormwater}

\author{
Water Quality
}

\section*{HOA Water Quality Facilities (WQF)}

\section*{Department Development and Public Works}

\section*{Project Description:}

There are approximately 40 WQFs in subdivisions that were built between 1993 and 2010 that are privately owned by HOAs or another private entity (individual residents, the original developer, etc.). The City has taken a progressively more active role in maintaining these facilities over the past five years. With the approval of Council in 2013, the City's Operations Division hires a temporary work crew each summer to manage vegetation in the facilities and ensure they are functioning properly. This capital program will begin setting aside funds to take over and bring into compliance selected privately owned water quality facilities.

\section*{Project Status:}

Ongoing Program
Specific Plans/Policies Related to this Project:
Springfield Stormwater Management Plan
Stormwater Master Plan
DEQ Stormwater Discharge Permit
Total Maximum Daily Load (TMDL) Implementation Plan
Capital Costs (\$ in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Stormwater Capital & \$85 & \$85 & \$85 & \$85 & \$85 & \$425 \\
\hline Stormwater Reimbursement SDC & & & & & & \\
\hline Total & \$85 & \$85 & \$85 & \$85 & \$85 & \$425 \\
\hline
\end{tabular}

\section*{Stormwater}

\section*{Expansion}

\section*{Glenwood Stormwater Planning/Implementation}

\section*{Department Development and Public Works}

\section*{Project Description:}

To improve the stormwater system including pipe and open channel improvements, for flood control and water quality improvements at various locations within Glenwood as identified in the Stormwater Facilities Master Plan (SWFMP), and to support implementation of the existing refinement plan for Glenwood. This project has involved evaluation of the Glenwood area and identification of new stormwater outfall locations and construction/enhancement of existing outfall structures to the Willamette River. Specific projects will be implemented as development occurs, consistent with the Public Facilities and Services Plan (PFSP). This project is moving into the next phase which involves preliminary design and initiating permitting activities to advance development.

\section*{Project Status:}

Planning
```

Specific Plans/Policies Related to this Project:
Springfield Stormwater Management Plan
Stormwater Master Plan
DEQ Stormwater Discharge Permit
Total Maximum Daily Load (TMDL) Implementation Plan
Glenwood Refinement Plan
Capital Costs (\$ in thousands)

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Stormwater Capital & \$220 & & & & & \$220 \\
\hline Sormwater Improvement SDC & \$30 & & & & & \$30 \\
\hline Total & \$250 & \$0 & \$0 & \$0 & \$0 & \$250 \\
\hline
\end{tabular}

\section*{Stormwater}

\section*{Irving Slough Headgate to Outfalls}

\section*{Department Development and Public Works}

\section*{Project Description:}

The project consists of open channel improvements in multiple locations for flood control and the construction of a stormwater storage facility. Water quality improvements will be incorporated into the project where applicable to meet regulatory requirements. The Stormceptor at Olympic Street will also be replaced. This project will be constructed as part of the N. 42nd Street Improvements Project

\section*{Project Status:}

Not Started

\section*{Specific Plans/Policies Related to this Project:}

Springfield Stormwater Management Plan
Stormwater Master Plan
DEQ Stormwater Discharge Permit
Total Maximum Daily Load (TMDL) Implementation Plan

\section*{Capital Costs (\$ in thousands)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Stormwater Capital & & \$440 & \$750 & & & \$1,190 \\
\hline Sormwater Improvement SDC & & & & & & \$0 \\
\hline Total & \$0 & \$440 & \$750 & \$0 & \$0 & \$1,190 \\
\hline
\end{tabular}

\section*{Stormwater}

Flood Control

\section*{S. 67th Street Stormwater Improvements}

\section*{Department Development and Public Works}

\section*{Project Description:}

Pipe improvements for flood control. Currently, during heavy rainfall the storm system surcharges at 67th and Main Street flooding private property.

\section*{Project Status:}

Not Started

\section*{Specific Plans/Policies Related to this Project:}

Stormwater Master Plan
DEQ Stormwater Discharge Permit
Natural Hazard Mitigation Plan
Capital Costs (\$ in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Stormwater Capital & & & & \$408 & & \$408 \\
\hline Sormwater Improvement SDC & & & & \$42 & & \$42 \\
\hline Total & \$0 & \$0 & \$0 & \$450 & \$0 & \$450 \\
\hline
\end{tabular}

\section*{Stormwater}

\section*{Expansion}

\section*{Jasper-Natron}

\section*{Department Development and Public Works}

\section*{Project Description:}

The Jasper-Natron area requires comprehensive evaluation for future stormwater infrastructure needs to support future growth and meet the City's DEQ Stormwater Discharge Permit requirements. The first phase of the project will completing the analysis to develop a master plan for the basin, followed by implementation either by private developments, or City sponsored initiatives. The funding identified is the dudy and plan development.

\section*{Project Status:}

Not Started
```

Specific Plans/Policies Related to this Project:
Stormwater Master Plan
DEQ Stormwater Discharge Permit
Natural Hazard Mitigation Plan
Total Maximum Daily Load (TMDL) Implementation Plan
Capital Costs (\$ in thousands)

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Stormwater Capital & & & & & \$350 & \$350 \\
\hline Sormwater Improvement SDC & & & & & \$350 & \$350 \\
\hline Total & \$0 & \$0 & \$0 & \$0 & \$700 & \$700 \\
\hline
\end{tabular}

\section*{Stormwater}

\section*{Lower Mill Race}

\section*{Department Development and Public Works}

\section*{Project Description:}

Design and construct a daylight or diversion pretreatment structure, an offline water quality treatment facility, and a green pipe open channel improvement. Additional detail for this multi-faceted project are in WQ-12 project of the Stormwater Facilities Master Plan.

\section*{Project Status:}

Not Started
\begin{tabular}{ll} 
Specific Plans/Policies Related to this Project: & \\
Stormwater Master Plan & Booth Kelly Stormwater Plan \\
DEQ Stormwater Discharge Permit & Stormwater Management Plan \\
Natural Hazard Mitigation Plan & Mill Race Ecosystem Plan \\
Total Maximum Daily Load (TMDL) Implementation Plan &
\end{tabular}

Capital Costs (\$ in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Stormwater Capital & & & & & \$500 & \$500 \\
\hline Sormwater Improvement SDC & & & & & \$73 & \$73 \\
\hline Total & \$0 & \$0 & \$0 & \$0 & \$573 & \$573 \\
\hline
\end{tabular}

\section*{Stormwater}

\section*{Studies}

\section*{Mill Race Firm Update}

\section*{Department Development and Public Works}

\section*{Project Description:}

Using consulting services, prepare a scope document for a new flood plain study to update the Flood Insurance Rate Map (FIRM) for the Springfield Mill Race from the inlet at Clearwater Park to the outlet at Island Park to incorporate construction changes.

\section*{Project Status:}

Not Started

\section*{Specific Plans/Policies Related to this Project:}

Natural Hazard Mitigation Plan
Continued Participation in the National Flood Insurance Program
Capital Costs (\$ in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Stormwater Capital & & & & & \$200 & \$200 \\
\hline Total & \$0 & \$0 & \$0 & \$0 & \$200 & \$200 \\
\hline
\end{tabular}

\section*{Stormwater}

\section*{Studies}

\section*{Over-Under Channel Phase 2}

\section*{Department Development and Public Works}

\section*{Project Description:}

The Over-Under Channel system has approximately 2,200 linear feet of woodstave pipe, and 1,000 linear feet of corrugated metal pipe (CMP) remaining under the existing channel. Phase 2 is intended to replace the existing woodstave and remaining CMP with a new pipe, as well as provide a parallel pipe for additional capacity as recommended in the 2008 Stormwater Facility Master Plan and the Over-Under Channel investigative report. The remaining pipe to be replaced runs from 10th Street east to 14th Street across Springfield School District property and Willamalane Park property.

\section*{Project Status:}

Not Started

\section*{Specific Plans/Policies Related to this Project:}

Stormwater Master Plan

\section*{Capital Costs (\$ in thousands)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Stormwater Capital & & & & & \$500 & \$500 \\
\hline Sormwater Improvement SDC & & & & & \$10 & \\
\hline Total & \$0 & \$0 & \$0 & \$0 & \$510 & \$500 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Unfunded Projects List - Stormwater} \\
\hline Project Title & Project Category & Project Status & Estimated Funding Need & Notes \\
\hline Gray Creek/72nd Street & Expansion & Not Programmed-Pending Funding & \$6,000,000 & Construction of new channels and other improvements to accommodate runoff from future development \\
\hline Corporate Way Pond & Studies & Not Programmed-Pending Funding & \$250,000 & Develop a vegataion management plan SWMP Project 43-WQ \\
\hline Cedar Creek Intake Reconstruction & Water Quality & Not Programmed-Pending Funding & \$1,000,000 & Restoration work to improve and manage year round flow volumes \\
\hline North Willamette Heights & Studies & Not Programmed-Pending Funding & \$100,000 & Develop a basin specific master plan to guied development and redevelopment \\
\hline Jasper Slough & Restoration & Not Programmed-Pending Funding & \$100,000 & Culvert and open channel improvements along with riparian vegetation restoration \\
\hline Woodstave Removal & Upgrades & Not Programmed-Pending Funding & \$750,000 & This pipeline is located south of S. A Street and is complicated by the fact portions of the line are under existing buildings and lack public access easements \\
\hline S and T Streets Drainage & Upgrades & Not Programmed-Pending Funding & \$750,000 & Upgrade project to improve inadequate storm system and alleviate localized flooding. Reference Channel 6 Study and Master Plan \\
\hline I-5 N. Gateway/Sports Way Channel & Water Quality & Not Programmed-Pending Funding & \$750,000 & Construct a combination flood control/water quality facility adjacent to the Gateway Natural Resource area. \\
\hline Q Street Channel & Water Quality & Not Programmed-Pending Funding & \$750,000 & Channel Repair, riparian enhancement and shading to address temperature issues in the TMDL. \\
\hline Maple Island Slough & Studies & Not Programmed-Pending Funding & \$650,000 & Evaluate capacity needs to support developments and develop a vegetation management plan. \\
\hline
\end{tabular}

FY20-FY22 Capital Project Status Update - Streets and Transportation
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Project Title & \begin{tabular}{l}
Project \\
Number
\end{tabular} & \begin{tabular}{l}
In \\
Previous
\end{tabular} & Project Category & \begin{tabular}{l}
Project \\
Status
\end{tabular} & FY22 Budget (\$ in Thousands) & Total Cost to Complete & Notes \\
\hline Virginia/Daisy Bicycle Blvd. Phase 1 & P21114 & X & Safety & Completed & & \$1,406 & Construction of Phase 1 (42nd Pl. to 51st PI.) improvements completed in FY21 \\
\hline Main St. Pedestrian Crossings Phase 3 & P21142 & X & Safety & Completed & & \$316 & Final crossing location constructed in FY20 \\
\hline Filling the Gaps - Sidewalk Infill Project & P21147 & X & Safety & On-Hold & \$225 & & Majority of funding received through State gants \\
\hline 14th St. and Commercial St. Overlays & P21150 & X & Repair and Preservation & Completed & & \$335 & Constructed in FY20 \\
\hline Centennial Blvd Overlay & P21151 & X & Repair and Preservation & Design & \$719 & & Construction planned for FY22 \\
\hline \begin{tabular}{l}
High Banks Rd./58th St./ \\
Thurston Rd. Overlay
\end{tabular} & P21152 & X & Repair and Preservation & Construction & \$999 & & Active Construction with completion in FY22 \\
\hline S. 28th Street Paving & P21155 & X & Upgrades & Design & \$1,272 & & 30\% design review complete \\
\hline Mill Street Reconstruction & P21156 & x & Repair and Preservation & Planning & \$40 & & Consultant contract executed in FY22 \\
\hline Mohawk blvd./Olympic St. Overlay & P21157 & x & Repair and Preservation & Construction & \$0 & & Active Construction with completion in FY22 \\
\hline Virginia/Daisy Bicycle Blvd. Phase 2-42nd St. Roundabout & P21159 & X & Safety & On-Hold & \$604 & & Design is scheduled to begin in late FY22 \\
\hline G Street, 21st St., and 5th \& M St. School crossing and ADA Improvements & P21161 & & Safety & Completed & & \$335 & Project as funded with federal CDBG funds and completed in FY21 \\
\hline 42nd St. Overlay & P21162 & X & Repair and Preservation & Completed & & \$400 & Constructed in FY22 \\
\hline Gateway/Kruse Improvements & P21165 & x & Safety & Design & \$0 & & \\
\hline Jasper Rd./Dondea RRFB & P21167 & & Safety & Design & \$0 & & Funded with Safe Routes To Schools (SRTS) grant funds \\
\hline City of Springfield Signal Enhancements & P21173 & & Upgrades & Design & & & \\
\hline Jasper/Filbert RRFB Crossing & P21174 & & Safety & Design & \$0 & & Funded with Safe Routes To Schools (SRTS) grant funds \\
\hline Slurry Seal 2021 & P21175 & X & Repair and Preservation & Completed & & \$350 & Completed in FY22 in through and IGA with Lane County \\
\hline Franklin OR 225 & P21176 & & Upgrades & Planning & \$60 & & Recently funded through reallocation of MPO funds \\
\hline
\end{tabular}

FY20-FY22 Capital Project Status Update - Streets and Transportation
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Project Title & \begin{tabular}{l}
Project \\
Number
\end{tabular} & \begin{tabular}{l}
In \\
Previous
\end{tabular} & Project Category & Project Status & \begin{tabular}{l}
FY22 Budget \\
(\$ in Thousands)
\end{tabular} & Total Cost to Complete & Notes \\
\hline Virginia/Daisy Bicycle Blvd. Phase 1 & P21114 & X & Safety & Completed & & \$1,406 & Construction of Phase 1 (42nd Pl. to 51st PI.) improvements completed in FY21 \\
\hline West D Street Bike Improvements & P41049 & x & Safety & Design & & \$39 & Project identified and funded though the Walking-Biking Safety grant application \\
\hline Franklin Phase 2 Design & P41058 & x & Upgrades & Design & \$0 & & \\
\hline ADA Transition Projects & P61003 & X & Upgrades & Ongoing Program & \$50 & & \\
\hline Transportation Demand Management & P61007 & X & & Ongoing Program & & & Funds set aside to advance projects to enhance non-auto travel links thoughout the City. \\
\hline Traffic Control Projects & P61008 & X & & Ongoing Program & & & Funds set aside to advance intersection improvement projects. Example: S. 42nd St.\Daisy Intersetion. \\
\hline Gateway Area Traffic Improvements & P61009 & X & & Ongoing Program & & & Funds set aside to advance project in the Gateway area to increase capacity. \\
\hline
\end{tabular}

\section*{Streets and Transportation}

\section*{Upgrades}

\section*{ADA Transition Projects}

\section*{Department Development and Public Works}

\section*{Project Description:}

The Americans with Disabilities Act of 1990 requires the City to maintain a "Transition Plan" that details how it will bring facilities that were not in compliance at the adoption of the act, up to the newly adopted standards. Currently, the City policy is to correct defects as projects occur and to make improvements as requests are received from citizens who make their need known. This project will set aside funds to be used for high priority locations that are identified, and will allow the City to respond in a timely manner to those requests.

\section*{Project Status:}

Not Started

\section*{Specific Plans/Policies Related to this Project:}

Springfield TSP
Regulatory Requirements

\section*{Capital Costs (\$ in thousands)}
\begin{tabular}{|lrrrrrr|}
\hline Fund & & \(\mathbf{2 0 2 3}\) & \(\mathbf{2 0 2 4}\) & \(\mathbf{2 0 2 5}\) & \(\mathbf{2 0 2 6}\) & \(\mathbf{2 0 2 7}\) \\
\cline { 2 - 8 } & Total \\
Street Capital & \(\$ 50\) & \(\$ 50\) & \(\$ 50\) & \(\$ 50\) & \(\$ 50\) & \(\$ 250\) \\
Transportation Reimbursement SDC & \(\$ 50\) & \(\$ 50\) & \(\$ 50\) & \(\$ 50\) & \(\$ 50\) & \(\$ 250\) \\
& & & & & & \\
\cline { 2 - 8 } & \(\$ 100\) & \(\$ 100\) & \(\$ 100\) & \(\$ 100\) & \(\$ 100\) & \(\$ 500\) \\
\hline
\end{tabular}

\section*{Streets and Transportation}

\section*{Upgrades}

\section*{Transportation Demand Management}

\section*{Department Development and Public Works}

\section*{Project Description:}

The project includes match funding for other transportation options projects to enhance non-auto travel links in the community such as Street multi-use paths, bike lane striping, enhancements to pedestrian facilities, and other activities that promote non-single auto travel choices.

\section*{Project Status:}

Not Started

\section*{Specific Plans/Policies Related to this Project:}

Springfield TSP
State Legislation

TDM Goals
Regional Transportation Plan

Capital Costs (\$ in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Transportation Improvement SDC & \$10 & \$10 & \$10 & \$10 & \$10 & \$50 \\
\hline Total & \$10 & \$10 & \$10 & \$10 & \$10 & \$50 \\
\hline
\end{tabular}

\section*{Streets and Transportation}

\section*{Upgrades}

\section*{Traffic Control Projects}

\section*{Department Development and Public Works}

\section*{Project Description:}

This project is for installation of new traffic signals and modification of existing signals or installation of roundabouts at various City intersections. Example intersections include: Thurston Rd. \& 66th St., 42nd St. \& Marcola Road, South 42nd \& Daisy St., South 40th \& Daisy St., 19th St. and Marcola Rd., and 28th St. \& Centennial Blvd. Signal modifications may include changing phase order, adding overlaps, and other enhancements to safety or efficiency like improved pedestrian crossings. Various striping and signing improvements may also be implemented under the Traffic Control Projects. Funding is set aside in this program and as projects are identified that fit into this category they are given an individual account and at that time another source of funding will be identified to match the allowable SDC funds.

\section*{Project Status:}

Not Started

\section*{Specific Plans/Policies Related to this Project:}

Springfield TSP
Regional Transportation Plan
Council Policy
Capital Costs (\$ in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Transportation Improvement SDC & \$35 & \$35 & \$35 & \$35 & \$35 & \$175 \\
\hline Total & \$35 & \$35 & \$35 & \$35 & \$35 & \$175 \\
\hline
\end{tabular}

\section*{Streets and Transportation}

\section*{Upgrades}

\section*{Gateway Area Traffic Improvements}

\section*{Department Development and Public Works}

\section*{Project Description:}

Transportation improvements at various locations in the Gateway area to increase capacity, relieve congestion, and improve safety. Funding is set aside in this program and as projects are identified that fit into this category they are given an individual account and at that time another source of funding is identified to match the allowable SDC funds.

\section*{Project Status:}

Not Started

\section*{Specific Plans/Policies Related to this Project:}

Springfield TSP
Council Goals

Gateway Traffic Capacity Analysis
I-5/Beltline Environmental Assessment

Capital Costs (\$ in thousands)
\begin{tabular}{|lllllllr|}
\hline Fund & \(\mathbf{2 0 2 3}\) & \(\mathbf{2 0 2 4}\) & \(\mathbf{2 0 2 5}\) & \(\mathbf{2 0 2 6}\) & \(\mathbf{2 0 2 7}\) & Total \\
\cline { 2 - 9 } & Transportation Improvement SDC & \(\$ 225\) & \(\$ 225\) & \(\$ 225\) & \(\$ 225\) & \(\$ 225\) & \(\$ 1,125\) \\
& & & & & & \\
\cline { 2 - 8 } & & \(\$ 225\) & \(\$ 225\) & \(\$ 225\) & \(\$ 225\) & \(\$ 225\) & \(\$ 1,125\) \\
\hline
\end{tabular}

\section*{Streets and Transportation}

\section*{Upgrades}

\section*{Intelligent Transportation Systems (ITS)}

\section*{Department Development and Public Works}

\section*{Project Description:}

ITS projects in various locations to increase communications, capacity, safety and traveler information. Funding is set aside in this program and as projects are identified that fit into this category they are given an individual account and at that time another source of funding will be identified to match the allowable SDC funds.

\section*{Project Status:}

Not Started

Specific Plans/Policies Related to this Project:
Regional ITS Operations \& Implementation Plan for Eugene-Springfield Metropolitan Area Springfield TSP
Capital Costs (\$ in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Transportation Improvement SDC & \$25 & \$25 & \$25 & \$25 & \$25 & \$125 \\
\hline Total & \$25 & \$25 & \$25 & \$25 & \$25 & \$125 \\
\hline
\end{tabular}

\section*{Streets and Transportation}

\section*{Local/Residential Street Preservation and Maintenenace}

\section*{Department Development and Public Works}

\section*{Project Description:}

A continuing street maintenance preservation effort by slurry and crack sealing of Local/Residential Street System performed by contract. In order to maintain the City's local street system approximately 5 to 8 miles should be crack sealed and slurry sealed annually. Funds prgrammed fund an annual slurry seal project.

\section*{Project Status:}

Not Started

Specific Plans/Policies Related to this Project:
Infrastructure Management System
Capital Costs (\$ in thousands)
\begin{tabular}{|llllllll|}
\hline Fund & \(\mathbf{2 0 2 3}\) & \(\mathbf{2 0 2 4}\) & \(\mathbf{2 0 2 5}\) & \(\mathbf{2 0 2 6}\) & \(\mathbf{2 0 2 7}\) & Total \\
\cline { 2 - 8 } Street Capital & \(\$ 150\) & \(\$ 150\) & \(\$ 150\) & \(\$ 150\) & \(\$ 150\) & \(\$ 750\) \\
& & & & & & \\
\cline { 2 - 8 } & & \(\$ 150\) & \(\$ 150\) & \(\$ 150\) & \(\$ 150\) & \(\$ 150\) & \(\$ 750\) \\
\hline
\end{tabular}

\section*{Upgrades}

\section*{42nd Street Operational, Safety, and Mobility Improvements}

\section*{Department Development and Public Works}

\section*{Project Description:}

Upgrade to address safety and operations, in particular for freight accessing the OR 126 Expressway-Freight Route and OR 126B-Main St. Upgrade the UP rail crossing serving the International Paper, Sierra Pine, and Weyerhaeuser industrial center, upgrade intersection control at the westbound OR 126 ramp terminal, add urban level lighting, add ADA-accessible connections from Olympic St. and Industrial Ave. to the McKenzie Levee Path, add left turn bay on 42nd St. at Industrial Ave and improve traffic signals at the eastbound OR 126 ramp terminal, Olympic Street and the International Paper driveways.

\section*{Project Status:}

Not Started

\section*{Specific Plans/Policies Related to this Project:}

Springfield 2030
Infrastructure Management System
Springfield TSP
Capital Costs (\$ in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline State Funds Transfer & \$12,000 & & & & & \$12,000 \\
\hline Total & \$12,000 & \$0 & \$0 & \$0 & \$0 & \$12,000 \\
\hline
\end{tabular}

\section*{Q Street Reconstruct - 5th to Pioneer Parkway East}

\section*{Department Development and Public Works}

\section*{Project Description:}

According to the most recent City of Springfield pavement condition index data, Q Street between 5th and Pioneer Parkway East is in poor condition and requires reconstruction curb to curb. As part of the project all facilities such as ADA feature will be brought into compliance.

\section*{Project Status:}

Not Started

Specific Plans/Policies Related to this Project:
Infrastructure Management System
Springfield TSP
Capital Costs (\$ in thousands)
\begin{tabular}{|lrrrrrrr|}
\hline Fund & & \(\mathbf{2 0 2 3}\) & \(\mathbf{2 0 2 4}\) & \(\mathbf{2 0 2 5}\) & \(\mathbf{2 0 2 6}\) & \(\mathbf{2 0 2 7}\) & Total \\
\cline { 2 - 7 } & Federal Aid Grant & \(\$ 637\) & & \(\$ 3,589\) & & \(\$ 4,226\) \\
Transportation Reimbursement SDC & \(\$ 73\) & & \(\$ 60\) & & \(\$ 133\) \\
Street Capital & & & \(\$ 351\) & & \(\$ 351\) \\
\cline { 2 - 8 } & & \(\$ 710\) & \(\$ 0\) & \(\$ 4,000\) & \(\$ 0\) & \(\$ 0\) & \(\$ 4,359\) \\
\hline
\end{tabular}

\section*{Streets and Transportation}

\section*{Safety}

\section*{Virginia- Daisy Bikeway -- 32nd Street RRFB}

\section*{Department Development and Public Works}

\section*{Project Description:}

Design and construct a rapid rectangular flashing beacon (RRFB) crossing at the intersection of 32nd St and Virginia. This was a key safety elemnt identified in the Virginia-Daisy Bikeway plan. Funding for this element was recently secured through reallocation of federal funds from another Springfield project.

\section*{Project Status:}

Not Started

\section*{Specific Plans/Policies Related to this Project: \\ Springfield TSP}

\section*{Capital Costs (\$ in thousands)}
\begin{tabular}{|lrrrrrrr|}
\hline Fund & 2023 & 2024 & \(\mathbf{2 0 2 5}\) & \(\mathbf{2 0 2 6}\) & \(\mathbf{2 0 2 7}\) & Total \\
\cline { 2 - 8 } & Federal Aid Grant & \(\$ 240\) & & & & & \(\$ 240\) \\
Transportation Reimbursement SDC & \(\$ 27\) & & & & & \(\$ 27\) \\
\cline { 2 - 8 } & & \(\$ 267\) & \(\$ 0\) & \(\$ 0\) & \(\$ 0\) & \(\$ 0\) & \(\$ 267\) \\
\hline
\end{tabular}

\section*{Streets and Transportation}

\section*{Repair and Preservation}

\section*{Aspen Street Improvements}

\section*{Department Development and Public Works}

\section*{Project Description:}

The City has negotiated jurisdictional os Aspen St. and Menlo Lp. Between Centennial Blvd. and Tamarack St. As part of the transfer agreement, the County is giving the City \(\$ 415,000\) to facilitate pavement improvments as well as facilities upgrades (e.g., sidewalks).

\section*{Project Status:}

Not Started

\section*{Specific Plans/Policies Related to this Project: \\ Infrastructure Management System}

Capital Costs (\$ in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Street Capital & \$415 & & & & & \$415 \\
\hline & & & & & & \$0 \\
\hline Total & \$415 & \$0 & \$0 & \$0 & \$0 & \$415 \\
\hline
\end{tabular}

Unfunded/Partial Funded Projects List - Streets and Transportation
\begin{tabular}{|c|c|c|c|c|}
\hline Project Title & Project Category & \begin{tabular}{l}
Project \\
Status
\end{tabular} & Estimated Funding Need & Notes \\
\hline Virginia-Daisy Bikeway Phase 3 & Upgrades & Not Programmed-Pending Funding & \$1,400,000 & Construction of Bicycle, pedestrian, and ADA improvements between S. 32nd Street and S. 42nd Street. \\
\hline Gateway-Beltline Intersection Improvements & Upgrades & Not Programmed-Pending Funding & \$20,000,000 & Phase 2 improvements currently outlined in the Revised Environmental Assessment (REA) include construction of a couplet. \\
\hline Signal System Mondernization & Upgrades & Not Programmed-Pending Funding & \(\$ 55,000\) on an annual basis & Upgrade program to keep City traffic signals up to date on technology \\
\hline S. 48th Street connection - Main to Daisy & Expansion & Not Programmed-Pending Funding & \$927,000 & Construction of this new road segment is delopment drive. \\
\hline Bridge Preservation & Repair and Preservation & Not Programmed-Pending Funding & \(\$ 50,000\) on an annual basis & This City owns 14 bridges that are inspected on a biennial schedule by ODOT. This program would facilitate completion of identified repair needs \\
\hline Downtown Distric Pedestrian Scale Lighting & Upgrades & Not Programmed-Pending Funding & \$7,600,000 & Complete all downtown lighting upgrade phases. \\
\hline Arterial/Collector Street Preservation Program & Repair and Preservation & Not Programmed-Pending Funding & \(\$ 1,000,000\) on an annual Basis & A continuing street maintenance effort of pavement sealing and/or overlay of the Arterial/Collector Street System \\
\hline Street Light Infill \& LPS Light Replacement/Upgrades & Upgrades & Not Programmed-Pending Funding & \$2,000,000 & Replace 2,720 existing low pressure sodium (LPS) lights with LED technology and reduce energy costs. \\
\hline Arterial/Collector Street Reconstruction Program & Restoration & Not Programmed-Pending Funding & \(\$ 1,000,000\) on an annual Basis & Within the City's Street inventory, the condition of approximately 24 miles of streets classified as a collector or arterial have deteriorated to the point that reconstruction of the structure is the only option \\
\hline Local/Residential Street Reconstruction & Restoration & Not Programmed-Pending Funding & \(\$ 300,000\) on an annual basis & Within the City's Street inventory, the condition of approximately 68 miles of local/residential streets has deteriorated to the point that reconstruction of the structure is the only option \\
\hline Maple Island Improvements & Upgrades & Not Programmed-Pending Funding & \$2,000,000 & This project will upgrade the roundabout at Maple Island Road and International Way. It will also extend the Maple Island Loop Road to the north along the Maple Island Slough. \\
\hline Intelligent Lighting Controls & Upgrades & Not Programmed-Pending Funding & \$700,000 & An Intelligent lighting system will monitor street light performance, enhancing operations and maintenance \\
\hline Main Street Lighting & Upgrades & Not Programmed-Pending Funding & \$700,000 & The project will add lighting to Main Street from 20th to 72nd by placing lights on existing poles where available and installing new poles where necessary \\
\hline Pedestrian Crossing Enhancements & Safety & Not Programmed-Pending Funding & \$750,000 & Several crossings have been identified that would receive a safety benefit from the installation of a RRFB (Rectangular Rapid Flashing Beacon) or a PHB (Pedestrian Hybrid Beacon). \\
\hline Signal Communications & Upgrades & Not Programmed-Pending Funding & \$500,000 & The project will evaluate central system software, fiber optic lines, wireless radio communication, and existing copper connections \\
\hline Bike Wayfinding \& Safety & Safety & Not Programmed-Pending Funding & \$100,000 & This project will add bicycle wayfinding signage and safety improvements around the City \\
\hline
\end{tabular}

Unfunded/Partial Funded Projects List - Streets and Transportation
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Project Title } & Project Category & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Project \\
Status
\end{tabular}} & \begin{tabular}{c} 
Estimated Funding \\
Need
\end{tabular} & \multicolumn{1}{c|}{\begin{tabular}{l} 
Notes
\end{tabular}} \\
\hline City Hall Bike Parking & Upgrades & Not Programmed-Pending Funding & \begin{tabular}{l} 
This project will add secure, long term bicycle parking underneath City \\
Hall. The project will offer bicycle commuters a secure parking location \\
that includes shelter from the elements
\end{tabular} \\
\hline Glenwood Riverfront Path & Expansion & Not Programmed-Pending Funding & \begin{tabular}{l} 
\$1,000,000
\end{tabular} & \begin{tabular}{l} 
The project will complete required Federal National Environmental Policy \\
Act (NEPA) documentation and approval for the new Glenwood Multi- \\
Use Riverfront Path, including locating the path alignment along the \\
Willamette River and completing pathway design
\end{tabular} \\
\hline
\end{tabular}

FY20-FY22 Capital Project Status Update - Wastewater
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Project Title & \begin{tabular}{l}
Project \\
Number
\end{tabular} & In Previous CIP & Project Category & Project Status & FY22 Budget (\$ in Thousands) & Total Cost to Complete (\$ in Thousands) & Notes \\
\hline Jasper Trunk - Phase 3 & P21065 & X & Expansion & Design & \$2,344 & & Design is currently at 60\%, Actively working on wetlands mitigation plan \\
\hline 2016 Manhole Surface Repair & P21131 & & Repair and Preser & Completed & & \$39 & Constructed in FY21 \\
\hline S. 28th Sewer Extension & P21166 & X & Expansion & Design & \$1,200 & & \begin{tabular}{l}
Project has been initiated to correspond with 28th Street CMAQ Paving. \\
Construction planned for FY23
\end{tabular} \\
\hline 42nd -48th Sewer Rehabilitation & P21170 & x & Repair and Preservation & Design & \$1,500 & & Construction planned for FY23 \\
\hline Crest Lane Sewer Ext. & P21171 & & Expansion & Completed & & \$44 & Constructed in FY21. Example of Watewater Repair funds (P61001) utilized. \\
\hline Flow Monitoring Analysis \& Plan & P41041 & X & Studies & Design & \$200 & & Work on Phase 3 microbasin modeling continues. Rehab projects have been identinfied and will be programmed in the CIP \\
\hline Wastwater Master Plan & P41062 & X & Studies & Planning & \$500 & & Request for proposals to be advertised in 2nd qtr of FY22 \\
\hline CMOM Planning \$ Implementation & P61000 & X & Repair and Preservation & Ongoing Program & \$3,200 & & Funds to be programmed to repair and preservation projects identified through modeling \\
\hline Wastewater Repair & P61001 & X & Repair and Preservation & Ongoing Program & \$500 & & Funds programmed each year for unforeseen emergency repair work. \\
\hline Local Sewer Extension & P61013 & X & Expansion & On-Hold & \$1,500 & & Funds set aside to extend wastewater service to annexed area within the City that are not currently served. \\
\hline
\end{tabular}

\section*{Wastewater Repair}

\section*{Department Development and Public Works}

\section*{Project Description:}

This project involves the contracted repair or replacement of sanitary sewers that require either emergency rehabilitation as a result of Sanitary Sewer Overflows or the prospect of impending system failures. The DPW Operations Division addresses an average of four (4) emergency repairs of this nature annually.

\section*{Project Status:}

Ongoing Program

\section*{Specific Plans/Policies Related to this Project: \\ Wastwater Master Plan \\ CMOM Program \\ Capital Costs (\$ in thousands)}
\begin{tabular}{|llllllr|}
\hline Fund & \(\mathbf{2 0 2 3}\) & \(\mathbf{2 0 2 4}\) & \(\mathbf{2 0 2 5}\) & \(\mathbf{2 0 2 6}\) & \(\mathbf{2 0 2 7}\) & Total \\
\cline { 2 - 7 } & Wastewater Capital & \(\$ 250\) & \(\$ 250\) & \(\$ 250\) & \(\$ 250\) & \(\$ 250\) \\
\(\$ 1,250\) \\
Wastewater Reimbursement SDC & \(\$ 250\) & \(\$ 250\) & \(\$ 250\) & \(\$ 250\) & \(\$ 250\) & \(\$ 1,250\) \\
& & & & & & \\
\cline { 2 - 8 } & \(\$ 500\) & \(\$ 500\) & \(\$ 500\) & \(\$ 500\) & \(\$ 500\) & \(\$ 2,500\) \\
\hline
\end{tabular}

\section*{Wastewater}

\section*{CMOM Planning \& Implementation}

\section*{Department Development and Public Works}

\section*{Project Description:}

The City of Springfield's obligations in the 2001 Wet Weather Flow Management Plan (WWFMP) were completed by January 2010; however it is necessary for the City to continue to fund wastewater system rehabilitation and Inflow and Infiltration (I/I) reduction projects. These additional projects will be identified through the Wastewater Master Plan Update project and the Capacity, Management, Operations and Maintenance (CMOM) program that will likely be included in the next NPDES permit for the wastewater system.

\section*{Project Status:}

Ongoing Program

Specific Plans/Policies Related to this Project:
Wastwater Master Plan
Regulatory Requirements
Capital Costs (\$ in thousands)
\begin{tabular}{|lrrrrrrr|}
\hline Fund & 2023 & \(\mathbf{2 0 2 4}\) & \(\mathbf{2 0 2 5}\) & \(\mathbf{2 0 2 6}\) & \(\mathbf{2 0 2 7}\) & Total \\
\cline { 2 - 8 } Wastewater Capital & \(\$ 250\) & \(\$ 250\) & \(\$ 1,000\) & \(\$ 1,000\) & \(\$ 1,000\) & \(\$ 3,500\) \\
& & & & & & \\
\cline { 2 - 8 } & & \(\$ 250\) & \(\$ 250\) & \(\$ 1,000\) & \(\$ 1,000\) & \(\$ 1,000\) & \(\$ 3,500\) \\
\hline
\end{tabular}

\section*{Wastewater}

\section*{Expansion}

\section*{Local Sewer Extensions}

\section*{Department Development and Public Works}

\section*{Project Description:}

Within the City of Springfield's city limits and Urban Growth Boundary (UGB) are several areas that are fully developed, but lack wastewater service. The project would fund extending wastewater pipes to these areas upon request of affected property owners or annexation, with some or all of the cost possibly reimbursable through assessments. Increased infrastructure will increase the need for more maintenance personnel which impacts the wastewater operations budget. The estimated increase in the wastewater operations cost is \(\$ 1,600\) per 1,000 feet of new pipe.

\section*{Project Status:}

Ongoing Program

\section*{Specific Plans/Policies Related to this Project:}

Wastwater Master Plan
Council Goal to provide for development
Capital Costs (\$ in thousands)
\begin{tabular}{|llllllll|}
\hline Fund & \(\mathbf{2 0 2 3}\) & \(\mathbf{2 0 2 4}\) & \(\mathbf{2 0 2 5}\) & \(\mathbf{2 0 2 6}\) & \(\mathbf{2 0 2 7}\) & Total \\
\cline { 2 - 9 } & Wastewater Capital & \(\$ 500\) & \(\$ 500\) & \(\$ 500\) & \(\$ 500\) & \(\$ 500\) & \(\$ 2,500\) \\
& & & & & & \\
\cline { 2 - 9 } & & \(\$ 500\) & \(\$ 500\) & \(\$ 500\) & \(\$ 500\) & \(\$ 500\) & \(\$ 2,500\) \\
\hline
\end{tabular}

\section*{Repair and Preservation}

\section*{70th St Basin Rehab}

\section*{Department Development and Public Works}

\section*{Project Description:}

One of the key goals of the CMOM Program is to eliminate inflow and infiltration (I/I). Utilizing output from the flow monitoring and analysis work, it has been determined that wastewater pipelines serving the 70th Street Basin exhibit a high rate of \(\mathrm{I} I \mathrm{I}\), and thus is prioritized for a rehabilitation project.

\section*{Project Status:}

Not Started

\section*{Specific Plans/Policies Related to this Project:}

Wastwater Master Plan
Council Goal to provide for development
Capital Costs (\$ in thousands)
\begin{tabular}{|lrrrrrrrr|}
\hline Fund \\
Wastewater Capital & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\cline { 2 - 9 } & & \(\$ 2,000\) & & & & & \(\$ 2,000\) \\
\cline { 2 - 8 } & & \(\$ 2,000\) & \(\$ 0\) & \(\$ 0\) & \(\$ 0\) & \(\$ 0\) & \(\$ 2,000\) \\
\hline
\end{tabular}

\section*{Wastewater}

\section*{Repair and Preservation}

\section*{72nd St Basin Rehab}

\section*{Department Development and Public Works}

\section*{Project Description:}

One of the key goals of the CMOM Program is to eliminate inflow and infiltration (I/I). Utilizing output from the flow monitoring and analysis work, it has been determined that wastewater pipelines serving the 72nd Street Basin exhibit a high rate of \(I / I\), and thus is prioritized for a rehabilitation project.

\section*{Project Status:}

Not Started

\section*{Specific Plans/Policies Related to this Project:}

Wastwater Master Plan
Council Goal to provide for development
Capital Costs (\$ in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Wastewater Capital & & \$1,500 & & & & \$1,500 \\
\hline Total & \$0 & \$1,500 & \$0 & \$0 & \$0 & \$1,500 \\
\hline
\end{tabular}

\section*{Wastewater}

\section*{Harbor Drive Pump Station}

\section*{Department Development and Public Works}

\section*{Project Description:}

The S. 2nd St./Harbor Drive area is currently not have sanitary sewer service. The Council has directed staff to analyze areas within the UGB where investment in infrastructure may spur residential development, and investment in the Harbor Drive Pump Station provides a key service to 58 buildable acres. This project will construct a sanitary pump station and associated pipline to connect to the dry lines previously constructed.

\section*{Project Status:}

Not Started

Specific Plans/Policies Related to this Project:
Wastwater Master Plan
Council Goal to provide for development
Capital Costs (\$ in thousands)


Unfunded Projects List - Watewater
\begin{tabular}{|c|c|c|c|c|}
\hline Project Title & Project Category & Project Status & Estimated Funding Need (\$ in thousands) & Notes \\
\hline 19th Street Sewer Upgrade & Upgrades & Not Programmed-Pending Funding & \$1,500 & Replace a 12" pipe with a new 18" pipe. With model analysis this upgrade may not be necessary. Will be evaluated with Master Plan Update \\
\hline Marcola Rd Sewer & Expansion & Not Programmed-Pending Funding & \$500 & Provide sewer service to area within the UGB currently not annexed. \\
\hline Main Street Improvements - Unit 1 & Expansion & Not Programmed-Pending Funding & \$2,100 & Upgrade pipeline capacity to support future growth in East Springfield \\
\hline Peacehealth-Riverbend PS & Expansion & Not Programmed-Pending Funding & \$3,189 & New pump station to support development within the Riverbend campus. \\
\hline Main Street Improvements - Unit 2 & Expansion & Not Programmed-Pending Funding & \$1,145 & Upgrade pipeline capacity to support future growth in East Springfield \\
\hline Hayden Lo PS & Upgrades & Not Programmed-Pending Funding & \$1,050 & Upgrade existing pumps to maintain capacity and avoid potential SSOs. Project will be reevaluated as some work has been completed through routine maintenance. \\
\hline River Glen PS & Upgrades & Not Programmed-Pending Funding & \$950 & Upgrade existing pumps to maintain capacity and avoid potential SSOs. Project will be reevaluated as some work has been completed through routine maintenance. \\
\hline
\end{tabular}

FY20-FY22 Capital Project Status Update - Building and Facilities
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Project Title & \begin{tabular}{l}
Project \\
Number
\end{tabular} & \begin{tabular}{l}
In \\
Previous CIP
\end{tabular} & Project Category & Project Status & FY22 Budget (\$ in Thousands) & Total Cost to Complete (\$ in Thousands) & Notes \\
\hline Building Preservation & P61011 & X & Repair and Preservation & Ongoing Program & \$306 & & Program funds preservation and repairs of City owned buildings. (e.g., City Hall Seismic upgrades) \\
\hline Booth Kelly Building Assessment & P41029 & X & Studies & Completed & \$39 & & Assessment is complete. City Staff will be reviewing and evaluating next steps. \\
\hline Booth Kelly Roof Replacement & P21084 & X & Repair and Preservation & Not Started & \$100 & & \\
\hline Booth Kelly Building Repair & P21170 & x & Repair and Preservation & Not Started & \$40 & & \\
\hline Fuel Facility Stormwater Upgrade & P21121 & x & Upgrades & Completed & & \$37 & Existing oil/water separator replumbed to connect to sanitary. \\
\hline Firing Range Decommissioning & P21075 & X & Water Quality & On-Hold & \$25 & & Initial study has been completed in coordination with DEQ \\
\hline
\end{tabular}

\section*{Building Preservation}

\section*{Department Development and Public Works}

\section*{Project Description:}

Perform preservation, capital maintenance and repair projects on City-owned buildings, including but not limited to City Hall, 5 Fire Stations, Museum, Justice Center, Jail, Depot, Carter Building and Maintenance Facilities. Projects can include the repair, renovation or replacement of structural, mechanical, electrical, and plumbing systems. Other projects can include systems preservation such as, painting, roofing, lighting, alarm and elevator projects as well as repair and/or upgrades to aesthetic and architectural elements.

\section*{Project Status:}

Ongoing Program

\section*{Specific Plans/Policies Related to this Project: \\ Council Goals}

\section*{Capital Costs (\$ in thousands)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Fund & 2023 & 2024 & 2025 & 2026 & 2027 & Total \\
\hline Building Preservation Fund & \$270 & \$270 & \$270 & \$270 & \$270 & \$1,350 \\
\hline Total & \$270 & \$270 & \$270 & \$270 & \$270 & \$1,350 \\
\hline
\end{tabular}

Unfunded Projects List - Buildings and Facilities
\begin{tabular}{|l|l|l|r|r|}
\hline \multicolumn{1}{|c|}{ Project Title } & Project Category & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Project \\
Status
\end{tabular}} & \begin{tabular}{r} 
Estimated Funding \\
Need
\end{tabular} & \\
\hline Municipal Parking Garage & Expansion & Not Programmed-Pending Funding & \(\$ 2,500,000\) & \begin{tabular}{l} 
Initial design phase completed. Project on hold pending future Glenwood \\
developments.
\end{tabular} \\
\hline City Storage Facility & Expansion & Not Programmed-Pending Funding & \(\$ 300,000\) & \\
\hline Library & Expansion & Not Programmed-Pending Funding & \(\$ 28,000,000\) & \\
\hline City Hall Renovation & Upgrades & Not Programmed-Pending Funding & \(\$ 4,000,000\) & \\
\hline Fire Station 4 & Upgrades & Not Programmed-Pending Funding & \(\$ 6,100,000\) & \\
\hline City Hall HVAC & Upgrades & Not Programmed-Pending Funding & \(\$ 1,800,000\) & \\
\hline Energy Efficiency Projects & Upgrades & Not Programmed-Pending Funding & \(\$ 200,000\) & \\
\hline \begin{tabular}{l} 
Downtown Mill Plaza Design \& \\
Construction
\end{tabular} & Expansion & Not Programmed-Pending Funding & \(\$ 3,700,000\) & \\
\hline City Hall Storage & Expansion & Not Programmed-Pending Funding & \(\$ 100,000\) & \\
\hline Council Chambers Upgrades & Upgrades & Not Programmed-Pending Funding & \(\$ 175,000\) & \begin{tabular}{l} 
ARPA (American Recovery Plan Act) funds are a proposed source for \\
moving this project forward.
\end{tabular} \\
\hline
\end{tabular}
Citizen Project Request Summary
\begin{tabular}{|c|c|c|c|c|}
\hline Project Title & Location & Project Category & Request Summary & Notes \\
\hline Rainbow Drive & D Street to Centennial Boulevard & Repair and Preservation & Pavement surface repair and preservation. Project would also need to include ADA upgrades. & \\
\hline Aster Street & Location needs to be verified & Repair and Preservation & Pavement surface repair and preservation. Project would also need to include ADA upgrades. & \\
\hline Streetlight Repair & Pedestrian walkway between Obsidian Ave. and Pumice Place & Safety & Repair light outage on path & CSR will be submitted \\
\hline Pedestrian Crossing improvements Centennial Blvd. & Centennial Blvd. and Anderson Lane Intersection & Safety & Crossing improvements to enhance pedestrian safety (e.g., RRFB) & \\
\hline S. B and S. 3rd Street & S. 5th Street to S. C St. & Upgrades & Pavement surface repair and preservation as well as adding bike lanes. Project would also need to include ADA upgrades. & \\
\hline EWEB Path Extension & Pioneer Parkway to Don St. & Expansion & Extend Multiuse path west from Pioneer Parkway. Other requests include pedestrian crossing upgrades for Pioneer Parkway. & \\
\hline Aspen St. & Centennial Boulevard to Tamarack St. & Upgrades & Street improvements on Aspen St. adjacent to Centennial Elementary. & Project is proposed in the CIP \\
\hline Fairview Drive & Mill St. to W. Quinalt St. & Repair and Preservation & Pavement surface repair and preservation. Project would also need to include ADA upgrades. & \\
\hline \begin{tabular}{l}
Pedestrian Crossing improvements - \\
McKenzie Willamette
\end{tabular} & Mohawk Blvd. and ISt & Safety & Addition of a crosswalk and other safety enhancements & \\
\hline Railroad Crossing Improvements & Main St., 32nd St., and 42nd St. & Upgrades & ADA accommodation improvements & Railroad right of way \\
\hline N. 54th St. & Main St. to F St. & Upgrades & Pavement surface repair and preservation. Project would also need include sidewalks and ADA upgrades. & \\
\hline Signal Upgrade & Coryell Pass, on ramp to l-5 north from Hwy. 225 & Upgrades & Add flashing yellow arrow. & ODOT jurisdiction, request will be forwarded to Traffic Operations for discussion with ODOT. \\
\hline Neighborhood Path Improvements & 1400 Block from Centennial Blvd. to I St. & Upgrades & Improve existing ROW dedicated for neighborhood pedestrian access with paved sidewalk and ADA compliant ramps. & \\
\hline Pedestrian Crossing Improvements & 1300 Modoc St. & Safety & Add no parking adjacent to crossing to enhance pedestrian visibility & CSR will be submitted \\
\hline 2nd Street Improvements & S St. to T St. & Upgrades & Pavement improvements as well urban standards improvements (e.g., sidewalks) & \\
\hline
\end{tabular}

Attachment 3, Page 1 of 2
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Citizen Project Request Summary} \\
\hline Project Title & Location & Project Category & Request Summary & Notes \\
\hline Intersection Upgrades & 2nd St. and Q St. & Safety & Improvements to improve left turn movement and ease congestion & Will be reviewed as part of proposed Q St. project. \\
\hline Jasper Road Improvements & 42nd St. to 44th St. & Upgrades & Upgrades to enhance bike and pedestrian safety to include sidewalks, bike lanes, and pedestrian crossing enhancements. & Currently Lane County jurisdiction \\
\hline Street Tree Replacement & Citywide & Upgrades & Remove street tree stumps and replace with new trees. & \\
\hline 2nd Street Improvements & Q St. to T St. & Upgrades & Pavement improvements as well Urban Standards improvements (e.g., sidewalks) & \\
\hline Multiuse Path Expansion & Path expansion to connect 52nd/ High Banks to the EWEB Bike Path & Expansion & A path along the northside of Hwy. 126, from 52nd/High Banks connecting to the 42nd St. multiuse path. And path connection along Marcola Rd. connecting to the EWEB multiuse path. & \\
\hline LED Streetlight Improvements & Citywide & Upgrades & Investigate and implement new concepts to reduce glare and light trespass. Also investigate spectrum to reduce brightness issues. & Will forward request to traffic operations for consideration. \\
\hline
\end{tabular}

Attachment 3, Page 2 of 2

\title{
BEFORE THE PLANNING COMMISSION \\ OF THE CITY OF SPRINGFIELD
}

\section*{REQUEST FOR APPROVAL \\ OF THE DRAFT FY23-FY27 \\ CAPITAL IMPROVEMENT \\ PROGRAM}
\begin{tabular}{ll}
+ & DRAFT CAPITAL \\
IMPROVEMENT \\
+ & PROGRAM FY23-FY27 \\
+ &
\end{tabular}

\section*{NATURE OF THE APPLICATION}

The Development and Public Works Department has been going through the process of updating the Capital Improvements Program project lists and has produced a draft copy for the five year period of FY23-FY27. The Public Works Department is now bringing the prioritized project lists before the Planning Commission and seeks a recommendation to the City Council for review and adoption.

\section*{ORDER}

It is ORDERED by the Planning Commission of Springfield that the draft FY23-FY27 Capital Improvement Program project lists be sent to the City Council with the Planning Commission's recommendation for review and adoption. This ORDER was presented to and approved by the Planning Commission on October \(5^{\text {th }}, 2021\).

Planning Commission Chairperson

\section*{ATTEST:}

AYES:
NOES:
ABSENT:
ABSTAIN:
\(\qquad\)```


[^0]:    Commented [BS4]: As I recall, typically we've allowed elementary schools in residential zones, but the middle and high schools are generally on public land. Are you intending to change

    Commented [BS5R4]: I had time to check, and the Metro Plan calls out residential land as being available for elementary and junior high schools. Education as a category of pubtic and semt public is for high schools and colleges. In order to maintain that distinction in the policy, I think you need to be more specific in the types of educational facilities (schools) that are allowed in

[^1]:    ${ }^{1}$ Only lots that were counted as unbuildable in an adopted Housing Needs Analysis, can be subtracted from the gross density as "small irregularly shaped lots".

[^2]:    Commented [RM2]: Michael comment
    Assuming private streets include access easements? Do we need to better match similar language in the driveway section of the code? SDC 4.2-120 A

[^3]:    Commented [RM25]:
    This is an existing standard for ADU's in 5.5.125(D)
    What if there was one main shared entrance into a "lobby" and then two internal entrances, one to each unit. Why prohibit that flexibility.

[^4]:    Commented [RM39]: Michaels comment
    Maybe this is how we account for parking? If not should be have a siting requirement for parking?

[^5]:    Commented [RM55]: Still need to look over/revise this section.

[^6]:    Commented [RM63]:
    Commented [RM64R63]: Rely on overall submittal

[^7]:    ${ }^{1}$ SpringfieldOregonSpeaks can be accessed at https://springfieldoregonspeaks.org

[^8]:    TYP EXTERIOR MATERIALS

[^9]:    $\square$ High Density Residential (HDR)

[^10]:    RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcsIHome Plate Frame.r2d]

[^11]:    RISA-2D Version 17.0.1 [Z:I.......IProject DocsICalcsIFirst Base Frames.r2d]

[^12]:    RISA-2D Version 17.0.1 [Z:I.......|Project DocsICalcs|First Base Frames.r2d]

[^13]:    RISA-2D Version 17.0.1 [Z:I........IProject DocsICalcsIThird Base Frames.r2d]

[^14]:    

